1
|
Bedoya MA, Iwasaka-Neder J, Tsai A, Johnston PR, Körzdörfer G, Nickel D, Kollasch P, Bixby SD. Deep learning MR reconstruction in knees and ankles in children and young adults. Is it ready for clinical use? Skeletal Radiol 2025; 54:509-529. [PMID: 39112675 DOI: 10.1007/s00256-024-04769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 01/28/2025]
Abstract
OBJECTIVE To evaluate the diagnostic performance and image quality of accelerated Turbo Spin Echo sequences using deep-learning (DL) reconstructions compared to conventional sequences in knee and ankle MRIs of children and young adults. MATERIALS AND METHODS IRB-approved prospective study consisting of 49 MRIs from 48 subjects (10 males, mean age 16.4 years, range 7-29 years), with each MRI consisting of both conventional and DL sequences. Sequences were evaluated blindly to determine predictive values, sensitivity, and specificity of DL sequences using conventional sequences and knee arthroscopy (if available) as references. Physeal patency and appearance were evaluated. Qualitative parameters were compared. Presence of undesired image alterations was assessed. RESULTS The prevalence of abnormal findings in the knees and ankles were 11.7% (75/640), and 11.5% (19/165), respectively. Using conventional sequences as reference, sensitivity and specificity of DL sequences in knees were 90.7% and 99.3%, and in ankles were 100.0% and 100.0%. Using arthroscopy as reference, sensitivity and specificity of DL sequences were 80.0% and 95.8%, and of conventional sequences were 80.0% and 97.9%. Agreement of physeal status was 100.0%. DL sequences were qualitatively "same-or-better" compared to conventional (p < 0.032), except for pixelation artifact for the PDFS sequence (p = 0.233). No discrete image alteration was identified in the knee DL sequences. In the ankle, we identified one DL artifact involving a tendon (0.8%, 1/125). DL sequences were faster than conventional sequences by a factor of 2 (p < 0.001). CONCLUSION In knee and ankle MRIs, DL sequences provided similar diagnostic performance and "same-or-better" image quality than conventional sequences at half the acquisition time.
Collapse
Affiliation(s)
- M Alejandra Bedoya
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jade Iwasaka-Neder
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| | - Andy Tsai
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Patrick R Johnston
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Gregor Körzdörfer
- Siemens Medical Solutions USA, Inc, 40 Liberty Boulevard, Malvern, PA, 19355, USA
| | | | - Peter Kollasch
- Siemens Medical Solutions USA, Inc, 40 Liberty Boulevard, Malvern, PA, 19355, USA
| | - Sarah D Bixby
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Sun Z, Huang J, Ma X, Liang J, Sun C, Hu L, He H, Yu G. A Low-Field MRI Dataset For Spatiotemporal Analysis of Developing Brain. Sci Data 2025; 12:109. [PMID: 39833218 PMCID: PMC11747249 DOI: 10.1038/s41597-025-04450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Recently, imaging investigation of brain development has increasingly captured the attention of researchers and clinicians in an attempt to understand the link between the brain and behavioral changes. Although high-field MR imaging of infants is feasible, the necessary customizations have limited its accessibility, affordability, and reproducibility. Low-field MR, as an emerging solution for scrutinizing developing brain, has exhibited its unique advantages in safety, portability, and cost-effectiveness. The presented low-field infant structural MR data aims to manifest the feasibility of using low-field MR image to exam brain structural changes during early life in infants. The dataset comprises 100 T2 weighed MR images from infants with in-plane resolution of ~0.85 mm and ~6 mm slice thickness. To demonstrate the potential utility, we conducted atlas-based whole brain segmentations and volumetric quantifications to analyze brain development features in first 10 week in postnatal life. This dataset addresses the scarcity of a large, extended-span infant brain dataset that restricts the further tracking of infant brain development trajectories and the development of routine low-field MR imaging pipelines.
Collapse
Affiliation(s)
- Zhexian Sun
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China
| | - Jian Huang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China
| | - Xiaohui Ma
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiawei Liang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chensheng Sun
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China
| | - Lanyin Hu
- School of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Hongjian He
- School of Physics, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Yu
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Morin E, Xu E, Sacaze E, Legeas O, Ropars J. Comparison of sedation using pentobarbital or chlorpromazine in pediatric non-invasive imaging procedures: A before and after study.: Comparison of sedation using pentobarbital or chlorpromazine in non-invasive imaging procedures. Arch Pediatr 2024:S0929-693X(24)00209-4. [PMID: 39718476 DOI: 10.1016/j.arcped.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Sedation is often required for pediatric medical imaging procedures to ensure compliance and image quality. Recommendations for pediatric sedation exist, but there are currently no guidelines for the choice of the sedative drug. OBJECTIVE To compare the efficacy and adverse events of per os pentobarbital with intravenous chlorpromazine in children undergoing diagnostic imaging procedures. We hypothesized that the efficacy of per os pentobarbital would not be inferior to that of intravenous chlorpromazine, that safety would be similar, and that patient acceptance would be higher. MATERIAL AND METHODS A pilot study (before and after study methodology) was performed. The sedation of 247 children with intravenous chlorpromazine or oral pentobarbital was evaluated for 6 months successively (independently by two radiologists, both blinded to the sedation technique). The primary outcome was sedation success as defined by an acceptable image quality. Secondary outcomes were induction time, length of hospital stay, adverse events, parental satisfaction and potential factors associated with failure of pentobarbital sedation. RESULTS The sedation success rate of per os pentobarbital was found to be not inferior to that of intravenous chlorpromazine (83 % vs 90 %, p < 0.01). Mean length of hospital stay was shorter with per os pentobarbital. Despite the higher incidence of agitation during recovery with per os pentobarbital, parents expressed a preference for it. Per os pentobarbital failed more often in children older than 5 years. CONCLUSION Per os pentobarbital may be an effective alternative to intravenous chlorpromazine, especially in children under 5 years of age.
Collapse
Affiliation(s)
- Elodie Morin
- Centre Hospitalier de Morlaix, service de pédiatrie, Morlaix, France
| | - Eric Xu
- CHU site Félix Guyon, Saint Denis, ile de la Réunion, France
| | - Elise Sacaze
- CHRU de Brest, service de pédiatrie, Brest, France
| | - Olivier Legeas
- CHT Gaston-Bourdet, service de radiologie, Nouméa, Nouvelle Calédonie, France
| | - Juliette Ropars
- CHRU de Brest, service de pédiatrie, Brest, France; Laboratoire de Traitement de l'Information Médicale INSERM U1101, Brest, France.
| |
Collapse
|
4
|
Runge SB, Precht H, Jensen IE, Jensen K, Johannesen TA, Pedersen MRV, Christensen NL. Children Centered Care: child and parent perspectives on a multi-faceted concept for magnetic resonance imaging without anesthesia - a survey. Pediatr Radiol 2024:10.1007/s00247-024-06111-3. [PMID: 39661172 DOI: 10.1007/s00247-024-06111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Anxiety-provoking healthcare procedures require specific child-friendly approaches. Magnetic resonance imaging (MRI) can cause anxiety for children and general anesthesia (GA) is often used. We developed and tested a multi-faceted child-friendly concept, Children Centered Care, for MRI of children without GA. OBJECTIVE To investigate children's and parents' individual experiences with the concept using a survey. The main aim was to evaluate comfort for children and sense of security for parents during unsedated MRI. MATERIALS AND METHODS In this prospective study of 265 children aged 4-10 years enrolled in 2016 and 2017, the Children Centered Care concept is compared to a standard setup. The concept included an interactive app, trained pediatric radiographers, a children's lounge with a toy-scanner, and a child-friendly multimedia environment in the scanner room. A 25-item survey was used including a mix of open and closed questions, free text, and a visual analogue scale to evaluate self-reported child comfort. RESULTS A total of 154 children were included in the Children Centered Care group and 111 in the standard group. Overall, the mean age was 8.5 years (range 4.0-10.9 years). With Children Centered Care, child comfort increased (88% vs. 77%), P = 0.02. The app and toy-scanner were popular among children. More parents felt "very much" prepared (80% vs. 57%), P < 0.01, and "very much" secure (92% vs. 79%), P < 0.01. CONCLUSION With the use of a multi-faceted, child-friendly concept, MRI without GA is a feasible first choice for children aged 4-10 years, with high levels of comfort for children and parents.
Collapse
Affiliation(s)
- Stine Bjerrum Runge
- Department of Radiology, Lillebaelt Hospital Kolding, Sygehusvej 24, 6000, Kolding, Denmark.
| | - Helle Precht
- Department of Radiology, Lillebaelt Hospital Kolding, Sygehusvej 24, 6000, Kolding, Denmark
- Department of Regional Health Research, Odense, Denmark
- Health Sciences Research Center, UCL University College, Odense, Denmark
| | - Ib Erik Jensen
- Department of Radiology, Lillebaelt Hospital Kolding, Sygehusvej 24, 6000, Kolding, Denmark
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | - Kim Jensen
- Department of Radiology, Lillebaelt Hospital Kolding, Sygehusvej 24, 6000, Kolding, Denmark
- Progardia, Middelfart, Denmark
| | | | - Malene Roland Vils Pedersen
- Department of Radiology, Lillebaelt Hospital Kolding, Sygehusvej 24, 6000, Kolding, Denmark
- Department of Radiology, Lillebaelt Hospital Vejle, Vejle, Denmark
- Department of Regional Health Research, Odense, Denmark
| | - Nicolaj Lyhne Christensen
- Department of Radiology, Lillebaelt Hospital Kolding, Sygehusvej 24, 6000, Kolding, Denmark
- Department of Radiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Ozdemir S, Ayyildiz TK. The effect of video-based education program applied before children's pediatric Magnetic Resonance Imaging (MRI) on anxiety in Turkey: A randomized controlled study. J Pediatr Nurs 2024; 77:e81-e89. [PMID: 38637174 DOI: 10.1016/j.pedn.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE This study is a randomized controlled trial conducted to examine the effects of a Turkish video-based education program on scanned image quality and child and parent anxiety during Magnetic Resonance Imaging (MRI). DESIGN AND METHODS The study was conducted with 66 children aged between 4 and 15 years at Zonguldak Bulent Ecevit University Health Practice and Research Hospital, between January 2019 and December 2019. A video-based educational program was applied to an intervention group before MRI. RESULTS The video-based education program reduced children's anxiety and fear (p < 0.001). The study also showed a significant reduction in parental stress (p < 0.001). The image quality in the intervention group was better than that in the control group (control group: 3.24 ± 1.20; intervention group: 4.18 ± 0.81) (p = 0.001). Significantly fewer children refused to enter the MRI room in the intervention group than in the control group (p < 0.05). CONCLUSION Child-friendly and video-based educational programs can be organized for children and parents in diagnostic and treatment procedures for children in hospitals. PRACTICE IMPLICATIONS MRI scans can be uncomfortable for children and require transport to a better-equipped hospital for sedation. They can also cause financial loss for children and their parents and disrupt facility workflow. An educational program to adjust the children and their families will improve the scanning process and its success rate.
Collapse
Affiliation(s)
- Sumeyye Ozdemir
- Zonguldak Bülent Ecevit University, Health Sciences Institute, Department of Pediatric Nursing, Zonguldak, Turkey.
| | - Tulay Kuzlu Ayyildiz
- Zonguldak Bülent Ecevit University, Faculty of Health Sciences, Department of Nursing, Zonguldak, Turkey
| |
Collapse
|
6
|
Arai Y, Ohta K, Yoshino G, Okanishi T, Maegaki Y. The Impact of Simulation-Based Training on Self-Efficacy in Sedation for Pediatric Magnetic Resonance Imaging. Yonago Acta Med 2024; 67:108-113. [PMID: 38803588 PMCID: PMC11128076 DOI: 10.33160/yam.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Background In Japan, approximately 35% of facilities experience sedation-related complications for pediatric magnetic resonance imaging (MRI), including severe complications such as respiratory and cardiac arrests. In the medical education field, simulation improves not only the quality of real emergency response but also health care workers' self-efficacy. Individuals with high self-efficacy are better prepared at handling diverse conditions. However, there is no research examining the impact of sedation simulation for pediatric MRI on the self-efficacy of health care workers. This study aimed to retrospectively investigate the impact of sedation simulation for pediatric MRI on the self-efficacy of health care workers in sedation. Methods The study was conducted on August 18, 2023, and enrolled pediatricians, nurses, and radiological technologists. The impact of sedation simulation for pediatric MRI on the participants was analyzed using confidence scale scores and part of the Pediatric Resuscitation and Escalation of Care Self-Efficacy Scale (PRSES), before and after sedation simulation for pediatric MRI. Results Eighteen participants (six pediatricians, six nurses, and six radiological technologists) were included in this study. Regarding confidence scale scores, a significant improvement was observed in the overall group (P = 0.002) and among the nurses (P = 0.0036). Regarding the item 'When confronted with a clinically deteriorating child, I know how to ask for assistance' of PRSES, a significant improvement was observed in the overall group (P = 0.0035) and among the radiological technologists (P = 0.048). Conclusion There's a potential for sedation simulation for pediatric MRI to increase the self-efficacy of health care workers in MRI sedation. Our findings suggest that this training has a valuable role in preparing health care workers to practice sedation for pediatric MRI.
Collapse
Affiliation(s)
- Yuto Arai
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Kento Ohta
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Go Yoshino
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Tohru Okanishi
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
7
|
Greer MLC, Gee MS, Pace E, Sotardi S, Morin CE, Chavhan GB, Jaimes C. A survey of non-sedate practices when acquiring pediatric magnetic resonance imaging examinations. Pediatr Radiol 2024; 54:239-249. [PMID: 38112762 DOI: 10.1007/s00247-023-05828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Improving access to magnetic resonance imaging (MRI) in childhood can be facilitated by making it faster and cheaper and reducing need for sedation or general anesthesia (GA) to mitigate motion. Some children achieve diagnostic quality MRI without GA through the use of non- practices fostering their cooperation and/or alleviating anxiety. Employed before and during MRI, these variably educate, distract, and/or desensitize patients to this environment. OBJECTIVE To assess current utilization of non-sedate practices in pediatric MRI, including variations in practice and outcomes. MATERIALS AND METHODS A survey-based study was conducted with 1372 surveys emailed to the Society for Pediatric Radiology members in February 2021, inviting one response per institution. RESULTS Responses from 50 unique institutions in nine countries revealed 49/50 (98%) sites used ≥ 1 non-sedate practice, 48/50 (96%) sites in infants < 6 months, and 11/50 (22%) for children aged 6 months to 3 years. Non-sedate practices per site averaged 4.5 (range 0-10), feed and swaddle used at 47/49 (96%) sites, and child life specialists at 35/49 (71%). Average success rates were moderate (> 50-75%) across all sites and high (> 75-100%) for 20% of sites, varying with specific techniques. Commonest barriers to use were scheduling conflicts and limited knowledge. CONCLUSION Non-sedate practice utilization in pediatric MRI was near-universal but widely variable across sites, ages, and locales, with room for broader adoption. Although on average non-sedate practice success rates were similar, the range in use and outcomes suggest a need for standardized implementation guidelines, including patient selection and outcome metrics, to optimize utilization and inform educational initiatives.
Collapse
Affiliation(s)
- Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika Pace
- Department of Radiology, Royal Marsden NHS Foundation Trust, London, England, UK
| | - Susan Sotardi
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara E Morin
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Govind B Chavhan
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Geuens S, Lemiere J, Nijs J, Treunen M, Aertsen M, Toelen J, Pauwels G, Sauer K, Potoms M, Van Cauter S, Wouters L, Hohlbaum K, Sjölinder M, Ståhl O, Buyse G, Demaerel P, Weyn B. Testing a Home Solution for Preparing Young Children for an Awake MRI: A Promising Smartphone Application. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1866. [PMID: 38136068 PMCID: PMC10742285 DOI: 10.3390/children10121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Thanks to its non-invasive nature and high-resolution imaging capabilities, magnetic resonance imaging (MRI) is a valuable diagnostic tool for pediatric patients. However, the fear and anxiety experienced by young children during MRI scans often result in suboptimal image quality and the need for sedation/anesthesia. This study aimed to evaluate the effect of a smartphone application called COSMO@home to prepare children for MRI scans to reduce the need for sedation or general anesthesia. The COSMO@home app was developed incorporating mini-games and an engaging storyline to prepare children for learning goals related to the MRI procedure. A multicenter study was conducted involving four hospitals in Belgium. Eligible children aged 4-10 years were prepared with the COSMO@home app at home. Baseline, pre-scan, and post-scan questionnaires measured anxiety evolution in two age groups (4-6 years and 7-10 years). Eighty-two children participated in the study, with 95% obtaining high-quality MRI images. The app was well-received by children and parents, with minimal technical difficulties reported. In the 4-6-year-old group (N = 33), there was a significant difference between baseline and pre-scan parent-reported anxiety scores, indicating an increase in anxiety levels prior to the scan. In the 7-10-year-old group (N = 49), no significant differences were observed between baseline and pre-scan parent-reported anxiety scores. Overall, the COSMO@home app proved to be useful in preparing children for MRI scans, with high satisfaction rates and successful image outcomes across different hospitals. The app, combined with minimal face-to-face guidance on the day of the scan, showed the potential to replace or assist traditional face-to-face training methods. This innovative approach has the potential to reduce the need for sedation or general anesthesia during pediatric MRI scans and its associated risks and improve patient experience.
Collapse
Affiliation(s)
- Sam Geuens
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | - Jurgen Lemiere
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | - Jessica Nijs
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | - Marlies Treunen
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | - Michael Aertsen
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | - Jaan Toelen
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | | | | | | | - Sofie Van Cauter
- Department Medical Imaging, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
- Centre for Translational Psychological Research TRACE, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
| | - Leen Wouters
- Centre for Translational Psychological Research TRACE, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
- Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
| | | | - Marie Sjölinder
- Research Institutes of Sweden (RISE), 103 33 Stockholm, Sweden; (M.S.)
| | - Olov Ståhl
- Research Institutes of Sweden (RISE), 103 33 Stockholm, Sweden; (M.S.)
| | - Gunnar Buyse
- University Hospitals Leuven, 3000 Leuven, Belgium (J.N.); (M.T.)
| | | | | |
Collapse
|
9
|
Camoni L, Santos A, Luporsi M, Grilo A, Pietrzak A, Gear J, Zucchetta P, Bar-Sever Z. EANM procedural recommendations for managing the paediatric patient in diagnostic nuclear medicine. Eur J Nucl Med Mol Imaging 2023; 50:3862-3879. [PMID: 37555902 PMCID: PMC10611649 DOI: 10.1007/s00259-023-06357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE The manuscript aims to characterize the principles of best practice in performing nuclear medicine procedures in paediatric patients. The paper describes all necessary technical skills that should be developed by the healthcare professionals to ensure the best possible care in paediatric patients, as it is particularly challenging due to psychological and physical conditions of children. METHODS We performed a comprehensive literature review to establish the most relevant elements of nuclear medicine studies in paediatric patients. We focused the attention to the technical aspects of the study, such as patient preparation, imaging protocols, and immobilization techniques, that adhere to best practice principles. Furthermore, we considered the psychological elements of working with children, including comforting and distraction strategies. RESULTS The extensive literature review combined with practical conclusions and recommendations presented and explained by the authors summarizes the most important principles of the care for paediatric patient in the nuclear medicine field. CONCLUSION Nuclear medicine applied to the paediatric patient is a very special and challenging area, requiring proper education and experience in order to be performed at the highest level and with the maximum safety for the child.
Collapse
Affiliation(s)
- Luca Camoni
- University of Brescia, 25123, Brescia, Italy.
- Nuclear Medicine Department, University of Brescia, ASST Spedali Civili Di Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Marie Luporsi
- Department of Nuclear Medicine, Institut Curie, PSL Research University, 75005, Paris, France
- LITO Laboratory INSERM U1288, Institut Curie, 91440, Orsay, France
| | - Ana Grilo
- H&TRC - Health and Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, Lisbon, Portugal
| | - Agata Pietrzak
- Electroradiology Department, Poznan University of Medical Sciences, Poznan, Poland
- Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Pietro Zucchetta
- Nuclear Medicine Department, Padova University Hospital, 35128, Padua, Italy
| | - Zvi Bar-Sever
- Department of Nuclear Medicine, Schneider Children's Medical Center, Tel-Aviv University, Petach Tikva, Israel
| |
Collapse
|
10
|
Wu W, Miller E, Hurteau-Miller J, Thipse M, Kapoor C, Webster R, McAuley D, Tu A. Validation of a shortened MR imaging protocol for pediatric spinal pathology. Childs Nerv Syst 2023; 39:3163-3168. [PMID: 36997725 DOI: 10.1007/s00381-023-05940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Conventional pediatric spine MRI protocols have multiple sequences resulting in long acquisition times. Sedation is consequently required. This study evaluates the diagnostic capability of a limited MRI spine protocol for selected common pediatric indications. METHODS Spine MRIs at CHEO between 2017 and 2020 were reviewed across pediatric patients younger than four years old. Two blinded neuroradiologists reviewed limited scan sequences, and results were independently compared to previously reported findings from the complete imaging series. T2 sagittal sequences from the craniocervical junction to sacrum and T1 axial sequence of the lumbar spine constitute the short protocol, with the outcomes of interest being cerebellar ectopia, syrinx, level of conus, filum < 2 mm, fatty filum, and spinal dysraphism. RESULTS A total of 105 studies were evaluated in 54 male and 51 female patients (mean age 19.2 months). The average combined scan time of the limited sequences was 15 min compared to 35 min for conventional protocols (delta = 20 min). The average percent agreement between full and limited sequences was > 95% in all but identifying a filum < 2 mm, where the percent agreement was 87%. Using limited MR sequences had high sensitivity (> 0.91) and specificity (> 0.99) for the detection of cerebellar ectopia, syrinx, fatty filum, and spinal dysraphism. CONCLUSION This study demonstrates that selected spinal imaging sequences allow for consistent and accurate diagnosis of specific clinical conditions. A limited spine imaging protocol has potential as a screening test to reduce the need for full-sequence MRI scans. Further work is needed to determine utility of selected imaging for other clinical indications.
Collapse
Affiliation(s)
- W Wu
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - E Miller
- Department of Medical Imaging, University of Ottawa, CHEO, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada
| | - J Hurteau-Miller
- Department of Medical Imaging, University of Ottawa, CHEO, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada
| | - M Thipse
- CHEO Research Institute, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada
| | - C Kapoor
- Department of Medical Imaging, University of Ottawa, CHEO, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada
| | - R Webster
- CHEO Research Institute, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada
| | - D McAuley
- Division of Pediatric Neurosurgery, Department of Surgery, Rm 3359, CHEO, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada
| | - A Tu
- Division of Pediatric Neurosurgery, Department of Surgery, Rm 3359, CHEO, 401 Smyth Ave, Ottawa, ON, K1H8L1, Canada.
| |
Collapse
|
11
|
Parikh AK, Richer EJ, Shen A, Zhang C, Braithwaite KA, Rostad BS. An Abbreviated Non-Contrast MRI Protocol for Osteomyelitis May Reduce the Need for Sedation in Young Children. Curr Probl Diagn Radiol 2023; 52:485-492. [PMID: 37248135 DOI: 10.1067/j.cpradiol.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Lengthy MRI examinations in young children often requires sedation. When sedation is unavailable, critical imaging may be delayed. Abbreviating the imaging protocol to a few essential sequences may reduce the need for sedation and prevent delays in patient care. We retrospectively evaluated an abbreviated noncontrast MRI protocol to diagnose lower extremity osteomyelitis in the pediatric population. The IRB approved this study. The radiology information system was searched for lower extremity MRI examinations for osteomyelitis in patients <20 years old from August 2020 to August 2021. Three noncontrast sequences (long axis T1 without fat saturation (FS), long axis STIR, and axial T2 with FS) were independently reviewed by 2 pediatric radiologists. The accuracy of the reviewers was compared to the clinical radiology report based on the unabridged contrast-enhanced standard department protocol. The search yielded 80 exams, mean age was 7 years old, 59% (47/80) were male, and 41% (33/80) were female. The accuracies of reviewer A and reviewer B were 95% and 89%, respectively. The reviewer inter-observer agreement for the diagnosis of osteomyelitis was strong (k = 0.79). The accuracy of an abbreviated noncontrast MRI protocol to evaluate lower extremity osteomyelitis in children approaches that of the unabridged protocol and has the potential to decrease the need for sedation in young children.
Collapse
Affiliation(s)
- Ashishkumar K Parikh
- Department of Radiology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA,.
| | - Edward J Richer
- Department of Radiology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | | | - Chao Zhang
- General Dynamics Information Technology Inc., Falls Church, VA
| | - Kiery A Braithwaite
- Department of Radiology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Bradley S Rostad
- Department of Radiology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| |
Collapse
|
12
|
Thestrup J, Hybschmann J, Madsen TW, Bork NE, Sørensen JL, Afshari A, Borgwardt L, Berntsen M, Born AP, Aunsholt L, Larsen VA, Gjærde LK. Nonpharmacological Interventions to Reduce Sedation and General Anesthesia in Pediatric MRI: A Meta-analysis. Hosp Pediatr 2023; 13:e301-e313. [PMID: 37727937 DOI: 10.1542/hpeds.2023-007289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
CONTEXT Nonpharmacological strategies are increasingly used in pediatric procedures, but in pediatric MRI, sedation and general anesthesia are still commonly required. OBJECTIVES To evaluate the effectiveness of nonpharmacological interventions in reducing use of sedation and general anesthesia in pediatric patients undergoing MRI, and to investigate effects on scan time, image quality, and anxiety. DATA SOURCES We searched Ovid Medline, CINAHL, Embase, and CENTRAL from inception through October 10, 2022. STUDY SELECTION We included randomized controlled trials and quasi-experimental designs comparing the effect of a nonpharmacological intervention with standard care on use of sedation or general anesthesia, scan time, image quality, or child and parental anxiety among infants (<2 years), children, and adolescents (2-18 years) undergoing MRI. DATA EXTRACTION Standardized instruments were used to extract data and assess study quality. RESULTS Forty-six studies were eligible for the systematic review. Limited to studies on children and adolescents, the meta-analysis included 20 studies with 33 873 patients. Intervention versus comparator analysis showed that nonpharmacological interventions were associated with reduced need for sedation and general anesthesia in the randomized control trials (risk ratio, 0.68; 95% confidence interval, 0.48-0.95; l2 = 35%) and nonrandomized studies (risk ratio, 0.58; 95% confidence interval, 0.51-0.66; l2 = 91%). The effect was largest among children aged 3 to 10 years when compared with older children and adolescents aged 11 to 18 years. LIMITATIONS There was substantial heterogeneity among nonrandomized studies. CONCLUSIONS Nonpharmacological interventions must be considered as standard procedure in infants, children, and adolescents undergoing MRI.
Collapse
Affiliation(s)
| | | | | | | | - Jette L Sørensen
- Juliane Marie Centre and Mary Elizabeth's Hospital
- Department of Clinical Medicine, Faculty of Health and Medicine Sciences
| | | | | | | | | | - Lise Aunsholt
- Neonatology
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke A Larsen
- Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line K Gjærde
- Juliane Marie Centre and Mary Elizabeth's Hospital
- Pediatrics and Adolescent Medicine, Neuropaediatric Unit
| |
Collapse
|
13
|
Chen JV, Zapala MA, Zhou A, Vu N, Meyer L, Smith MD, Kelleher C, Glenn OA, Courtier J, Li Y. Factors and Labor Cost Savings Associated with Successful Pediatric Imaging without Anesthesia: a Single-Institution Study. Acad Radiol 2023; 30:1979-1988. [PMID: 36641347 DOI: 10.1016/j.acra.2022.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/15/2023]
Abstract
RATIONALE AND OBJECTIVES In pediatric imaging, sedation is often necessary to obtain diagnostic quality imaging. We aim to quantify patient and imaging-specific factors associated with successful pediatric scans without anesthesia and to evaluate labor cost savings associated with our institutional Scan Without Anesthesia Program (SWAP). MATERIALS AND METHODS Patients who participated in SWAP between 2019-2022 were identified. Chart review was conducted to obtain sociodemographic and clinical information. Radiology database was used to obtain scan duration, modality/body part of examination, and administration of contrast. Mann-Whitney U and Chi-Square tests were used for univariate analysis of factors associated with success. Multivariate logistic regression was used to evaluate independent contributions to success. Associated hospital labor cost savings were estimated using salary information obtained through publicly available resources. RESULTS Of 731 patients, 698 had successful and 33 had unsuccessful scans (95% success rate). In univariate analysis, older age, female sex, absence of developmental delay, and administration of contrast were significantly associated with successful scans. Multivariate analyses revealed that older age, female sex, and absence of developmental delay were significant independent factors lending toward success. Imaging-related factors were not associated with outcome in multivariate analysis. Estimated labor cost savings were $139,367.80 per year for the medical center. CONCLUSION SWAP had an overall success rate of 95%. Older age, absence of developmental delay, and female sex were independently significantly associated with successful outcome. Cost analysis reveals substantial labor cost savings to the institution compared with imaging under anesthesia.
Collapse
Affiliation(s)
- Joshua Vic Chen
- School of Medicine, University of California, San Francisco, CA
| | - Matthew A Zapala
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Alice Zhou
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Nola Vu
- School of Public Health, University of California, Berkeley, CA
| | - Lauren Meyer
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Mikaela Demartini Smith
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Chloe Kelleher
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Orit A Glenn
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Jesse Courtier
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628
| | - Yi Li
- Department of Radiology and Biomedical Imaging, University of California, Neuroradiology Section, 505 Parnassus Avenue, M-391, San Francisco, California, 94143-0628.
| |
Collapse
|
14
|
Zaky W, Ragoonanan D, Batth I, Dao L, Wang J, Xia X, Daw NC, Gill JB, Khatua S, Li S. Automated Capture and Analysis of Circulating Tumor Cells in Pediatric, Adolescent and Young Adult Patients with Central Nervous System Tumors. Cancers (Basel) 2023; 15:3853. [PMID: 37568669 PMCID: PMC10417345 DOI: 10.3390/cancers15153853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Tumors of the central nervous system (CNS) are the most common and lethal childhood malignancy. Detection of residual disease and longitudinal monitoring of treatment response in patients are challenging and rely on serial imaging. This current standard of care fails to detect microscopic disease or provide molecular characteristics of residual tumors. As such, there is dire need for minimally invasive liquid biopsy techniques. We have previously shown the high specificity of using cell surface vimentin (CSV) to identify circulating tumor cells (CTCs) from patients bearing various types of cancers. Here, we describe the first report of CTCs captured from peripheral blood samples in 58 pediatric CNS tumor patients. In this study, we used a CSV-coated cell capture chip, the Abnova CytoQuest automated CTC isolation system, to boost the CTC capture from pediatric patients with CNS tumors. We successfully isolated CTCs in six glioma patients using immunostaining of histone H3 lysine27-to-methionine (H3K27M) mutations which are highly expressed by this tumor. We show that CSV is a viable marker for CNS CTC isolation and that this is a feasible method for detecting microscopic disease. Larger-scale studies focusing on CTCs in pediatric CNS tumors to explore their diagnostic and prognostic value are warranted.
Collapse
Affiliation(s)
- Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Dristhi Ragoonanan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Izhar Batth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Long Dao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Najat C. Daw
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Jonathan B. Gill
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Soumen Khatua
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77023, USA
| |
Collapse
|
15
|
Weiler-Wichtl LJ, Fries J, Fohn-Erhold V, Schwarzinger A, Holzer AE, Pletschko T, Furtner-Srajer J, Prayer D, Bär P, Slavc I, Peyrl A, Azizi A, Hansl R, Leiss U. Initial Evidence for Positive Effects of a Psychological Preparation Program for MRI "iMReady" in Children with Neurofibromatosis Type I and Brain Tumors-How to Meet the Patients' Needs Best. J Clin Med 2023; 12:jcm12051902. [PMID: 36902689 PMCID: PMC10003409 DOI: 10.3390/jcm12051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
To provide an effective alternative to sedation during MRI examinations in pediatric cancer and NF1 patients, the aims of the present study were to (1) exploratively evaluate a behavioral MRI training program, to (2) investigate potential moderators, as well as to (3) assess the patients' well-being over the course of the intervention. A total of n = 87 patients of the neuro-oncology unit (mean age: 6.83 years) underwent a two-step MRI preparation program, including training inside the scanner, and were recorded using a process-oriented screening. In addition to the retrospective analysis of all data, a subset of 17 patients were also analyzed prospectively. Overall, 80% of the children receiving MRI preparation underwent the MRI scan without sedation, making the success rate almost five times higher than that of a group of 18 children that opted out of the training program. Memory, attentional difficulties, and hyperactivity were significant neuropsychological moderators for successful scanning. The training was associated with favorable psychological well-being. These findings suggest that our MRI preparation could present an alternative to sedation of young patients undergoing MRI examinations as well as a promising tool for improving patients' treatment-related well-being.
Collapse
Affiliation(s)
- Liesa Josephine Weiler-Wichtl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-34262
| | - Jonathan Fries
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Verena Fohn-Erhold
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Agathe Schwarzinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Elisabeth Holzer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Interdisciplinary Follow-Up Clinic for Childhood Cancer Survivors (IONA), Österreichische Gesundheitskasse (ÖGK), 1060 Vienna, Austria
| | - Thomas Pletschko
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Furtner-Srajer
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Paul Bär
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Amedeo Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Rita Hansl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Leiss
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
16
|
Ntolkeras G, Jeong H, Zöllei L, Dmytriw AA, Purvaziri A, Lev MH, Grant PE, Bonmassar G. A high-resolution pediatric female whole-body numerical model with comparison to a male model. Phys Med Biol 2023; 68:10.1088/1361-6560/aca950. [PMID: 36595234 PMCID: PMC10624254 DOI: 10.1088/1361-6560/aca950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Objective. Numerical models are central in designing and testing novel medical devices and in studying how different anatomical changes may affect physiology. Despite the numerous adult models available, there are only a few whole-body pediatric numerical models with significant limitations. In addition, there is a limited representation of both male and female biological sexes in the available pediatric models despite the fact that sex significantly affects body development, especially in a highly dynamic population. As a result, we developed Athena, a realistic female whole-body pediatric numerical model with high-resolution and anatomical detail.Approach. We segmented different body tissues through Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images of a healthy 3.5 year-old female child using 3D Slicer. We validated the high anatomical accuracy segmentation through two experienced sub-specialty-certified neuro-radiologists and the inter and intra-operator variability of the segmentation results comparing sex differences in organ metrics with physiologic values. Finally, we compared Athena with Martin, a similar male model, showing differences in anatomy, organ metrics, and MRI dosimetric exposure.Main results. We segmented 267 tissue compartments, which included 50 brain tissue labels. The tissue metrics of Athena displayed no deviation from the literature value of healthy children. We show the variability of brain metrics in the male and female models. Finally, we offer an example of computing Specific Absorption Rate and Joule heating in a toddler/preschooler at 7 T MRI.Significance. This study introduces a female realistic high-resolution numerical model using MRI and CT scans of a 3.5 year-old female child, the use of which includes but is not limited to radiofrequency safety studies for medical devices (e.g. an implantable medical device safety in MRI), neurostimulation studies, and radiation dosimetry studies. This model will be open source and available on the Athinoula A. Martinos Center for Biomedical Imaging website.
Collapse
Affiliation(s)
- Georgios Ntolkeras
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital, Boston, United States of America
- Department of Pediatrics, Baystate Medical Center, Springfield, United States of America
| | - Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States of America
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States of America
| | - Adam A Dmytriw
- Department of Radiology, Boston Children’s Hospital, Boston, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, United States of America
| | - Ali Purvaziri
- Department of Radiology, Massachusetts General Hospital, Boston, United States of America
| | - Michael H Lev
- Department of Radiology, Massachusetts General Hospital, Boston, United States of America
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children’s Hospital, Boston, United States of America
- Department of Radiology, Boston Children’s Hospital, Boston, United States of America
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States of America
| |
Collapse
|
17
|
Park M, Um J, Kim SH, Yoon J, Lee Y, Kwon J, Baek S, Kim DY. Correlation between the actual sleep time 24 hours prior to an examination and the time to achieve chloral hydrate sedation in pediatric patients in South Korea: a prospective cohort study. CHILD HEALTH NURSING RESEARCH 2023; 29:51-59. [PMID: 36760112 PMCID: PMC9925303 DOI: 10.4094/chnr.2023.29.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/23/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigated correlations between the actual sleep time 24 hours prior to an examination and the time to achieve chloral hydrate sedation in pediatric patients. METHODS With parental consent, 84 children who were placed under moderate or deep sedation with chloral hydrate for examinations from November 19, 2020 to July 9, 2022 were recruited. RESULTS Patients' average age was 19.9 months. Pediatric neurology patients and those who underwent electroencephalography took significantly longer to achieve sedation with chloral hydrate. There was a negative correlation between the time to achieve sedation and actual sleep time within 24 hours prior to the examination. Positive correlations were found between the actual sleep time 24 hours prior to the examination and the second dose per weight, as well as between the sedation recovery time and awake hours before the examination. CONCLUSION Sleep restriction is not an effective adjuvant therapy for chloral hydrate sedation in children, and sedation effects vary according to pediatric patients' characteristics. Therefore, it would be possible to reduce the unnecessary efforts of caregivers who restrict children's sleep for examinations. It is more important to educate parents about safe sedation than about sleep restriction.
Collapse
Affiliation(s)
- Mijung Park
- Registered Nurse, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Ji Um
- Registered Nurse, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - So Hyun Kim
- Registered Nurse, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Jiseon Yoon
- Registered Nurse, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Yeonjae Lee
- Registered Nurse, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Jiyeong Kwon
- Registered Nurse, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Seonhee Baek
- Registered Nurse, Unit Manager, Pediatric Ward, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Dong Yeon Kim
- Registered Nurse, Unit Manager, Nursing Innovation Unit, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea,Corresponding author Dong Yeon Kim Nursing Innovation Unit, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea TEL: +82-2-2258-9901 FAX: +82-2-2258-2922 E-MAIL:
| |
Collapse
|
18
|
Utilization of neonatal sedation and anesthesia: an SPR survey. Pediatr Radiol 2022; 52:2630-2635. [PMID: 35767032 DOI: 10.1007/s00247-022-05423-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/18/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND There is little data regarding the use of sedation and anesthesia for neonatal imaging, with practice patterns varying widely across institutions. OBJECTIVE To understand the current utilization of sedation and anesthesia for neonatal imaging, and review the current literature and recommendations. MATERIALS AND METHODS One thousand, two hundred twenty-six questionnaire invitations were emailed to North American physician members of the Society for Pediatric Radiology using the Survey Monkey platform. Descriptive statistical analysis of the responses was performed. RESULTS The final results represented 59 institutions from 26 U.S. states, the District of Columbia and three Canadian provinces. Discrepant responses from institutions with multiple respondents (13 out of 59 institutions) were prevalent in multiple categories. Of the 80 total respondents, slightly more than half (56%) were associated with children's hospitals and 44% with the pediatric division of an adult radiology department. Most radiologists (70%) were cognizant of the neonatal sedation policies in their departments. A majority (89%) acknowledged awareness of neurotoxicity concerns in the literature and agreed with the validity of these concerns. In neonates undergoing magnetic resonance imaging (MRI), 46% of respondents reported attempting feed and bundle in all patients and an additional 46% attempt on a case-by-case basis, with most (35%) using a single swaddling attempt before sedation. Sedation was most often used for neonatal interventional procedures (93%) followed by MR (85%), nuclear medicine (48%) and computed tomography (31%). More than half of respondents (63%) reported an average success rate of greater than 50% when using neonatal sedation for MR. CONCLUSION Current practice patterns, policies and understanding of the use of sedation and anesthesia for neonatal imaging vary widely across institutions in North America, and even among radiologists from the same institution. Our survey highlights the need for improved awareness, education, and standardization at both the institutional level and the societal level. Awareness of the potential for anesthetic neurotoxicity and success of non-pharmacologic approaches to neonatal imaging is crucial, along with education of health care personnel, systematic approaches to quality control and improvement, and integration of evidence-based protocols into clinical practice.
Collapse
|
19
|
Molina-Maza JM, Galiana-Bordera A, Jimenez M, Malpica N, Torrado-Carvajal A. Development of a Super-Resolution Scheme for Pediatric Magnetic Resonance Brain Imaging Through Convolutional Neural Networks. Front Neurosci 2022; 16:830143. [DOI: 10.3389/fnins.2022.830143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric medical imaging represents a real challenge for physicians, as children who are patients often move during the examination, and it causes the appearance of different artifacts in the images. Thus, it is not possible to obtain good quality images for this target population limiting the possibility of evaluation and diagnosis in certain pathological conditions. Specifically, magnetic resonance imaging (MRI) is a technique that requires long acquisition times and, therefore, demands the use of sedation or general anesthesia to avoid the movement of the patient, which is really damaging in this specific population. Because ALARA (as low as reasonably achievable) principles should be considered for all imaging studies, one of the most important reasons for establishing novel MRI imaging protocols is to avoid the harmful effects of anesthesia/sedation. In this context, ground-breaking concepts and novel technologies, such as artificial intelligence, can help to find a solution to these challenges while helping in the search for underlying disease mechanisms. The use of new MRI protocols and new image acquisition and/or pre-processing techniques can aid in the development of neuroimaging studies for children evaluation, and their translation to pediatric populations. In this paper, a novel super-resolution method based on a convolutional neural network (CNN) in two and three dimensions to automatically increase the resolution of pediatric brain MRI acquired in a reduced time scheme is proposed. Low resolution images have been generated from an original high resolution dataset and used as the input of the CNN, while several scaling factors have been assessed separately. Apart from a healthy dataset, we also tested our model with pathological pediatric MRI, and it successfully recovers the original image quality in both visual and quantitative ways, even for available examples of dysplasia lesions. We hope then to establish the basis for developing an innovative free-sedation protocol in pediatric anatomical MRI acquisition.
Collapse
|
20
|
Sbaraglia F, Spinazzola G, Adduci A, Continolo N, De Riso M, Ferrone G, Festa R, Garra R, Tosi F, Rossi M. Children and neonates anesthesia in magnetic resonance environment in Italy: an active call survey. BMC Anesthesiol 2022; 22:279. [PMID: 36056321 PMCID: PMC9438255 DOI: 10.1186/s12871-022-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Pediatric anesthesia care in the Magnetic Resonance Imaging is a challenge for clinicians. The recent debate about the role of anesthetic agent on neural development, encouraged an evaluation of their actual activity in this environment. In this active call survey, the authors sought to delineate the Italian situation regarding national centers, staff involved, monitoring tools available and sedation techniques. Methods A complete sample of all national centers performing almost a pediatric discharge in the 2014 was obtained from Health Ministry registers. All Institutions were contacted for a prospective phone investigation and a three-section survey was fill out with the Physician in charge. A descriptive and exploratory analyzes about the organization setting of the Centers were performed. Results Among 876 Institution screened, only 106 (37%) met minimal criteria for inclusion. Children are managed by anesthesiologists in the 95% of cases, while neonates in the 54%. A dedicated nurse is present in 74% of centers. While a pulse oximetry is present in 100% of centers, the rate of prevalence of other monitoring is lower. A specific MRI-compatible ventilator is available in the 95% of Centers, but many tools are not equally homogenously distributed. Pharmacological approach is preferred in pediatric age (98%), but its use for newborns is reduced to 43%. Conclusions We found significant heterogeneity in the daily clinical practice of sedation in MRI. Our results could be a starting point to evaluate the further evolution of approach to children and neonates in magnetic resonance setting. Trial registration ClinicalTrials.gov identifier: NCT04775641. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01821-3.
Collapse
Affiliation(s)
- Fabio Sbaraglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
| | - Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Alessia Adduci
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Nicola Continolo
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Mariella De Riso
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuliano Ferrone
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Rossano Festa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Rossella Garra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Federica Tosi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Marco Rossi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
21
|
Jacobs SM, Versteeg E, van der Kolk AG, Visser LNC, Oliveira ÍAF, van Maren E, Klomp DWJ, Siero JCW. Image quality and subject experience of quiet T1-weighted 7-T brain imaging using a silent gradient coil. Eur Radiol Exp 2022; 6:36. [PMID: 36042139 PMCID: PMC9428090 DOI: 10.1186/s41747-022-00293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Acoustic noise in magnetic resonance imaging (MRI) negatively impacts patients. We assessed a silent gradient coil switched at 20 kHz combined with a T1-weighted magnetisation prepared rapid gradient-echo (MPRAGE) sequence at 7 T. Methods Five healthy subjects (21–29 years; three females) without previous 7-T MRI experience underwent both a quiet MPRAGE (Q-MPRAGE) and conventional MPRAGE (C-MPRAGE) sequence twice. Image quality was assessed quantitatively, and qualitatively by two neuroradiologists. Sound level was measured objectively and rated subjectively on a 0 to 10 scale by all subjects immediately following each sequence and after the whole examination (delayed). All subjects also reported comfort level, overall experience and willingness to undergo the sequence again. Results Compared to C-MPRAGE, Q-MPRAGE showed higher signal-to-noise ratio (10%; p = 0.012) and lower contrast-to-noise ratio (20%; p < 0.001) as well as acceptable to good image quality. Q-MPRAGE produced 27 dB lower sound level (76 versus 103 dB). Subjects reported lower sound level for Q-MPRAGE both immediate (4.4 ± 1.4 versus 6.4 ± 1.3; p = 0.007) and delayed (4.6 ± 1.4 versus 6.3 ± 1.3; p = 0.005), while they rated comfort level (7.4 ± 1.0 versus 6.1 ± 1.7; p = 0.016) and overall experience (7.6 ± 1.0 versus 6.0 ± 0.9; p = 0.005) higher. Willingness to undergo the sequence again was also higher, however not significantly (8.1 ± 1.0 versus 7.2 ± 1.3; p = 0.066). Conclusion Q-MPRAGE using a silent gradient coil reduced sound level by 27 dB compared to C-MPRAGE at 7 T while featuring acceptable-to-good image quality and a quieter and more pleasant subject experience.
Collapse
Affiliation(s)
- Sarah M Jacobs
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edwin Versteeg
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Anja G van der Kolk
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonie N C Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden
| | - Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands.,Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Emiel van Maren
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis W J Klomp
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Whittingslow DC, Gergely T, Prahalad S, Inan OT, Abramowicz S. TEMPOROMANDIBULAR JOINT ACOUSTIC EMISSIONS IN CHILDREN WITH JUVENILE IDIOPATHIC ARTHRITIS DIFFER FROM HEALTHY CHILDREN. J Oral Maxillofac Surg 2022; 80:1466-1473. [DOI: 10.1016/j.joms.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
23
|
Anwar I, McCabe B, Simcock C, Harvey-Lloyd J, Malamateniou C. Paediatric magnetic resonance imaging adaptations without the use of sedation or anaesthesia: A narrative review. J Med Imaging Radiat Sci 2022; 53:505-514. [DOI: 10.1016/j.jmir.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
24
|
A Pilot Quality Improvement Project to Reduce Intraoperative MRI Hypothermia in Neurosurgical Patients. Pediatr Qual Saf 2022; 7:e531. [PMID: 35369418 PMCID: PMC8970077 DOI: 10.1097/pq9.0000000000000531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022] Open
Abstract
Intraoperative hypothermia increases patient morbidity, including bleeding and infection risk. Neurosurgical intraoperative magnetic resonance imaging (iMRI) can lead to hypothermia from patient exposure and low ambient temperature in the MRI suite. This quality improvement project aimed to reduce the risk of hypothermia during pediatric neurosurgery laser ablation procedures with iMRI. The primary aim was to increase the mean lowest core temperature in pediatric patients with epilepsy during iMRI procedures by 1 °C from a baseline mean lowest core temperature of 34.2 ± 1.2 °C within 10 months and sustain for 10 months.
Collapse
|
25
|
Harrington SG, Jaimes C, Weagle KM, Greer MLC, Gee MS. Strategies to perform magnetic resonance imaging in infants and young children without sedation. Pediatr Radiol 2022; 52:374-381. [PMID: 33830290 PMCID: PMC8027290 DOI: 10.1007/s00247-021-05062-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Given the increasing use of MRI in the pediatric population, the need for sedation in MRI performed in young children is a topic of growing importance. Although sedation is generally tolerated well by children, the financial and operational impacts of anesthesia on MRI workflow, as well as potential adverse effects of anesthetic medications, highlight the need to perform MRI in children without sedation whenever possible. This review focuses on current techniques to facilitate non-sedation MRI in children, including exam preparation with MRI simulation; asleep but not sedated techniques; awake and relaxed techniques using certified child life specialists, animal-assisted therapy, a child-friendly environment and in-scan entertainment; and non-sedated MRI protocol modifications such as shorter scan time, prioritizing sequences, reducing motion artifact, noise reduction, limiting use of gadolinium, employing an open MRI and modifying protocols.
Collapse
Affiliation(s)
- Samantha G Harrington
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA.
| | | | - Kathryn M Weagle
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| |
Collapse
|
26
|
Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:14-25. [PMID: 35177171 PMCID: PMC8802390 DOI: 10.7499/j.issn.1008-8830.2110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In recent years, magnetic resonance imaging (MRI) has been widely used in evaluating neonatal brain development, diagnosing neonatal brain injury, and predicting neurodevelopmental prognosis. Based on current research evidence and clinical experience in China and overseas, the Neonatologist Society of Chinese Medical Doctor Association has developed a consensus on the indications and standardized clinical process of neonatal brain MRI. The consensus has the following main points. (1) Brain MRI should be performed for neonates suspected of hypoxic-ischemic encephalopathy, intracranial infection, stroke and unexplained convulsions; brain MRI is not considered a routine in the management of preterm infants, but it should be performed for further evaluation when cranial ultrasound finds evidence of brain injury; as for extremely preterm or extremely low birth weight infants without abnormal ultrasound findings, it is recommended that they should undergo MRI examination at term equivalent age once. (2) Neonates should undergo MRI examination in a non-sedated state if possible. (3) During MRI examination, vital signs should be closely monitored to ensure safety; the necessity of MRI examination should be strictly evaluated for critically ill neonates, and magnetic resonance compatible incubator and ventilator can be used. (4) At present, 1.5 T or 3.0 T equipment can be used for neonatal brain MRI examination, and the special coil for the neonatal head should be used to improve signal-to-noise ratio; routine neonatal brain MRI sequences should at least include axial T1 weighted image (T1WI), axial T2 weighted imaging (T2WI), diffusion-weighted imaging, and sagittal T1WI or T2WI. (5) It is recommended to use a structured and graded reporting system, and reports by at least two reviewers and multi-center collaboration are recommended to increase the reliability of the report.
Collapse
|
27
|
Ahmed J, Patel W, Pullattayil AK, Razak A. Melatonin for non-operating room sedation in paediatric population: a systematic review and meta-analysis. Arch Dis Child 2022; 107:78-85. [PMID: 33785532 DOI: 10.1136/archdischild-2020-320592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/28/2021] [Indexed: 11/03/2022]
Abstract
CONTEXT The literature on melatonin as a sedative agent in children is limited. OBJECTIVE To conduct a systematic review of studies assessing the efficacy and safety of melatonin for non-operating room sedation in children. METHODS Medline, Embase, Cochrane Library and Cumulative Index to Nursing and Allied Health were searched until 9 April 2020 for studies using melatonin and reporting one of the prespecified outcomes of this review. Two authors independently assessed the eligibility, risk of bias and extracted the data. Studies with a similar study design, comparator and procedure were pooled using the fixed-effect model. RESULTS 25 studies (clinical trials=3, observational studies=9, descriptive studies=13) were included. Melatonin was used for electroencephalogram (EEG) (n=12), brainstem evoked response audiometry (n=8) and magnetic resonance imaging (MRI) (n=5). No significant differences were noted on meta-analysis of EEG studies comparing melatonin with sleep deprivation (SD) (relative risk (RR) 1.06 (95% CI 0.99 to 1.12)), melatonin with chloral hydrate (RR 0.97 (95% CI 0.89 to 1.05)) and melatonin alone with melatonin and SD combined (RR 1.03 (95% CI 0.97 to 1.10)) for successful procedure completion. However, significantly higher sedation failure was noted in melatonin alone compared with melatonin and SD combined (RR 1.55 (95% CI 1.02 to 2.33)) for EEG. Additionally, meta-analysis showed lower sleep latency for melatonin compared with SD (mean difference -10.21 (95% CI -11.53 to -8.89) for EEG. No major adverse events were reported with melatonin. CONCLUSION Although several studies were identified, and no serious safety concerns were noted, the evidence was not of high quality to establish melatonin's efficacy for non-operating room sedation in children.
Collapse
Affiliation(s)
- Javed Ahmed
- Neonatology, Hamad Medical Corporation, Doha, Qatar
| | - Waseemoddin Patel
- Division of Neonatology, Department of Pediatrics, Princess Nourah Bint Abdulrahman University, Riyadh, Al Riyadh, Saudi Arabia
| | | | - Abdul Razak
- Division of Neonatology, Department of Pediatrics, Princess Nourah Bint Abdulrahman University, Riyadh, Al Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|
29
|
Eichhorn H, Vascan AV, Nørgaard M, Ellegaard AH, Slipsager JM, Keller SH, Marner L, Ganz M. Characterisation of Children's Head Motion for Magnetic Resonance Imaging With and Without General Anaesthesia. FRONTIERS IN RADIOLOGY 2021; 1:789632. [PMID: 37492164 PMCID: PMC10365093 DOI: 10.3389/fradi.2021.789632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 07/27/2023]
Abstract
Head motion is one of the major reasons for artefacts in Magnetic Resonance Imaging (MRI), which is especially challenging for children who are often intimidated by the dimensions of the MR scanner. In order to optimise the MRI acquisition for children in the clinical setting, insights into children's motion patterns are essential. In this work, we analyse motion data from 61 paediatric patients. We compare structural MRI data of children imaged with and without general anaesthesia (GA), all scanned using the same hybrid PET/MR scanner. We analyse several metrics of motion based on the displacement relative to a reference, decompose the transformation matrix into translation and rotation, as well as investigate whether different regions in the brain are affected differently by the children's motion. Head motion for children without GA was significantly higher, with a median of the mean displacements of 2.19 ± 0.93 mm (median ± standard deviation) during 41.7±7.5 min scans; however, even anaesthetised children showed residual head motion (mean displacement of 1.12±0.35 mm). For both patient groups translation along the z-axis (along the scanner bore) was significantly larger in absolute terms (GA / no GA: 0.87±0.29/0.92 ± 0.49 mm) compared to the other directions. Considering directionality, both patient groups were moving in negative z-direction and thus, out of the scanner. The awake children additionally showed significantly more nodding rotation (0.33±0.20°). In future studies as well as in the clinical setting, these predominant types of motion need to be taken into consideration to limit artefacts and reduce re-scans due to poor image quality.
Collapse
Affiliation(s)
- Hannah Eichhorn
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andreea-Veronica Vascan
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nørgaard
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Center for Reproducible Neuroscience, Department of Psychology, Stanford University, Stanford, CA, United States
| | | | - Jakob M. Slipsager
- TracInnovations, Ballerup, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sune Høgild Keller
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Verhagen MV, Menezes LJ, Neriman D, Watson TA, Punwani S, Taylor SA, Shankar A, Daw S, Humphries PD. 18F-FDG PET/MRI for Staging and Interim Response Assessment in Pediatric and Adolescent Hodgkin Lymphoma: A Prospective Study with 18F-FDG PET/CT as the Reference Standard. J Nucl Med 2021; 62:1524-1530. [PMID: 33608429 PMCID: PMC8612337 DOI: 10.2967/jnumed.120.260059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Treatment regimens for pediatric Hodgkin lymphoma (HL) depend on accurate staging and treatment response assessment, based on accurate disease distribution and metabolic activity depiction. With the aim of radiation dose reduction, we compared the diagnostic performance of 18F-FDG PET/MRI with a 18F-FDG PET/CT reference standard for staging and response assessment. Methods: Twenty-four patients (mean age, 15.4 y; range, 8-19.5 y) with histologically proven HL were prospectively and consecutively recruited in 2015 and 2016, undergoing both 18F-FDG PET/CT and 18F-FDG PET/MRI at initial staging (n = 24) and at response assessment (n = 21). The diagnostic accuracy of 18F-FDG PET/MRI for both nodal and extranodal disease was compared with that of 18F-FDG PET/CT, which was considered the reference standard. Discrepancies were retrospectively classified as perceptual or technical errors, and 18F-FDG PET/MRI and 18F-FDG PET/CT were corrected by removing perceptual error. Agreement with Ann Arbor staging and Deauville grading was also assessed. Results: For nodal and extranodal sites combined, corrected staging 18F-FDG PET/MRI sensitivity was 100% (95% CI, 96.7%-100%) and specificity was 99.5% (95% CI, 98.3%-99.9%). Corrected response-assessment 18F-FDG PET/MRI sensitivity was 83.3% (95% CI, 36.5%-99.1%) and specificity was 100% (95% CI, 99.2%-100%). Modified Ann Arbor staging agreement between 18F-FDG PET/CT and 18F-FDG PET/MRI was perfect (κ = 1.0, P = 0.000). Deauville grading agreement between 18F-FDG PET/MRI and 18F-FDG PET/CT was excellent (κ = 0.835, P = 0.000). Conclusion:18F-FDG PET/MRI is a promising alternative to 18F-FDG PET/CT for staging and response assessment in children with HL.
Collapse
Affiliation(s)
- Martijn V Verhagen
- Department of Radiology, University College London Hospital, London, United Kingdom
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Leon J Menezes
- UCL Institute of Nuclear Medicine, University College London Hospital, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Deena Neriman
- UCL Institute of Nuclear Medicine, University College London Hospital, London, United Kingdom
| | - Tom A Watson
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Shonit Punwani
- Department of Radiology, University College London Hospital, London, United Kingdom
| | - Stuart A Taylor
- Department of Radiology, University College London Hospital, London, United Kingdom
- Centre for Medical Imaging, CBH, London, United Kingdom; and
| | - Ananth Shankar
- Centre for Medical Imaging, CBH, London, United Kingdom; and
- Department of Pediatrics, University College London Hospital, London, United Kingdom
| | - Stephen Daw
- Department of Pediatrics, University College London Hospital, London, United Kingdom
| | - Paul D Humphries
- Department of Radiology, University College London Hospital, London, United Kingdom;
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
31
|
Sorge I, Hirsch FW, Voit D, Frahm J, Krause M, Roth C, Zimmermann P, Gräfe D. Decreased Need for Anesthesia during Ultra-Fast Cranial MRI in Young Children: One-Year Summary. ROFO-FORTSCHR RONTG 2021; 194:192-198. [PMID: 34644801 DOI: 10.1055/a-1561-2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Rapid volume coverage sequences based on real-time MRI allow for scanning of the entire brain within a few seconds. Movements of children become almost irrelevant due to the ultra-fast acquisition of 30 ms per slice. The adoption of these sequences in a real-time cranial MRI protocol (RT-cMRI) is expected to reduce the frequency of examinations requiring anesthesia in infants and toddlers. The aim of the study was to quantify the reduction in the number of anesthesia examinations in young children after the implementation of the new RT-cMRI protocol. MATERIALS AND METHODS All cMRI studies of children up to 6 years in the first 12 months after the establishment of the RT-cMRI 2019/2020 were retrospectively compared to a matched group of the same period in 2017/2018. The frequency of examinations under anesthesia vs. non-sedation examinations was analyzed. In addition, the number of follow-up examinations and the effectiveness of RT-cMRI was determined. RESULTS The launch of RT-cMRI led to a significant decrease in the proportion of cMRI under anesthesia from 92 % to 55 %. Only 2 % of the RT-cMRI failed and required conventional MRI under sedation in the follow-up. The speed and ease of use of RT-cMRI increased the number of follow-up examinations from 1.3 to 1.4 examinations per child. CONCLUSION This innovative real-time MRI examination allows a drastic reduction in the number of studies under anesthesia for suitable cranial pathologies in children under 6 years. However, cautious selection of indications as well as adjustments to the workflow in the radiological department are required. KEY POINTS · Real-time MRI sequences are almost unaffected by patient movement. · The application of real-time cranial MRI can spare children from sedation. · Low-threshold access results in more frequent follow-up examinations. CITATION FORMAT · Sorge I, Hirsch FW, Voit D et al. Decreased Need for Anesthesia during Ultra-Fast Cranial MRI in Young Children: One-Year Summary. Fortschr Röntgenstr 2021; DOI: 10.1055/a-1561-2430.
Collapse
Affiliation(s)
- Ina Sorge
- Department of Pediatric Radiology, University Hospital Leipzig, Germany
| | | | - Dirk Voit
- NMR Forschungs GmbH, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, Germany
| | - Christian Roth
- Department of Pediatric Radiology, University Hospital Leipzig, Germany
| | - Peter Zimmermann
- Department of Pediatric Surgery, University Hospital Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University Hospital Leipzig, Germany
| |
Collapse
|
32
|
Hybschmann J, Povlsen NE, Sørensen JL, Afshari A, Borgwardt L, Berntsen M, Madsen TW, Gjærde LK. Nonpharmacological interventions to reduce sedation/general anaesthesia in paediatric patients undergoing magnetic resonance imaging: A systematic review and meta-analysis protocol. Acta Anaesthesiol Scand 2021; 65:1254-1258. [PMID: 33991103 DOI: 10.1111/aas.13851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Magnetic resonance imaging is frequently used in paediatrics and requires the child/adolescent to remain still for 45 min or more. The long and narrow scanner gantry makes loud noises and may cause anxiety. To complete the procedure, children and adolescents are often sedated or receive general anaesthesia. Our primary aim is to determine whether nonpharmacological interventions designed to mentally prepare, support or distract children, and adolescents are effective in reducing the need for sedation and general anaesthesia. METHODS We will conduct a systematic review with meta-analysis by searching the following electronic databases: Ovid MEDLINE, CINAHL, Embase and CENTRAL, as well as databases for ongoing trials. Eligibility criteria are based on the participants, intervention, comparator and outcome (PICO) framework. We will include intervention studies with comparator group(s) with no restriction on date. Two reviewers will independently screen titles/abstracts, and three reviewers will assess the full texts of potentially relevant studies. Data will be extracted, and the methodological quality will be assessed using Cochrane risk of bias tools. If the data allow, we will perform a meta-analysis using a random effects model on the primary outcome, sedation/general anaesthesia. A narrative synthesis will supplement the statistical analysis. Quality of evidence for the primary outcome will be assessed using the grading of recommendations, assessment, development and evaluations (GRADE) approach. DISCUSSION Our findings will provide directions for future research and may guide clinicians in terms of which type(s) of intervention(s) to implement to reduce the use of sedation/general anaesthesia during paediatric magnetic resonance imaging.
Collapse
Affiliation(s)
- Jane Hybschmann
- Children's Hospital Copenhagen and Juliane Marie Centre Copenhagen University HospitalRigshospitalet Copenhagen Denmark
| | - Nanna E. Povlsen
- Faculty of Health and Medicine Sciences University of Copenhagen Copenhagen Denmark
| | - Jette L. Sørensen
- Juliane Marie Centre Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Arash Afshari
- Department of Paediatric and Obstetric Anaesthesia Copenhagen University HospitalRigshospitalet Copenhagen Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET Copenhagen University HospitalRigshospitalet Copenhagen Denmark
| | - Marianne Berntsen
- Department of Neuroanaesthesiology Neuroscience Centre Copenhagen University HospitalRigshospitalet Copenhagen Denmark
| | - Thurid W. Madsen
- Department of Neuroanaesthesiology Neuroscience Centre Copenhagen University HospitalRigshospitalet Copenhagen Denmark
| | - Line K. Gjærde
- Children's Hospital Copenhagen and Juliane Marie Centre Copenhagen University HospitalRigshospitalet Copenhagen Denmark
| |
Collapse
|
33
|
Stunden C, Stratton K, Zakani S, Jacob J. Comparing a Virtual Reality-Based Simulation App (VR-MRI) With a Standard Preparatory Manual and Child Life Program for Improving Success and Reducing Anxiety During Pediatric Medical Imaging: Randomized Clinical Trial. J Med Internet Res 2021; 23:e22942. [PMID: 34550072 PMCID: PMC8495586 DOI: 10.2196/22942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/23/2020] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Background The experience of undergoing magnetic resonance imaging (MRI) can be anxiety provoking, particularly for pediatric patients and their families. Alternative methods to improve success and experiences without the use of sedation are needed. Objective This study aims to compare the effectiveness of a virtual reality (VR)—based simulation app (VR-MRI) with a standard preparatory manual (SPM) and a hospital-based Child Life Program (CLP) on success and anxiety during a simulated pediatric MRI scan. Our secondary aim is to compare caregivers’ reported anxiety, procedural data, caregiver usability, child satisfaction, and fun. Methods This unblinded, randomized, triple-arm clinical trial involved 92 children aged 4-13 years and their caregivers. Recruitment was conducted through posters, public libraries, community centers, and social media. At a 2-hour session, participants were instructed to prepare for a simulated MRI head scan using one of three randomly assigned preparation materials: the VR-MRI app, SPM, or the CLP. Data were collected before preparation, during a simulated MRI head scan, and after the simulated scan. The primary outcomes were the success of the simulated MRI scan (MoTrak head motion tracking system), and child-reported anxiety (Venham picture test). We secondarily measured caregivers’ reported anxiety (short State-Trait Anxiety Inventory), procedural data (minutes), usability (Usefulness, Satisfaction, and Ease of Use Questionnaire), and child-reported satisfaction and fun (visual analog scales). Results A total of 84 participants were included in the final analysis (VR-MRI: 30/84, 36%; SPM: 24/84, 29%; and CLP: 30/84, 36%). There were no clinically significant differences between the groups in terms of success during the MRI simulation (P=.27) or the children’s reported anxiety at any timepoint (timepoint 1, P=.99; timepoint 2, P=.008; timepoint 3, P=.10). Caregivers reported being significantly more anxious after preparing with the manual than caregivers in the other 2 groups (P<.001). Child and caregiver anxiety had a significant relationship, increasing together with moderate effect (r84=0.421; P<.001). Participants using VR-MRI took the most time to prepare (P<.001) and participants using the manual took the least time (P<.001). No statistically significant relationships were found between time preparing and time completing the simulated assessment (P=.13). There were no differences found in ease of use (P=.99), ease of learning (P=.48), and usefulness (P=.11) between the groups; however, caregivers reported being significantly more satisfied with the VR-MRI app and CLP than SPM (P<.001). Children reported the most satisfaction with the CLP (P<.001). There were no differences in how much fun the preparation materials were perceived to be (P=.37). Conclusions Digital preparation experiences using VR-based media could be a viable solution to improve the success of nonsedated MRI scans, with outcomes comparable with hospital-based in-person preparatory programs. Future research should focus on validating the results in a real MRI setting. Trial Registration Clinicaltrials.gov NCT03931382; https://clinicaltrials.gov/ct2/show/NCT03931382
Collapse
Affiliation(s)
- Chelsea Stunden
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Digital Lab at BC Children's Hospital, Vancouver, BC, Canada
| | - Kirsten Stratton
- Department of Child Life, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Digital Lab at BC Children's Hospital, Vancouver, BC, Canada
| | - John Jacob
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Digital Lab at BC Children's Hospital, Vancouver, BC, Canada.,City University of London, London, United Kingdom
| |
Collapse
|
34
|
Hopfner C, Jakob A, Tengler A, Grab M, Thierfelder N, Brunner B, Thierij A, Haas NA. Design and 3D printing of variant pediatric heart models for training based on a single patient scan. 3D Print Med 2021; 7:25. [PMID: 34463879 PMCID: PMC8406574 DOI: 10.1186/s41205-021-00116-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background 3D printed models of pediatric hearts with congenital heart disease have been proven helpful in simulation training of diagnostic and interventional catheterization. However, anatomically accurate 3D printed models are traditionally based on real scans of clinical patients requiring specific imaging techniques, i.e., CT or MRI. In small children both imaging technologies are rare as minimization of radiation and sedation is key. 3D sonography does not (yet) allow adequate imaging of the entire heart for 3D printing. Therefore, an alternative solution to create variant 3D printed heart models for teaching and hands-on training has been established. Methods In this study different methods utilizing image processing and computer aided design software have been established to overcome this shortage and to allow unlimited variations of 3D heart models based on single patient scans. Patient-specific models based on a CT or MRI image stack were digitally modified to alter the original shape and structure of the heart. Thereby, 3D hearts showing various pathologies were created. Training models were adapted to training level and aims of hands-on workshops, particularly for interventional cardiology. Results By changing the shape and structure of the original anatomy, various training models were created of which four examples are presented in this paper: 1. Design of perimembranous and muscular ventricular septal defect on a heart model with patent ductus arteriosus, 2. Series of heart models with atrial septal defect showing the long-term hemodynamic effect of the congenital heart defect on the right atrial and ventricular wall, 3. Implementation of simplified heart valves and addition of the myocardium to a right heart model with pulmonary valve stenosis, 4. Integration of a constructed 3D model of the aortic valve into a pulsatile left heart model with coarctation of the aorta. All presented models have been successfully utilized and evaluated in teaching or hands-on training courses. Conclusions It has been demonstrated that non-patient-specific anatomical variants can be created by modifying existing patient-specific 3D heart models. This way, a range of pathologies can be modeled based on a single CT or MRI dataset. Benefits of designed 3D models for education and training purposes have been successfully applied in pediatric cardiology but can potentially be transferred to simulation training in other medical fields as well.
Collapse
Affiliation(s)
- Carina Hopfner
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.
| | - Andre Jakob
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Anja Tengler
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Maximilian Grab
- Department of Cardiac Surgery, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Nikolaus Thierfelder
- Department of Cardiac Surgery, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Barbara Brunner
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Alisa Thierij
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Nikolaus A Haas
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
35
|
Fong CY, Lim WK, Li L, Lai NM. Chloral hydrate as a sedating agent for neurodiagnostic procedures in children. Cochrane Database Syst Rev 2021; 8:CD011786. [PMID: 34397100 PMCID: PMC8407513 DOI: 10.1002/14651858.cd011786.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND This is an updated version of a Cochrane Review published in 2017. Paediatric neurodiagnostic investigations, including brain neuroimaging and electroencephalography (EEG), play an important role in the assessment of neurodevelopmental disorders. The use of an appropriate sedative agent is important to ensure the successful completion of the neurodiagnostic procedures, particularly in children, who are usually unable to remain still throughout the procedure. OBJECTIVES To assess the effectiveness and adverse effects of chloral hydrate as a sedative agent for non-invasive neurodiagnostic procedures in children. SEARCH METHODS We searched the following databases on 14 May 2020, with no language restrictions: the Cochrane Register of Studies (CRS Web) and MEDLINE (Ovid, 1946 to 12 May 2020). CRS Web includes randomised or quasi-randomised controlled trials from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, the Cochrane Central Register of Controlled Trials (CENTRAL), and the specialised registers of Cochrane Review Groups including Cochrane Epilepsy. SELECTION CRITERIA Randomised controlled trials that assessed chloral hydrate agent against other sedative agent(s), non-drug agent(s), or placebo. DATA COLLECTION AND ANALYSIS Two review authors independently evaluated studies identified by the search for their eligibility, extracted data, and assessed risk of bias. Results were expressed in terms of risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with 95% confidence intervals (CIs). MAIN RESULTS We included 16 studies with a total of 2922 children. The methodological quality of the included studies was mixed. Blinding of the participants and personnel was not achieved in most of the included studies, and three of the 16 studies were at high risk of bias for selective reporting. Evaluation of the efficacy of the sedative agents was also underpowered, with all the comparisons performed in small studies. Fewer children who received oral chloral hydrate had sedation failure compared with oral promethazine (RR 0.11, 95% CI 0.01 to 0.82; 1 study; moderate-certainty evidence). More children who received oral chloral hydrate had sedation failure after one dose compared to intravenous pentobarbital (RR 4.33, 95% CI 1.35 to 13.89; 1 study; low-certainty evidence), but there was no clear difference after two doses (RR 3.00, 95% CI 0.33 to 27.46; 1 study; very low-certainty evidence). Children with oral chloral hydrate had more sedation failure compared with rectal sodium thiopental (RR 1.33, 95% CI 0.60 to 2.96; 1 study; moderate-certainty evidence) and music therapy (RR 17.00, 95% CI 2.37 to 122.14; 1 study; very low-certainty evidence). Sedation failure rates were similar between groups for comparisons with oral dexmedetomidine, oral hydroxyzine hydrochloride, oral midazolam and oral clonidine. Children who received oral chloral hydrate had a shorter time to adequate sedation compared with those who received oral dexmedetomidine (MD -3.86, 95% CI -5.12 to -2.6; 1 study), oral hydroxyzine hydrochloride (MD -7.5, 95% CI -7.85 to -7.15; 1 study), oral promethazine (MD -12.11, 95% CI -18.48 to -5.74; 1 study) (moderate-certainty evidence for three aforementioned outcomes), rectal midazolam (MD -95.70, 95% CI -114.51 to -76.89; 1 study), and oral clonidine (MD -37.48, 95% CI -55.97 to -18.99; 1 study) (low-certainty evidence for two aforementioned outcomes). However, children with oral chloral hydrate took longer to achieve adequate sedation when compared with intravenous pentobarbital (MD 19, 95% CI 16.61 to 21.39; 1 study; low-certainty evidence), intranasal midazolam (MD 12.83, 95% CI 7.22 to 18.44; 1 study; moderate-certainty evidence), and intranasal dexmedetomidine (MD 2.80, 95% CI 0.77 to 4.83; 1 study, moderate-certainty evidence). Children who received oral chloral hydrate appeared significantly less likely to complete neurodiagnostic procedure with child awakening when compared with rectal sodium thiopental (RR 0.95, 95% CI 0.83 to 1.09; 1 study; moderate-certainty evidence). Chloral hydrate was associated with a higher risk of the following adverse events: desaturation versus rectal sodium thiopental (RR 5.00, 95% 0.24 to 102.30; 1 study), unsteadiness versus intranasal dexmedetomidine (MD 10.21, 95% CI 0.58 to 178.52; 1 study), vomiting versus intranasal dexmedetomidine (MD 10.59, 95% CI 0.61 to 185.45; 1 study) (low-certainty evidence for aforementioned three outcomes), and crying during administration of sedation versus intranasal dexmedetomidine (MD 1.39, 95% CI 1.08 to 1.80; 1 study, moderate-certainty evidence). Chloral hydrate was associated with a lower risk of the following: diarrhoea compared with rectal sodium thiopental (RR 0.04, 95% CI 0.00 to 0.72; 1 study), lower mean diastolic blood pressure compared with sodium thiopental (MD 7.40, 95% CI 5.11 to 9.69; 1 study), drowsiness compared with oral clonidine (RR 0.44, 95% CI 0.30 to 0.64; 1 study), vertigo compared with oral clonidine (RR 0.15, 95% CI 0.01 to 2.79; 1 study) (moderate-certainty evidence for aforementioned four outcomes), and bradycardia compared with intranasal dexmedetomidine (MD 0.17, 95% CI 0.05 to 0.59; 1 study; high-certainty evidence). No other adverse events were significantly associated with chloral hydrate, although there was an increased risk of combined adverse events overall (RR 7.66, 95% CI 1.78 to 32.91; 1 study; low-certainty evidence). AUTHORS' CONCLUSIONS The certainty of evidence for the comparisons of oral chloral hydrate against several other methods of sedation was variable. Oral chloral hydrate appears to have a lower sedation failure rate when compared with oral promethazine. Sedation failure was similar between groups for other comparisons such as oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam. Oral chloral hydrate had a higher sedation failure rate when compared with intravenous pentobarbital, rectal sodium thiopental, and music therapy. Chloral hydrate appeared to be associated with higher rates of adverse events than intranasal dexmedetomidine. However, the evidence for the outcomes for oral chloral hydrate versus intravenous pentobarbital, rectal sodium thiopental, intranasal dexmedetomidine, and music therapy was mostly of low certainty, therefore the findings should be interpreted with caution. Further research should determine the effects of oral chloral hydrate on major clinical outcomes such as successful completion of procedures, requirements for an additional sedative agent, and degree of sedation measured using validated scales, which were rarely assessed in the studies included in this review. The safety profile of chloral hydrate should be studied further, especially for major adverse effects such as oxygen desaturation.
Collapse
Affiliation(s)
- Choong Yi Fong
- Division of Paediatric Neurology, Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Kang Lim
- Division of Paediatric Neurology, Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Limin Li
- Division of Paediatric Neurology, Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
36
|
Nakajima S, Fushimi Y, Funaki T, Okubo G, Sakata A, Hinoda T, Yokota Y, Oshima S, Otani S, Kikuchi T, Okada T, Yoshida K, Miyamoto S, Nakamoto Y. Quiet Diffusion-weighted MR Imaging of the Brain for Pediatric Patients with Moyamoya Disease. Magn Reson Med Sci 2021; 21:583-591. [PMID: 34334585 DOI: 10.2463/mrms.mp.2020-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Diffusion-weighted MRI (DWI) is an essential sequence for evaluating pediatric patients with moyamoya disease (MMD); however, acoustic noise associated with DWI may lead to motion artifact. Compared with conventional DWI (cDWI), quiet DWI (qDWI) is considered less noisy and able to keep children more relaxed and stable. This study aimed to evaluate the suitability of qDWI compared with cDWI for pediatric patients with MMD. METHODS In this observational study, MR examinations of the brain were performed either with or without sedation in pediatric patients with MMD between September 2017 and August 2018. Three neuroradiologists independently evaluated the images for artifacts and restricted diffusion in the brain. The differences between qDWI and cDWI were compared statistically using a chi-square test. RESULTS One-hundred and six MR scans of 56 patients with MMD (38 scans of 15 sedated patients: 6 boys and 9 girls; mean age, 5.2 years; range, 1-9 years; and 68 scans of 42 unsedated patients: 19 boys and 23 girls; mean age, 10.7 years; range, 7-16 years) were evaluated. MR examinations were performed either with or without sedation (except in one patient). In sedated patients, no artifact other than susceptibility was observed on qDWI, whereas four artifacts were observed on cDWI (P = .04). One patient awoke from sedation during cDWI scanning, while no patient awoke from sedation during qDWI acquisition. For unsedated patients, three scans showed artifacts on qDWI, whereas two scans showed artifacts on cDWI (P = .65). Regarding restricted diffusion, qDWI revealed three cases, while two cases were found on cDWI (P = .66). CONCLUSION qDWI induced fewer artifacts compared with cDWI in sedated patients, and similar frequencies of artifacts were induced by qDWI and by cDWI in unsedated patients. qDWI showed restricted diffusion comparable to cDWI.
Collapse
Affiliation(s)
- Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Gosuke Okubo
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Yusuke Yokota
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine
| |
Collapse
|
37
|
Gjærde LK, Hybschmann J, Dybdal D, Topperzer MK, Schrøder MA, Gibson JL, Ramchandani P, Ginsberg EI, Ottesen B, Frandsen TL, Sørensen JL. Play interventions for paediatric patients in hospital: a scoping review. BMJ Open 2021; 11:e051957. [PMID: 34312210 PMCID: PMC8314749 DOI: 10.1136/bmjopen-2021-051957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Play is a non-invasive, safe and inexpensive intervention that can help paediatric patients and their families manage difficult aspects of being ill or hospitalised. Although play has existed in hospitals for decades, research on hospital play interventions is scarce. This review aimed to categorise and synthesise the last 20 years of research on hospital play interventions. DESIGN Scoping review. DATA SOURCES PubMed, CINAHL, CENTRAL, ERIC and PsycINFO (1 January 2000- 9 September 2020). STUDY SELECTION AND DATA EXTRACTION We systematically searched for original peer-reviewed articles, written in English, on hospital play interventions in paediatric patients (0-18 years) in non-psychiatric settings. Two reviewers independently screened titles and abstracts, reviewed full text of relevant articles and extracted data. We thematically synthesised the data from the included studies, and a descriptive analysis, based on a developed framework, is presented. RESULTS Of the 297 included articles, 78% came from high-income countries and 56% were published within the last 5 years. Play interventions were carried out across all ages by various healthcare professionals. Play interventions served different roles within four clinical contexts: A) procedures and diagnostic tests, B) patient education, C) treatment and recovery and D) adaptation. Across these contexts, play interventions were generally facilitated and purpose-oriented and had positive reported effects on pain, stress, and anxiety. CONCLUSIONS Play in hospitals is an emerging interdisciplinary research area with a significant potential benefit for child and family health. Future research should further describe principles for play in hospitals. High-quality studies investigating short-term and long-term effects are needed to guide when and how to best integrate play in hospitals.
Collapse
Affiliation(s)
- Line Klingen Gjærde
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Jane Hybschmann
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dybdal
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Martha Krogh Topperzer
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Morten Arnborg Schrøder
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Jenny Louise Gibson
- Centre for Research on Play in Education, Development & Learning, Faculty of Education, Cambridge University, Cambridge, UK
| | - Paul Ramchandani
- Centre for Research on Play in Education, Development & Learning, Faculty of Education, Cambridge University, Cambridge, UK
| | - Elisabeth Ida Ginsberg
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Bent Ottesen
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Leth Frandsen
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
| | - Jette Led Sørensen
- Children's Hospital Copenhagen and Juliane Marie Centre, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Copeland A, Silver E, Korja R, Lehtola SJ, Merisaari H, Saukko E, Sinisalo S, Saunavaara J, Lähdesmäki T, Parkkola R, Nolvi S, Karlsson L, Karlsson H, Tuulari JJ. Infant and Child MRI: A Review of Scanning Procedures. Front Neurosci 2021; 15:666020. [PMID: 34321992 PMCID: PMC8311184 DOI: 10.3389/fnins.2021.666020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a safe method to examine human brain. However, a typical MR scan is very sensitive to motion, and it requires the subject to lie still during the acquisition, which is a major challenge for pediatric scans. Consequently, in a clinical setting, sedation or general anesthesia is often used. In the research setting including healthy subjects anesthetics are not recommended for ethical reasons and potential longer-term harm. Here we review the methods used to prepare a child for an MRI scan, but also on the techniques and tools used during the scanning to enable a successful scan. Additionally, we critically evaluate how studies have reported the scanning procedure and success of scanning. We searched articles based on special subject headings from PubMed and identified 86 studies using brain MRI in healthy subjects between 0 and 6 years of age. Scan preparations expectedly depended on subject's age; infants and young children were scanned asleep after feeding and swaddling and older children were scanned awake. Comparing the efficiency of different procedures was difficult because of the heterogeneous reporting of the used methods and the success rates. Based on this review, we recommend more detailed reporting of scanning procedure to help find out which are the factors affecting the success of scanning. In the long term, this could help the research field to get high quality data, but also the clinical field to reduce the use of anesthetics. Finally, we introduce the protocol used in scanning 2 to 5-week-old infants in the FinnBrain Birth Cohort Study, and tips for calming neonates during the scans.
Collapse
Affiliation(s)
- Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Susanne Sinisalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Baiocchi M, Barsoum S, Khodaei S, de la Torre Hernandez JM, Valentino SE, Dunford EC, MacDonald MJ, Keshavarz-Motamed Z. Effects of Choice of Medical Imaging Modalities on a Non-invasive Diagnostic and Monitoring Computational Framework for Patients With Complex Valvular, Vascular, and Ventricular Diseases Who Undergo Transcatheter Aortic Valve Replacement. Front Bioeng Biotechnol 2021; 9:643453. [PMID: 34307316 PMCID: PMC8297508 DOI: 10.3389/fbioe.2021.643453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the high individual differences in the anatomy and pathophysiology of patients, planning individualized treatment requires patient-specific diagnosis. Indeed, hemodynamic quantification can be immensely valuable for accurate diagnosis, however, we still lack precise diagnostic methods for numerous cardiovascular diseases including complex (and mixed) valvular, vascular, and ventricular interactions (C3VI) which is a complicated situation made even more challenging in the face of other cardiovascular pathologies. Transcatheter aortic valve replacement (TAVR) is a new less invasive intervention and is a growing alternative for patients with aortic stenosis. In a recent paper, we developed a non-invasive and Doppler-based diagnostic and monitoring computational mechanics framework for C3VI, called C3VI-DE that uses input parameters measured reliably using Doppler echocardiography. In the present work, we have developed another computational-mechanics framework for C3VI (called C3VI-CT). C3VI-CT uses the same lumped-parameter model core as C3VI-DE but its input parameters are measured using computed tomography and a sphygmomanometer. Both frameworks can quantify: (1) global hemodynamics (metrics of cardiac function); (2) local hemodynamics (metrics of circulatory function). We compared accuracy of the results obtained using C3VI-DE and C3VI-CT against catheterization data (gold standard) using a C3VI dataset (N = 49) for patients with C3VI who undergo TAVR in both pre and post-TAVR with a high variability. Because of the dataset variability and the broad range of diseases that it covers, it enables determining which framework can yield the most accurate results. In contrast with C3VI-CT, C3VI-DE tracks both the cardiac and vascular status and is in great agreement with cardiac catheter data.
Collapse
Affiliation(s)
- Melissa Baiocchi
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - Shirley Barsoum
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - Seyedvahid Khodaei
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | | - Emily C Dunford
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.,School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
Dillman JR, Gee MS, Ward CG, Drum ET, States LJ. Imaging sedation and anesthesia practice patterns in pediatric radiology departments - a survey of the Society of Chiefs of Radiology at Children's Hospitals (SCORCH). Pediatr Radiol 2021; 51:1497-1502. [PMID: 33606058 DOI: 10.1007/s00247-021-04996-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are few data describing practice patterns related to the use of sedation/anesthesia for diagnostic imaging in pediatric radiology departments. OBJECTIVE To understand current practice patterns related to imaging with sedation/anesthesia in pediatric radiology departments based on a survey of the Society of Chiefs of Radiology at Children's Hospitals (SCORCH) in conjunction with the American College of Radiology's Pediatric Imaging Sedation and Anesthesia Committee. MATERIALS AND METHODS A multi-question survey related to imaging with sedation/anesthesia in pediatric radiology departments was distributed to SCORCH member institutions in January 2019. A single reminder email was sent. Descriptive statistical analyses were performed. RESULTS Of the 84 pediatric radiology departments, 23 (27%) completed the survey. Fifty-seven percent of the respondents self-identified as academic/university-affiliated and 13% as a division/section in an adult radiology department. Imaging sedation (excluding general anesthesia) is commonly performed by pediatric anesthesiologists (76%) and intensive care unit physicians (intensivists, 48%); only 14% of departments expect their pediatric radiologists to supervise imaging sedation. Ninety-six percent of departments use child life specialists for patient preparation. Seventy percent of departments have preparatory resources available on a website, including simulation videos (26%) and audio clips (17%). Nearly half (48%) of the departments have a mock scanner to aid in patient preparation. Imaging sedation/anesthesia is most often scheduled at the request of ordering clinicians (65%), while 57% of departments allow schedulers to place patients into imaging sedation/anesthesia slots based on specified criteria. CONCLUSION Imaging sedation/anesthesia practice patterns vary among pediatric radiology departments, and understanding current approaches can help with standardization and practice improvement.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA.
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher G Ward
- Department of Anesthesiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth T Drum
- Department of Anesthesiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Verhagen MV, Dikkers R, de Kleine RH, Kwee TC, van der Doef HPJ, de Haas RJ. Assessment of hepatic artery anatomy in pediatric liver transplant recipients: MR angiography versus CT angiography. Pediatr Transplant 2021; 25:e14002. [PMID: 33729659 DOI: 10.1111/petr.14002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
During LT screening, children undergo CTA to determine hepatic artery anatomy. However, CTA imparts radiation, unlike MRA. The aim was to compare MRA to CTA in assessing hepatic artery anatomy in pediatric LT recipients. Twenty-one children (median age 8.9 years) who underwent both CTA and fl3D-ce MRA before LT were retrospectively included. Interreader variability between 2 radiologists, image quality, movement artifacts, and confidence scores, were used to compare MRA to CTA. Subgroup analyses for ages <6 years and ≥6 years were performed. Interreader variability for MRA and CTA in children <6 years was comparable (k = 0.839 and k = 0.757, respectively), while in children ≥6 years CTA was superior to MRA (k 1.000 and k 0.000, respectively). Overall image quality and confidence scores of CTA were significantly higher compared to MRA at all ages (2.8/3 vs. 2.3/3, p = .001; and 2.9/3 vs. 2.5/3, p = .003, respectively). Movement artifacts were significantly lower in CTA compared to MRA in children ≥6 years (1.0/3 vs. 1.7/3, p = .010, respectively). CTA is preferred over fl3D-ce MRA for the preoperative assessment of hepatic artery anatomy in children receiving LT, both at ages <6 years and ≥6 years.
Collapse
Affiliation(s)
- Martijn V Verhagen
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riksta Dikkers
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ruben H de Kleine
- Department of Surgery, Section HPB Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas C Kwee
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hubert P J van der Doef
- Department of Pediatric Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robbert J de Haas
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Dennis EL, Caeyenberghs K, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Figaji A, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Königs M, Levin HS, Lindsey HM, Livny A, Max JE, Merkley TL, Newsome MR, Olsen A, Ryan NP, Spruiell MS, Suskauer SJ, Thomopoulos SI, Ware AL, Watson CG, Wheeler AL, Yeates KO, Zielinski BA, Thompson PM, Tate DF, Wilde EA. Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging Behav 2021; 15:555-575. [PMID: 32734437 PMCID: PMC7855317 DOI: 10.1007/s11682-020-00363-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.
Collapse
Affiliation(s)
- Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Anthony Figaji
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naomi J Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Amsterdam, The Netherlands
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
| | - Jeffrey E Max
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Tricia L Merkley
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Matthew S Spruiell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Watson
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne L Wheeler
- Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, Canada
- Physiology Department, University of Toronto, Toronto, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon A Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Pediatric MRI Without Anesthesia: The Effect of Application-Supported Communication to Prepare the Child. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.jradnu.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Vecchiato K, Egloff A, Carney O, Siddiqui A, Hughes E, Dillon L, Colford K, Green E, Texeira RPAG, Price AN, Ferrazzi G, Hajnal JV, Carmichael DW, Cordero-Grande L, O'Muircheartaigh J. Evaluation of DISORDER: Retrospective Image Motion Correction for Volumetric Brain MRI in a Pediatric Setting. AJNR Am J Neuroradiol 2021; 42:774-781. [PMID: 33602745 DOI: 10.3174/ajnr.a7001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions. MATERIALS AND METHODS We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2-18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability. RESULTS Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = -3.164 for MPRAGE; z = -2.066 for TSE; z = -2.645 for FLAIR; all P < .05). CONCLUSIONS Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.
Collapse
Affiliation(s)
- K Vecchiato
- From the Department for Forensic and Neurodevelopmental Sciences (K.V., J.O.), Institute of Psychiatry, Psychology and Neuroscience .,Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - A Egloff
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - O Carney
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences.,Department of Radiology (O.C.), Great Ormond Street Hospital for Children, NHS Foundation Trust London, United Kingdom
| | - A Siddiqui
- Department of Radiology (A.S.), Guy's and Saint Thomas' Hospitals NHS Trust, London, United Kingdom
| | - E Hughes
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - L Dillon
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - K Colford
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - E Green
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - R P A G Texeira
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - A N Price
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - G Ferrazzi
- IRCCS San Camillo Hospital (G.F.), Venice, Italy
| | - J V Hajnal
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences
| | - D W Carmichael
- EPSRC/Wellcome Centre for Medical Engineering, Biomedical Engineering (D.W.C.)
| | - L Cordero-Grande
- Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences .,Biomedical Image Technologies, ETSI Telecomunicación (L.C.-G.), Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - J O'Muircheartaigh
- From the Department for Forensic and Neurodevelopmental Sciences (K.V., J.O.), Institute of Psychiatry, Psychology and Neuroscience.,Centre for the Developing Brain (K.V., A.E., O.C., E.H., L.D., K.C., E.G., R.P.A.G.T., A.N.P., J.V.H., L.C.-G., J.O.), School of Biomedical Engineering and Imaging Sciences.,MRC Centre for Neurodevelopmental Disorders (J.O.), King's College London, London, United Kingdom
| |
Collapse
|
45
|
Daniela A, Ciceri MR. Encephalon Mri in 4-12 Years Old Children: How Pain, Fear and Sadness Regulation Affect MRI Image Quality. PSYCHOL HEALTH MED 2021; 27:537-545. [PMID: 33449830 DOI: 10.1080/13548506.2021.1874431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Magnetic Resonance Imaging is often difficult to conduct, especially in children, because of restricted space, forced immobility, and loud noises. Providing children with adequate and age-appropriate information about the procedurecould reduce the use of anesthesia, the time and cost necessary . This research investigated the emotional regulation skills of children when provided with an information and orientation task before the examination. Analogical scales were used to measure the levels of fear, pleasure, and pain felt by 60 children who were waiting for a brain magnetic Resonance in two hospitals in Milan . Data collection took place at three different junctures; upon children's arrival at the hospital, following their preparation for this experience, and after the examination. Results showed that preparing children for the procedure helped to reduce anxiety and provided a space for them to externalize and self-regulate their emotional experiences. To combine the information strategy with the lived experiences allows the patient to anticipate the examination and to experience it in a simulation context, thus coming to the real examination more prepared and less emotionally activated. Preparation has a positive effect on children of all ages, particularly 4- to 7-year-old's. Moreover, fear regulation is associated with improved Magnetic resonance quality.
Collapse
Affiliation(s)
- Abati Daniela
- Department of Psychology, Università Cattolica Del Sacro Cuore, Milan, Italy
| | - Maria Rita Ciceri
- Department of Psychology, Università Cattolica Del Sacro Cuore, Milan, Italy
| |
Collapse
|
46
|
Jeong H, Ntolkeras G, Alhilani M, Atefi SR, Zöllei L, Fujimoto K, Pourvaziri A, Lev MH, Grant PE, Bonmassar G. Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model. PLoS One 2021; 16:e0241682. [PMID: 33439896 PMCID: PMC7806143 DOI: 10.1371/journal.pone.0241682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Numerical body models of children are used for designing medical devices, including but not limited to optical imaging, ultrasound, CT, EEG/MEG, and MRI. These models are used in many clinical and neuroscience research applications, such as radiation safety dosimetric studies and source localization. Although several such adult models have been reported, there are few reports of full-body pediatric models, and those described have several limitations. Some, for example, are either morphed from older children or do not have detailed segmentations. Here, we introduce a 29-month-old male whole-body native numerical model, "MARTIN", that includes 28 head and 86 body tissue compartments, segmented directly from the high spatial resolution MRI and CT images. An advanced auto-segmentation tool was used for the deep-brain structures, whereas 3D Slicer was used to segment the non-brain structures and to refine the segmentation for all of the tissue compartments. Our MARTIN model was developed and validated using three separate approaches, through an iterative process, as follows. First, the calculated volumes, weights, and dimensions of selected structures were adjusted and confirmed to be within 6% of the literature values for the 2-3-year-old age-range. Second, all structural segmentations were adjusted and confirmed by two experienced, sub-specialty certified neuro-radiologists, also through an interactive process. Third, an additional validation was performed with a Bloch simulator to create synthetic MR image from our MARTIN model and compare the image contrast of the resulting synthetic image with that of the original MRI data; this resulted in a "structural resemblance" index of 0.97. Finally, we used our model to perform pilot MRI safety simulations of an Active Implantable Medical Device (AIMD) using a commercially available software platform (Sim4Life), incorporating the latest International Standards Organization guidelines. This model will be made available on the Athinoula A. Martinos Center for Biomedical Imaging website.
Collapse
Affiliation(s)
- Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Georgios Ntolkeras
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Michel Alhilani
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Seyed Reza Atefi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kyoko Fujimoto
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Ali Pourvaziri
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Michael H. Lev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - P. Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
47
|
Gentle Touch: Noninvasive Approaches to Improve Patient Comfort and Cooperation for Pediatric Imaging. Top Magn Reson Imaging 2021; 29:187-195. [PMID: 32541256 DOI: 10.1097/rmr.0000000000000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pediatric imaging presents unique challenges related to patient anxiety, cooperation, and safety. Techniques to reduce anxiety and patient motion in adults must often be augmented in pediatrics, because it is always mentioned in the field of pediatrics, children are not miniature adults. This article will review methods that can be considered to improve patient experience and cooperation in imaging studies. Such techniques can range from modifications to the scanner suite, different ways of preparing and interacting with children, collaborating with parents for improved patient care, and technical advances such as accelerated acquisition and motion correction to reduce artifact. Special considerations for specific populations including transgender patients, neonates, and pregnant women undergoing fetal imaging will be described. The unique risks of sedation in children will also be briefly reviewed.
Collapse
|
48
|
Steele L, Shipman AR. Neuroimaging in infants and children in select neurocutaneous disorders. Clin Exp Dermatol 2020; 46:438-443. [PMID: 33180972 DOI: 10.1111/ced.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
The role of neuroimaging in neurocutaneous disorders is an evolving field. Research can be inconsistent and inconclusive, leading to divergent practice for some disorders. This study provides an overview of the current role of magnetic resonance imaging (MRI) of the brain in select neurocutaneous disorders, namely Sturge-Weber syndrome, congenital melanocytic naevus syndrome, neurofibromatosis type 1, tuberous sclerosis complex, incontinentia pigmenti and basal cell naevus syndrome. Future research assessing new targeted treatments and novel MRI techniques may change current practice.
Collapse
Affiliation(s)
- L Steele
- Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - A R Shipman
- Department of Dermatology, St Mary's Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| |
Collapse
|
49
|
Tziraki M, Garg S, Harrison E, Wright NB, Hawkes R, Akhtar K, Green J, Stivaros S. A Neuroimaging Preparation Protocol Tailored for Autism. Autism Res 2020; 14:65-74. [PMID: 33150732 DOI: 10.1002/aur.2427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022]
Abstract
This paper describes the key basic elements required for a successful multi-parametric MRI data acquisition in awake children with autism. The procedure was designed by taking into account methodological challenges arising from the acquisition of Resting State fMRI (RS fMRI) data, and factors such as cost, time, and staff availability. The ultimate aim was to prepare an imaging preparation protocol with high transferability to the whole autism spectrum, adaptable for use in a multi-site research with multiple time points. As part of a randomized pharmaco-intervention study, 31 children aged 4-10 years with Neurofibromatosis 1 and autism underwent MR imaging at baseline and end of intervention. The protocol consisted of tailored habituation instructions including gradual exposure to scanner noise, a social stories booklet, positive incentive strategies, and Play Therapy support. Success rate for initial acquisition was 71% for GABA+ MR spectroscopy at either location, 87% for perfusion, and 67% for diffusion assessment, and 71% for RS fMRI. Qualitative data indicated that 84% parents found the habituation protocol helpful. LAY SUMMARY: Here we describe a protocol for brain Magnetic Resonance Imaging (MRI) tailored for children with ASD to help reduce stress and avoid sedation during scanning. This procedure can make advanced medical imaging more accessible and promote a better MRI experience for families of children with ASD.
Collapse
Affiliation(s)
- Maria Tziraki
- Psychology Department, CITY College, International Faculty of the University of Sheffield, Thessaloniki, Greece
| | - Shruti Garg
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Emma Harrison
- NIHR Clinical Research Facility, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Neville B Wright
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rob Hawkes
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kapasi Akhtar
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Green
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Stavros Stivaros
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester & Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
50
|
Kozak MF, Shariat M, Leiroz Ferreira Botelho Maisano Kozak AC, O'Connor Reyes RO, Caldas Pessoa Y, Oliveira Castro e Silva Sobral L, Afiune JY. Does sedation influence cardiac magnetic resonance duration for children? Clin Imaging 2020; 67:246-249. [DOI: 10.1016/j.clinimag.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022]
|