1
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
2
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Wang Y, Brown CA, Chen R. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF). AIMS Microbiol 2018; 4:261-273. [PMID: 31294214 PMCID: PMC6604932 DOI: 10.3934/microbiol.2018.2.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Biorefinery is increasingly embraced as an environmentally friendly approach that has the potential to shift current petroleum-based chemical and material manufacture to renewable sources. Furanic compounds, particularly hydroxymethylfurfurals (HMFs) are platform chemicals, from which a variety of value-added chemicals can be derived. Their biomanufacture and biodegradation therefore will have a large impact. Here, we first review the potential industrial production of 4-HMF and 5-HMF, then we summarize the known microbial biosynthesis and biodegradation pathways of furanic compounds with emphasis on the enzymes in each pathway. We especially focus on the structure, function and catalytic mechanism of MfnB (4-(hydroxymethyl)-2-furancarboxyaldehyde-phosphate synthase) and hmfH (HMF oxidase), which catalyze the formation of phosphorylated 4-HMF and the oxidation of 5-HMF to furandicarboxylic acid (2,5-FDCA), respectively. Understanding the structure-function relationship of these enzymes will provide important insights in enzyme engineering, which eventually will find industry applications in mass-production of biobased polymers and other bulk chemicals in future.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry and Biochemistry, University of North Georgia-Dahlonega, Dahlonega, GA, 30597, USA
| | - Caroline A Brown
- Department of Chemistry and Biochemistry, University of North Georgia-Dahlonega, Dahlonega, GA, 30597, USA
| | - Rachel Chen
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Ahmadi S, Mainali R, Nagpal R, Sheikh-Zeinoddin M, Soleimanian-Zad S, Wang S, Deep G, Kumar Mishra S, Yadav H. Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. OBESITY & CONTROL THERAPIES : OPEN ACCESS 2017; 4. [PMID: 30474051 DOI: 10.15226/2374-8354/4/2/00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of metabolic diseases including obesity, diabetes, cardiovascular diseases, hypertension and cancer has evolved into a global epidemic over the last century. The rate of these disorders is continuously rising due to the lack of effective preventative and therapeutic strategies. This warrants for the development of novel strategies that could help in the prevention, treatment and/ or better management of such disorders. Although the complex pathophysiology of these metabolic diseases is one of the major hurdles in the development of preventive and/or therapeutic strategies, there are some factors that are or can speculated to be more effective to target than others. Recently, gut microbiome has emerged as one of the major contributing factors in metabolic diseases, and developing positive modulators of gut microbiota is being considered to be of significant interest. Natural non-digestible polysaccharides from plants and food sources are considered potent modulators of gut microbiome that can feed certain beneficial microbes in the gut. This has led to an increased interest in the isolation of novel bioactive polysaccharides from different plants and food sources and their application as functional components to modulate the gut microbiome composition to improve host's health including metabolism. Therefore, polysaccharides, as prebiotics components, are being speculated to confer positive effects in managing metabolic diseases like obesity and diabetes. In this review article, we summarize some of the most common polysaccharides from plants and food that impact metabolic health and discuss why and how these could be helpful in preventing or ameliorating metabolic diseases such as obesity, type 2 diabetes, hypertension and dyslipidemia.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rabina Mainali
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravinder Nagpal
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran
| | - Shaohua Wang
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Deparment of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Santosh Kumar Mishra
- Molecular Biomedical Sciences, School of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Korenblum E, Jiménez DJ, van Elsas JD. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment. Microb Biotechnol 2016; 9:224-34. [PMID: 26875750 PMCID: PMC4767288 DOI: 10.1111/1751-7915.12338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 10/23/2015] [Accepted: 11/08/2015] [Indexed: 11/28/2022] Open
Abstract
Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction-denaturing gradient gel electrophoresis, amplicon sequencing of the 16S rRNA gene and culturing. Three consortia were constructed using the microbiota of lake sediment as the starting inoculum and untreated switchgrass (Panicum virgatum) (acid or heat) or treated (with either acid or heat) as the sole source of carbonaceous compounds. Additionally, nitrate was used in order to limit sulfate reduction and methanogenesis. Bacterial growth took place, as evidenced from 3 to 4 log unit increases in the 16S rRNA gene copy numbers as well as direct cell counts through three transfers on cleaned and reused substrate placed in fresh mineral medium. After 2 days, Aeromonas bestiarum-like organisms dominated the enrichments, irrespective of the substrate type. One month later, each substrate revealed major enrichments of organisms affiliated with different species of Clostridium. Moreover, only the heat-treated substrate selected Dysgonomonas capnocytophagoides-affiliated bacteria (Bacteroidetes). Towards the end of the experiment, members of the Proteobacteria (Aeromonas, Rhizobium and/or Serratia) became dominant in all three types of substrates. A total of 160 strains was isolated from the enrichments. Most of the strains tested (78%) were able to grow anaerobically on carboxymethyl cellulose and xylan. The final consortia yield attractive biological tools for the depolymerization of recalcitrant lignocellulosic materials and are proposed for the production of precursors of biofuels.
Collapse
Affiliation(s)
- Elisa Korenblum
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Diego Javier Jiménez
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Lazuka A, Auer L, Bozonnet S, Morgavi DP, O'Donohue M, Hernandez-Raquet G. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. BIORESOURCE TECHNOLOGY 2015; 196:241-9. [PMID: 26247975 DOI: 10.1016/j.biortech.2015.07.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 05/15/2023]
Abstract
A rumen-derived microbial consortium was enriched on raw wheat straw as sole carbon source in a sequential batch-reactor (SBR) process under strict mesophilic anaerobic conditions. After five cycles of enrichment the procedure enabled to select a stable and efficient lignocellulolytic microbial consortium, mainly constituted by members of Firmicutes and Bacteroidetes phyla. The enriched community, designed rumen-wheat straw-derived consortium (RWS) efficiently hydrolyzed lignocellulosic biomass, degrading 55.5% w/w of raw wheat straw over 15days at 35°C and accumulating carboxylates as main products. Cellulolytic and hemicellulolytic activities, mainly detected on the cell bound fraction, were produced in the earlier steps of degradation, their production being correlated with the maximal lignocellulose degradation rates. Overall, these results demonstrate the potential of RWS to convert unpretreated lignocellulosic substrates into useful chemicals.
Collapse
Affiliation(s)
- Adèle Lazuka
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Lucas Auer
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Sophie Bozonnet
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Diego P Morgavi
- INRA, UR1213 Herbivores, Centre de Theix, F-63122 St-Genès-Champanelle, France
| | - Michael O'Donohue
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Guillermina Hernandez-Raquet
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| |
Collapse
|
7
|
Estrada-de los Santos P, Solano-Rodríguez R, Matsumura-Paz LT, Vásquez-Murrieta MS, Martínez-Aguilar L. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol 2014; 196:811-7. [DOI: 10.1007/s00203-014-1018-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
|
8
|
Jiménez DJ, Dini-Andreote F, van Elsas JD. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:92. [PMID: 24955113 PMCID: PMC4064818 DOI: 10.1186/1754-6834-7-92] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/23/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. RESULTS In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith's phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose degradation, was indicated by predictive bacterial metagenome reconstruction. Reassuringly, tests for specific (hemi)cellulolytic enzymatic activities, performed on the consortial secretomes, confirmed the presence of such gene functions. CONCLUSION In an in-depth characterization of two wheat straw degrading microbial consortia, we revealed the enrichment and selection of specific bacterial and fungal taxa that were presumably involved in (hemi) cellulose degradation. Interestingly, the microbial community composition was strongly influenced by the wheat straw pretreatment. Finally, the functional bacterial-metagenome prediction and the evaluation of enzymatic activities (at the consortial secretomes) revealed the presence and enrichment of proteins involved in the deconstruction of plant biomass.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Francisco Dini-Andreote
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
9
|
Jiménez DJ, Korenblum E, van Elsas JD. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl Microbiol Biotechnol 2013; 98:2789-803. [PMID: 24113822 DOI: 10.1007/s00253-013-5253-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
To develop a targeted metagenomics approach for the analysis of novel multispecies microbial consortia involved in the bioconversion of lignocellulose and furanic compounds, we applied replicated sequential batch aerobic enrichment cultures with either pretreated or untreated wheat straw as the sources of carbon and energy. After each transfer, exponential growth of bacteria was detected using microscopic cell counts, indicating that the substrate was being utilized. In batch, the final bacterial abundances increased from an estimated 5 to 8.7-9.5 log 16S rRNA gene copy numbers/ml. The abundances of fungal propagules showed greater variation, i.e., between 5.4 and 8.0 log ITS1 copies/ml. Denaturing gradient gel electrophoresis analyses showed that the bacterial consortia in both treatments reached approximate structural stability after six transfers. Moreover, the structures of the fungal communities were strongly influenced by substrate treatment. A total of 124 bacterial strains were isolated from the two types of enrichment cultures. The most abundant strains were affiliated with the genera Raoultella/Klebsiella, Kluyvera, Citrobacter, Enterobacter, Pseudomonas, Acinetobacter, Flavobacterium and Arthrobacter. Totals of 43 and 11 strains obtained from the untreated and pretreated substrates, respectively, showed (hemi)cellulolytic activity (CMC-ase and xylanase), whereas 96 strains were capable of growth in 7.5 mM 5-hydroxymethylfurfural. About 50 % of the latter showed extracellular oxidoreductase activity as detected by a novel iodide oxidation method. Also, (hemi)cellulolytic fungal strains related to Coniochaeta, Plectosphaerella and Penicillium were isolated. One Trichosporon strain was isolated from pretreated wheat straw. The two novel bacterial-fungal consortia are starting points for lignocellulose degradation applications.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG, Groningen, The Netherlands,
| | | | | |
Collapse
|
10
|
Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH. Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 2011; 92:1095-105. [PMID: 22031465 PMCID: PMC3223595 DOI: 10.1007/s00253-011-3632-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid.
Collapse
|
11
|
Trifonova R, Postma J, Schilder MT, van Elsas JD. Microbial enrichment of a novel growing substrate and its effect on plant growth. MICROBIAL ECOLOGY 2009; 58:632-641. [PMID: 19387721 PMCID: PMC2745527 DOI: 10.1007/s00248-009-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/24/2009] [Indexed: 05/27/2023]
Abstract
The quality of torrefied grass fibers (TGF) as a new potting soil ingredient was tested in a greenhouse experiment. TGF was colonized with previously selected microorganisms. Four colonization treatments were compared: (1) no inoculants, (2) the fungus Coniochaeta ligniaria F/TGF15 alone, (3) the fungus followed by inoculation with two selected bacteria, and (4) the fungus with seven selected bacteria. Cultivation-based and DNA-based methods, i.e., PCR-DGGE and BOX-PCR, were applied to assess the bacterial and fungal communities established in the TGF. Although colonization was not performed under sterile conditions, all inoculated strains were recovered from TGF up to 26 days incubation. Stable fungal and bacterial populations of 10(8) and 10(9) CFU/g TGF, respectively, were reached. As a side effect of the torrefaction process that aimed at the chemical stabilization of grass fibers, potentially phytotoxic compounds were generated. These phytotoxic compounds were cold-extracted from the fibers and analyzed by gas chromatography mass spectrometry. Four of 15 target compounds that had previously been found in the extract of TGF were encountered, namely phenol, 2-methoxyphenol, benzopyran-2-one, and tetrahydro-5,6,7,7a-benzofuranone. The concentration of these compounds decreased significantly during incubation. The colonized TGF was mixed with peat (P) in a range of 100%:0%, 50%:50%, 20%:80%, and 0%:100% TGF/P (w/w), respectively, to assess suitability for plant growth. Germination of tomato seeds was assessed three times, i.e., with inoculated TGF that had been incubated for 12, 21, and 26 days. In these tests, 90-100% of the seeds germinated in 50%:50% and 20%:80% TGF/P, whereas on average only 50% of the seeds germinated in pure TGF. Germination was not improved by the microbial inoculants. However, plant fresh weight as well as leaf area of 28-day-old tomato plants were significantly increased in all treatments where C. ligniaria F/TGF15 was inoculated compared to the control treatment without microbial inoculants. Colonization with C. ligniaria also protected the substrate from uncontrolled colonization by other fungi. The excellent colonization of TGF by the selected plant-health promoting bacteria in combination with the fungus C. ligniaria offers the possibility to create disease suppressive substrate, meanwhile replacing 20% to 50% of peat in potting soil by TGF.
Collapse
Affiliation(s)
- R. Trifonova
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Microbial Ecology Department, Center for Evolutionary and Ecological Studies, Rijksuniversiteit Groningen, Haren, The Netherlands
| | - J. Postma
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M. T. Schilder
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - J. D. van Elsas
- Microbial Ecology Department, Center for Evolutionary and Ecological Studies, Rijksuniversiteit Groningen, Haren, The Netherlands
| |
Collapse
|
12
|
Trifonova R, Postma J, van Elsas J. Interactions of plant-beneficial bacteria with the ascomyceteConiochaeta ligniaria. J Appl Microbiol 2009; 106:1859-66. [DOI: 10.1111/j.1365-2672.2009.04163.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Trifonova R, Postma J, Verstappen FWA, Bouwmeester HJ, Ketelaars JJMH, van Elsas JD. Removal of phytotoxic compounds from torrefied grass fibres by plant-beneficial microorganisms. FEMS Microbiol Ecol 2008; 66:158-66. [PMID: 18537835 DOI: 10.1111/j.1574-6941.2008.00508.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We aimed to select microorganisms colonizing torrefied grass fibres (TGF) and simultaneously reducing the phytotoxicity which appeared after heat treatment of the fibres. Eighty-eight bacterial strains and one fungus, previously isolated from a sequential enrichment experiment on torrefied fibres and extracts, were tested separately for their capacity to decrease phytotoxicity. Eleven of the bacterial strains and the fungus significantly reduced phytotoxicity. These organisms were checked for their ability to grow on agar containing phenol, 2-methoxyphenol, 2,6-dimethoxyphenol, 2-furalaldehyde, pyrrole-2-carboxaldehyde and furan-2-methanol as sole carbon sources. The fungus F/TGF15 and the bacterial strain 66/TGF15 were able to grow on all six compounds. Strains 15/TGE5, 23/TGE5, 43/TGE20, 56/TGF10 and 95/TGF15 grew on two to four compounds, and strain 72/TGF15 only on one compound. Strains 31/TGE5, 34/TGE5, 48/TGE20 and 70/TGF15 did not grow on any of the single toxic compounds. GC analyses of torrefied grass extracts (TGE) determined which compounds were removed by the microorganisms. F/TGF15 was the only isolate depleting phenol, 2-methoxyphenol, 2-dihydrofuranone and pyrrole-2,5-dione-3-ethyl-4-methyl. Strains 15/TGE5, 23/TGE5, 31/TGE5 and 56/TGF10, and the fungus depleted 2-furalaldehyde, 2-furan-carboxaldehyde-5-methyl, pyrrole-2-carboxaldehyde, 5-acetoxymethyl-2-furaldehyde and benzaldehyde-3-hydroxy-4-methoxy. These promising candidates for colonizing and simultaneously reducing the phytotoxicity of TGF were affiliated with Pseudomonas putida, Serratia plymuthica, Pseudomonas corrugata, Methylobacterium radiotolerans and Coniochaeta ligniaria.
Collapse
|