1
|
Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, Shehzad M. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024; 10:e27724. [PMID: 38500979 PMCID: PMC10945279 DOI: 10.1016/j.heliyon.2024.e27724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anzhen Qin
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang, 453002, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Mehmood
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Sadiq Naveed
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2240, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
2
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
3
|
Naziębło A, Merlak HM, Wierzbicka MH. The bundle sheath in Zea mays leaves functions as a protective barrier against the toxic effect of lead. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154104. [PMID: 37839393 DOI: 10.1016/j.jplph.2023.154104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Lead is a highly toxic metal. It impairs the metabolism of living organisms. Plants show different sensitivity to the action of this element. One of the plants with relatively high lead tolerance is Zea mays, where even in detached leaves treated with Pb2+ ions, the photosynthesis rate remains very high compared to other plant species. This study set out to determine the mechanism responsible for the high resistance of maize photosynthetic tissue to the toxic effect of this metal. For this purpose, the cut leaves of Z. mays were incubated in Pb(NO3)2 solutions at different concentrations. Regions of lead accumulation in tissues and cells were located using histochemical methods and transmission electron microscopy. The experiments showed a diverse distribution of lead ions in the leaf blade of Z. mays. Most of the accumulated Pb2+ ions were observed in the vascular bundle and the bundle sheath, while minimal traces of metal were transferred to the mesophyll. In Pisum sativum leaves, although Pb(NO3)2 concentration in the solution was two-fold lower, lead accumulated in all the leaf tissues - mainly in the vascular bundle, epidermis, sclerenchyma, and mesophyll. Thus, bundle sheath cells in maize leaves were able to inhibit the flow of Pb2+ ions to the ground tissue. Therefore, the influence of the toxic metal on photosynthesis in mesophyll cells remained minimal. These experiments show that the structure of Z. mays leaf, with a layer of bundle sheath cells (characteristic of C4 plants), contributes to the protecting photosynthetic tissue against the toxic effect of lead.
Collapse
Affiliation(s)
- Aleksandra Naziębło
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland.
| | - Hanna M Merlak
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Małgorzata H Wierzbicka
- Department of Ecotoxicology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warszawa, Poland
| |
Collapse
|
4
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Karlsons A, Osvalde A, Ievinsh G. Comparison of In Vitro and In Planta Heavy Metal Tolerance and Accumulation Potential of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162104. [PMID: 36015407 PMCID: PMC9413919 DOI: 10.3390/plants11162104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to compare the tolerance to several heavy metals and their accumulation potential of Armeria maritima subsp. elongata accessions from relatively dry sandy soil habitats in the Baltic Sea region using both in vitro cultivated shoot explants and long-term soil-cultivated plants at the flowering stage as model systems. The hypothesis that was tested was that all accessions will show a relatively high heavy metal tolerance and a reasonable metal accumulation potential, but possibly to varying degrees. Under the conditions of the tissue culture, the explants accumulated extremely high concentration of Cd and Cu, leading to growth inhibition and eventual necrosis, but the accumulation of Pb in their tissues was limited. When grown in soil, the plants from different accessions showed a very high heavy metal tolerance, as the total biomass was not negatively affected by any of the treatments. The accumulation potential for heavy metals in soil-grown plants was high, with several significant accession- and metal-related differences. In general, the heavy metal accumulation potential in roots and older leaves was similar, except for Mn, which accumulated more in older leaves. The absolute higher values of the heavy metal concentrations reached in the leaves of soil-grown A. maritima plants (500 mg Cd kg-1, 600 mg Cu kg-1, 12,000 mg Mn kg-1, 1500 mg Pb kg-1, and 15,000 mg Zn kg-1) exceeded the respective threshold values for hyperaccumulation. In conclusion, A. maritima can be characterized by a species-wide heavy metal tolerance and accumulation potential, but with a relatively high intraspecies diversity.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
5
|
Fatemi H, Esmaiel Pour B, Rizwan M. Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1417-1425. [PMID: 32839908 DOI: 10.1007/s11356-020-10549-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/16/2020] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is among the most abundant toxic trace elements which causes direct and indirect negative effects on humans, animals, and plants. Thus, there is a need to alleviate the Pb toxicity in plants for good quality food production especially from marginal soils. In this study, the effects of silicon nanoparticles (Si NPs) were investigated on coriander (Coriandrum sativum L.) biomass, vitamin C, flavonoid, antioxidant enzyme activities (i.e., catalase (CAT), peroxidase (POD), and super oxide dismutase (SOD)), malondialdehyde (MDA), and Pb concentration in plants subjected to different Pb concentrations. Treatments included four levels of Pb (0, 500, 1000, and 1500 mg/kg of soil), and two levels of Si NPs (0 and 1.5 mM) in all combinations. The Pb treatments alone decreased the plant biomass and vitamin C while increased the flavonoid, MDA, antioxidant enzyme activities, and Pb concentration in tissues depending upon the Pb treatments. The foliar-applied 1.5 mM Si NPs alleviated the adverse impacts of Pb on coriander plants which were due to the minimization of Pb concentration in plants and improvements in the plant defense system. Si NPs minimized accumulation of MDA in plant tissues and adjusted the activities of POD, CAT, and SOD in plants under Pb stress. Overall, Si NP foliar application might be a suitable approach in reducing the Pb concentrations in plants. However, field studies with various plant species and environmental conditions are required to highlight the role of Si NPs on the plant under toxic trace element stress.
Collapse
Affiliation(s)
- Hamideh Fatemi
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Behrooz Esmaiel Pour
- Department of Horticulture, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
6
|
Menhas S, Hayat K, Niazi NK, Zhou P, Bundschuh J, Naeem M, Munis MFH, Yang X, Chaudhary HJ. Microbe-EDTA mediated approach in the phytoremediation of lead-contaminated soils using maize ( Zea mays L.) plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:585-596. [PMID: 33166474 DOI: 10.1080/15226514.2020.1842997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current study, we investigated the potential of Cronobacter sakazakii- ethylenediaminetetraacetic acid (EDTA) assisted phytoremediation potential of Zea mays L. to remediate lead (Pb)-contaminated soils. The C. sakazakii exhibited various stress tolerance mechanisms via plant growth promoting (PGP) traits, intrinsic extracellular enzyme production and antibiotic resistance. A greenhouse experiment was conducted to examine the dual effects of plant growth promoting endophytic bacteria (PGPEB)-chelator synergy in maize plants under different Pb contaminated soil regimes. C. sakazaii-EDTA (5 mM EDTA kg-1) complex significantly (p < 0.05) enhanced plant growth and biomass (48.91%); chlorophyll a, b and carotenoid contents (27.26%, 25.02% and 42.09%); relative water content (61.33%); proline content (63.60%); root and shoot Pb accumulation capacity (52.31% and 44.71%) in Pb contaminated soils. This may suggest the efficacy of current approach in enhancing plant tolerance capability toward Pb-uptake and phytoremediation capacity. Moreover, maize plants showed differential response to Pb availability in soil-1 (S1; Pb spiked soil, 500 mg kg-1) and soil-2 (S2; aged-contaminated soil) under various treatments. We describe the intriguing role of C. sakazakii-EDTA-maize system for Pb decontamination which can be used as a base line to explore the proposed combinatorial approach for long-term trails under field conditions for reclamation of Pb-contaminated soils.HighlightsThe PGPEB-EDTA mediated potential of Z. mays against Pb spiked and industrial contaminated soils is noticed.Increased tolerance of Z. mays against Pb in association with C. sakazakii, and EDTA is reported first time.Enhanced accumulation of metals by Z. mays is reported under combined treatment of C. sakazakii, and EDTA.Inoculation of plants with C. sakazakii, and EDTA has positive effects on growth and accumulation of Pb by Z. mays.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Australia
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development and Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Australia
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
7
|
Pilarska M, Niewiadomska E, Sychta K, Słomka A. Differences in the functioning of photosynthetic electron transport between metallicolous and non-metallicolous populations of the pseudometallophyte Viola tricolor. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153185. [PMID: 32497866 DOI: 10.1016/j.jplph.2020.153185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to assess the effect of metalliferous conditions on the functioning of photosynthetic electron transport in waste heap populations of a pseudometallophyte, Viola tricolor L. Measurements of chlorophyll a fluorescence and the absorbance changes at 830 nm enabled a non-invasive assessment of photosynthetic apparatus performance. This was complemented by the evaluation of the chlorophyll content. Low temperature chlorophyll fluorescence emission spectra were also recorded. Based on the OJIP test performed in situ, we demonstrated a disturbed condition of photosystem II (PSII) in three metalliferous populations in comparison with a non-metallicolous one. The combined effects of elevated concentrations of zinc, cadmium and lead in soil resulted in the decline of some parameters describing the efficiency and electron flow through PSII. The differences between waste heap populations seemed to be partly correlated with the concentration of heavy metals in the soil. The characteristic of electron transport at photosystem I (PSI) in the light-adapted state revealed increased values of PSI donor-side limitation (YND) and a declined PSI quantum efficiency (YI). It was also demonstrated that the waste heap conditions negatively affect the total chlorophyll content in leaves and led to an increased ratio of fluorescence emission at 77 K (F730/F685). The obtained data indicate that, regardless of the high adaptation of metallicolous populations, photosynthetic electron transport is hampered in V. tricolor plants at metal polluted sites.
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland.
| | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland.
| | - Klaudia Sychta
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Cracow, Poland.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Cracow, Poland.
| |
Collapse
|
8
|
Naikoo MI, Dar MI, Khan FA, Raghib F, Rajakaruna N. Trophic transfer and bioaccumulation of lead along soil-plant-aphid-ladybird food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23460-23470. [PMID: 31201701 DOI: 10.1007/s11356-019-05624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) contamination of agroecosystems is a serious issue as Pb is a persistent pollutant that is retained in soil for long, causing toxicities to organisms. This study examines biotransfer of Pb from soils treated with different concentrations of Pb through a broad bean (Vicia faba L.)-aphid (Aphis fabae Scop.)-ladybird (Coccinella transversalis Fabricius) food chain and its consequent inference for natural biological control, the ladybird. The soil was amended with Pb at the rates of 0, 25, 50, 75 and 100 mg kg-1 (w/w). The amount of Pb in plant, aphid and ladybird increased in a dose-dependent manner to Pb contents in the soil. The results showed that Pb biomagnified from soil to root with transfer coefficient always > 1. Biominimization of Pb occurred at the second trophic level in aphids and at the third trophic level in ladybirds as their respective transfer coefficients from shoot to aphid and aphid to ladybird were always < 1. The increased elimination of Pb via aphid excreta (honeydew) and pupal exuviae in a dose-dependent manner suggests that these are possible detoxification mechanisms at two different trophic levels which control Pb bioaccumulation along the food chain. The statistically significant (p ≤ 0.05) decreases in biomass and predation rate of predatory ladybirds at 100 mg kg-1 Pb indicate that high dose of Pb in soil may have sub-lethal effects on ladybirds. Further studies at cellular and sub-cellular levels are needed to further document the potential mechanisms of achieving Pb homeostasis in ladybirds under Pb stress.
Collapse
Affiliation(s)
- Mohd Irfan Naikoo
- Plant Ecology and Environment Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| | - Mudasir Irfan Dar
- Plant Ecology and Environment Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Fareed Ahmad Khan
- Plant Ecology and Environment Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Fariha Raghib
- Plant Ecology and Environment Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Nishanta Rajakaruna
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Defense manifestations of enzymatic and non-enzymatic antioxidants in Ricinus communis L. exposed to lead in hydroponics. EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Lead (Pb) is a major inorganic pollutant with no biological significance and has been a global concern. Phytotoxicity of lead induces toxic effects by generating reactive oxygen species (ROS), which inhibits most of the cellular processes in plants. Hydro-ponic experiments were performed with Ricinus communis to investigate the toxicity and antioxidant responses by exposing to different concentrations of lead (0, 200 and 400 µM) for 10 days. Pb stress caused a significant increase in electrolyte leakage, non-enzymatic antioxidants (phenols and flavonoids) and a decrease in the elemental profile of the plant. Histochemical visualization clearly indicates the significant increase of H2O2 production in dose-dependent manner under Pb stress. Likewise, an increase in catalase, guaiacol peroxidase and superoxide dismutase activity was also evident. Ascorbate peroxidase and MDAR, on the other hand, responded biphasically to Pb treatments showing a decrease in concentration. The decline in redox ratio GSH/GSSG was imposed by the indirect oxidative stress of Pb. Hence these findings showed the ameliorative potential of R. communis to sustain Pb toxicity under oxidative stress.
Collapse
|
10
|
Kumar A, Prasad MNV. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:401-418. [PMID: 30290327 DOI: 10.1016/j.ecoenv.2018.09.113] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 05/18/2023]
Abstract
Natural and human activities introduced an excess level of toxic lead (Pb) to the environment. Pb has no known biological significance and its interactions with plants lead to the production of reactive oxygen species (ROS). Pb and/or ROS have the potential to cause phytotoxicity by damaging the tissue ultrastructure, cellular components, and biomolecules. These damaging effects may possibly result in the inhibition of normal cellular functioning, physiological reactions, and overall plant performances. ROS play a dual role and act as a signaling molecule in plant defense system. This system encircles enzymatic and non-enzymatic antioxidative mechanisms. Catalase, superoxide dismutase, peroxidase, and enzymes from the ascorbate-glutathione cycle are the major enzymatic antioxidants, while non-enzymatic antioxidants include phenols, flavonoids, ascorbic acid, and glutathione. Pb removal from contaminated sites using plants depend on the plant's Pb accumulation capacity, Pb-induced phytotoxicity, and tolerance and detoxification mechanisms plants adopted to combat against this phytotoxicity. However, the consolidated information discussing Pb-plant interaction including Pb uptake and its translocation within tissues, Pb-mediated phytotoxic symptoms, antioxidative mechanisms, cellular, and protein metabolisms are rather limited. Thus, we aimed to present a consolidated information and critical discussions focusing on the recent studies related to the Pb-induced toxicity and oxidative stress situations in different plants. The important functions of different antioxidants in plants during Pb stress have been reviewed. Additionally, tolerance responses and detoxification mechanisms in the plant through the regulation of gene expression, and glutathione and protein metabolisms to compete against Pb-induced phytotoxicity are also briefly discussed herein.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| | | |
Collapse
|
11
|
Romanowska E, Buczyńska A, Wasilewska W, Krupnik T, Drożak A, Rogowski P, Parys E, Zienkiewicz M. Differences in photosynthetic responses of NADP-ME type C4 species to high light. PLANTA 2017; 245:641-657. [PMID: 27990574 PMCID: PMC5310562 DOI: 10.1007/s00425-016-2632-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION Three species chosen as representatives of NADP-ME C4 subtype exhibit different sensitivity toward photoinhibition, and great photochemical differences were found to exist between the species. These characteristics might be due to the imbalance in the excitation energy between the photosystems present in M and BS cells, and also due to that between species caused by the penetration of light inside the leaves. Such regulation in the distribution of light intensity between M and BS cells shows that co-operation between both the metabolic systems determines effective photosynthesis and reduces the harmful effects of high light on the degradation of PSII through the production of reactive oxygen species (ROS). We have investigated several physiological parameters of NADP-ME-type C4 species (e.g., Zea mays, Echinochloa crus-galli, and Digitaria sanguinalis) grown under moderate light intensity (200 µmol photons m-2 s-1) and, subsequently, exposed to excess light intensity (HL, 1600 µmol photons m-2 s-1). Our main interest was to understand why these species, grown under identical conditions, differ in their responses toward high light, and what is the physiological significance of these differences. Among the investigated species, Echinochloa crus-galli is best adapted to HL treatment. High resistance of the photosynthetic apparatus of E. crus-galli to HL was accompanied by an elevated level of phosphorylation of PSII proteins, and higher values of photochemical quenching, ATP/ADP ratio, activity of PSI and PSII complexes, as well as integrity of the thylakoid membranes. It was also shown that the non-radiative dissipation of energy in the studied plants was not dependent on carotenoid contents and, thus, other photoprotective mechanisms might have been engaged under HL stress conditions. The activity of the enzymes superoxide dismutase and ascorbate peroxidase as well as the content of malondialdehyde and H2O2 suggests that antioxidant defense is not responsible for the differences observed in the tolerance of NADP-ME species toward HL stress. We concluded that the chloroplasts of the examined NADP-ME species showed different sensitivity to short-term high light irradiance, suggesting a role of other factors excluding light factors, thus influencing the response of thylakoid proteins. We also observed that HL affects the mesophyll chloroplasts first hand and, subsequently, the bundle sheath chloroplasts.
Collapse
Affiliation(s)
- Elżbieta Romanowska
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Alicja Buczyńska
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Wioleta Wasilewska
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Krupnik
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Drożak
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Paweł Rogowski
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Eugeniusz Parys
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maksymilian Zienkiewicz
- Department of Molecular Plant Physiology, Faculty of BiologyUniversity of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
12
|
|