1
|
Amils R, Escudero C, Oggerin M, Puente Sánchez F, Arce Rodríguez A, Fernández Remolar D, Rodríguez N, García Villadangos M, Sanz JL, Briones C, Sánchez-Román M, Gómez F, Leandro T, Moreno-Paz M, Prieto-Ballesteros O, Molina A, Tornos F, Sánchez-Andrea I, Timmis K, Pieper DH, Parro V. Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt. Environ Microbiol 2023; 25:428-453. [PMID: 36453153 PMCID: PMC10107794 DOI: 10.1111/1462-2920.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPB.
Collapse
Affiliation(s)
- Ricardo Amils
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Escudero
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Monike Oggerin
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Alejandro Arce Rodríguez
- Institute of Microbiology, Technical University Braunschweig, Germany
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nuria Rodríguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - José Luis Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Felipe Gómez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Tania Leandro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Antonio Molina
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fernando Tornos
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Kenneth Timmis
- Institute of Microbiology, Technical University Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
2
|
Twing KI, Ward LM, Kane ZK, Sanders A, Price RE, Pendleton HL, Giovannelli D, Brazelton WJ, McGlynn SE. Microbial ecology of a shallow alkaline hydrothermal vent: Strýtan Hydrothermal Field, Eyjafördur, northern Iceland. Front Microbiol 2022; 13:960335. [PMID: 36466646 PMCID: PMC9713835 DOI: 10.3389/fmicb.2022.960335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 10/20/2023] Open
Abstract
Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.
Collapse
Affiliation(s)
- Katrina I. Twing
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - L. M. Ward
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Geosciences, Smith College, Northampton, MA, United States
| | - Zachary K. Kane
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Alexa Sanders
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Roy Edward Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - H. Lizethe Pendleton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - William J. Brazelton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Shawn E. McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| |
Collapse
|
3
|
Dai X, Wang Y, Luo L, Pfiffner SM, Li G, Dong Z, Xu Z, Dong H, Huang L. Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. GEOBIOLOGY 2021; 19:278-291. [PMID: 33559972 DOI: 10.1111/gbi.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
It is generally accepted that there is a vast, well-populated biosphere in the subsurface, but the depth limit of the terrestrial biosphere has yet to be determined, largely because of the lack of access to the subsurface. Here as part of the Chinese Continental Scientific Drilling (CCSD) project in eastern China, we acquired continuous rock cores and endeavored to probe the depth limit of the biosphere and the depth-dependent distribution of microorganisms at a geologically unique site, that is, a convergent plate boundary. Microbiological analyses of ultra-high-pressure metamorphic rock cores taken from the ground surface to 5,158-meter reveal that microbial distribution was continuous up to a depth of ~4,850 m, where temperature was estimated to be ~137°C. The metabolic state of these organisms at such great depth remains to be determined. Microbial abundance, ranging from 103 to 108 cells/g, was also related to porosity, but not to the depth and rock composition. In addition, microbial diversity systematically decreased with depth. Our results support the notion that temperature is a key factor in determining the lower limit of the biosphere in the continental subsurface.
Collapse
Affiliation(s)
- Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanliang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liqiang Luo
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, China
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Guangyu Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiqin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Abramov A, Vishnivetskaya T, Rivkina E. Are permafrost microorganisms as old as permafrost? FEMS Microbiol Ecol 2021; 97:6143815. [PMID: 33601419 DOI: 10.1093/femsec/fiaa260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Permafrost describes the condition of earth material (sand, ground, organic matter, etc.) cemented by ice when its temperature remains at or below 0°C continuously for longer than 2 years. Evidently, permafrost is as old as the time passed from freezing of the earth material. Permafrost is a unique phenomenon and may preserve life forms it encloses. Therefore, in order to talk confidently about the preservation of paleo-objects in permafrost, knowledge about the geological age of sediments, i.e. when the sediments were formed, and permafrost age, when those sediments became permanently frozen, is essential. There are two types of permafrost-syngenetic and epigenetic. The age of syngenetic permafrost corresponds to the geological age of its sediments, whereas the age of epigenetic permafrost is less than the geological age of its sediments. Both of these formations preserve microorganisms and their metabolic products; however, the interpretations of the microbiological and molecular-biological data are inconsistent. This paper reviews the current knowledge of time-temperature history and age of permafrost in relation to available microbiological and metagenomic data.
Collapse
Affiliation(s)
- Andrey Abramov
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Tatiana Vishnivetskaya
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia.,University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN 37996, USA
| | - Elizaveta Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
5
|
Wilpiszeski RL, Sherwood Lollar B, Warr O, House CH. In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield. Life (Basel) 2020; 10:E307. [PMID: 33255232 PMCID: PMC7760289 DOI: 10.3390/life10120307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth's surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this "corked" borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported.
Collapse
Affiliation(s)
- Regina L. Wilpiszeski
- Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Barbara Sherwood Lollar
- Stable Isotope Laboratory, University of Toronto, Toronto, ON M5S 3B1, Canada; (B.S.L.); (O.W.)
| | - Oliver Warr
- Stable Isotope Laboratory, University of Toronto, Toronto, ON M5S 3B1, Canada; (B.S.L.); (O.W.)
| | - Christopher H. House
- Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
6
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
7
|
Qu J, Chen X, Zhou J, Li H, Mai W. Treatment of real sodium saccharin wastewater using multistage contact oxidation reactor and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 289:121714. [PMID: 31323719 DOI: 10.1016/j.biortech.2019.121714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
In this study, multistage contact oxidation reactor (MCOR) with a novel carrier was used for treatment of high-strength sodium saccharin wastewater (SSW) under stepwise increasing salinities from 1.0% to 8.0%. The results revealed that MCOR could effectively remove the organic pollutants from SSW when influent salinity was no more than 4.5%; the chemical oxygen demand (COD) and NH4+-N removal efficiency under the optimal operating parameters ranged up to 91.5% and 92.7%, respectively. Microbial diversity analysis illustrated that the dominant microbes in SSW treatment system were substantially distinct at different salinities. Pseudomonas was predominant at salinity of 3.5%, while Marinobacterium (a species involved in COD removal) was enriched to a greater degree at salinity of 7.0%. CCA suggested that salinity was the main factor for dynamic evolutions of microbial community structures. This work demonstrated that MCOR is an appropriate method for the treatment of high-strength, high-salinity SSW.
Collapse
Affiliation(s)
- Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenning Mai
- School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Dutta A, Peoples LM, Gupta A, Bartlett DH, Sar P. Exploring the piezotolerant/piezophilic microbial community and genomic basis of piezotolerance within the deep subsurface Deccan traps. Extremophiles 2019; 23:421-433. [PMID: 31049708 DOI: 10.1007/s00792-019-01094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023]
Abstract
The deep biosphere is often characterized by multiple extreme physical-chemical conditions, of which pressure is an important parameter that influences life but remains less studied. This geomicrobiology study was designed to understand the response of a subterranean microbial community of the Deccan traps to high-pressure conditions and to elucidate their genomic properties. Groundwater from a deep basaltic aquifer of the Deccan traps was used to ascertain the community response to 25 MPa and 50 MPa pressure following enrichment in high-salt and low-salt organic media. Quantitative PCR data indicated a decrease in bacterial and archaeal cell numbers with increasing pressure. 16S rRNA gene sequencing displayed substantial changes in the microbial community in which Acidovorax appeared to be the most dominant genus in the low-salt medium and Microbacteriaceae emerged as the major family in the high-salt medium under both pressure conditions. Genes present in metagenome-associated genomes which have previously been associated with piezotolerance include those related to nutrient uptake and extracytoplasmic stress (omp, rseC), protein folding and unfolding (dnaK, groEL and others), and DNA repair mechanisms (mutT, uvr and others). We hypothesize that these genes facilitate tolerance to high pressure by certain groups of microbes residing in subsurface Deccan traps.
Collapse
Affiliation(s)
- Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
9
|
Ancient Microbial Activity in Deep Hydraulically Conductive Fracture Zones within the Forsmark Target Area for Geological Nuclear Waste Disposal, Sweden. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8060211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
McMahon S, Bosak T, Grotzinger JP, Milliken RE, Summons RE, Daye M, Newman SA, Fraeman A, Williford KH, Briggs DEG. A Field Guide to Finding Fossils on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1012-1040. [PMID: 30034979 PMCID: PMC6049883 DOI: 10.1029/2017je005478] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data collected by previous and current missions, (2) Earth's fossil record, and (3) experimental studies of organic decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures could have been preserved in the depositional environments and mineralizing media thought to have been present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding of fossil preservation in the context of other environments specific to Mars, particularly within evaporative salts and pore/fracture-filling subsurface minerals.
Collapse
Affiliation(s)
- S. McMahon
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
- UK Centre for Astrobiology, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - R. E. Milliken
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - R. E. Summons
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - M. Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - S. A. Newman
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. H. Williford
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. E. G. Briggs
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| |
Collapse
|
11
|
A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci Rep 2018; 8:6582. [PMID: 29700429 PMCID: PMC5919928 DOI: 10.1038/s41598-018-25079-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/11/2018] [Indexed: 02/03/2023] Open
Abstract
Brines are hypersaline solutions which have been found within the Antarctic permafrost from the Tarn Flat area (Northern Victoria Land). Here, an investigation on the possible presence and diversity of fungal life within those peculiar ecosystems has been carried out for the first time. Brines samples were collected at 4- and 5-meter depths (TF1 and TF2, respectively), from two brines separated by a thin ice layer. The samples were analyzed via Illumina MiSeq targeting the ITS region specific for both yeasts and filamentous fungi. An unexpected high alpha diversity was found. Beta diversity analysis revealed that the two brines were inhabited by two phylogenetically diverse fungal communities (Unifrac value: 0.56, p value < 0.01; Martin’s P-test p-value < 0.001) characterized by several specialist taxa. The most abundant fungal genera were Candida sp., Leucosporidium sp., Naganishia sp. and Sporobolomyces sp. in TF1, and Leucosporidium sp., Malassezia sp., Naganishia sp. and Sporobolomyces sp. in TF2. A few hypotheses on such differentiation have been done: i) the different chemical and physical composition of the brines; ii) the presence in situ of a thin layer of ice, acting as a physical barrier; and iii) the diverse geological origin of the brines.
Collapse
|
12
|
Adam D, Maciejewska M, Naômé A, Martinet L, Coppieters W, Karim L, Baurain D, Rigali S. Isolation, Characterization, and Antibacterial Activity of Hard-to-Culture Actinobacteria from Cave Moonmilk Deposits. Antibiotics (Basel) 2018; 7:antibiotics7020028. [PMID: 29565274 PMCID: PMC6023089 DOI: 10.3390/antibiotics7020028] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cave moonmilk deposits host an abundant and diverse actinobacterial population that has a great potential for producing novel natural bioactive compounds. In our previous attempt to isolate culturable moonmilk-dwelling Actinobacteria, only Streptomyces species were recovered, whereas a metagenetic study of the same deposits revealed a complex actinobacterial community including 46 actinobacterial genera in addition to streptomycetes. In this work, we applied the rehydration-centrifugation method to lessen the occurrence of filamentous species and tested a series of strategies to achieve the isolation of hard-to-culture and rare Actinobacteria from the moonmilk deposits of the cave “Grotte des Collemboles”. From the “tips and tricks” that were tested, separate autoclaving of the components of the International Streptomyces Project (ISP) medium number 5 (ISP5) medium, prolonged incubation time, and dilution of the moonmilk suspension were found to most effectively improve colony forming units. Taxonomic analyses of the 40 isolates revealed new representatives of the Agromyces, Amycolatopsis, Kocuria, Micrococcus, Micromonospora, Nocardia, and Rhodococcus species, as well as additional new streptomycetes. The applied methodologies allowed the isolation of strains associated with both the least and most abundant moonmilk-dwelling actinobacterial operational taxonomic units. Finally, bioactivity screenings revealed that some isolates displayed high antibacterial activities, and genome mining uncovered a strong potential for the production of natural compounds.
Collapse
Affiliation(s)
- Delphine Adam
- Integrative Biological Sciences (InBioS), Center for Protein Engineering, Liège University, B-4000 Liège, Belgium.
| | - Marta Maciejewska
- Integrative Biological Sciences (InBioS), Center for Protein Engineering, Liège University, B-4000 Liège, Belgium.
| | - Aymeric Naômé
- Integrative Biological Sciences (InBioS), Center for Protein Engineering, Liège University, B-4000 Liège, Belgium.
| | - Loïc Martinet
- Integrative Biological Sciences (InBioS), Center for Protein Engineering, Liège University, B-4000 Liège, Belgium.
| | - Wouter Coppieters
- Genomics Platform, GIGA (Grappe Interdisciplinaire de Génoprotéomique Appliquée), University of Liège (B34), B-4000 Liège, Belgium.
| | - Latifa Karim
- Genomics Platform, GIGA (Grappe Interdisciplinaire de Génoprotéomique Appliquée), University of Liège (B34), B-4000 Liège, Belgium.
| | - Denis Baurain
- Integrative Biological Sciences (InBioS), PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, B-4000 Liège, Belgium.
| | - Sébastien Rigali
- Integrative Biological Sciences (InBioS), Center for Protein Engineering, Liège University, B-4000 Liège, Belgium.
| |
Collapse
|
13
|
Purkamo L, Bomberg M, Nyyssönen M, Ahonen L, Kukkonen I, Itävaara M. Response of Deep Subsurface Microbial Community to Different Carbon Sources and Electron Acceptors during ∼2 months Incubation in Microcosms. Front Microbiol 2017; 8:232. [PMID: 28265265 PMCID: PMC5316538 DOI: 10.3389/fmicb.2017.00232] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/02/2017] [Indexed: 11/13/2022] Open
Abstract
Acetate plays a key role as electron donor and acceptor and serves as carbon source in oligotrophic deep subsurface environments. It can be produced from inorganic carbon by acetogenic microbes or through breakdown of more complex organic matter. Acetate is an important molecule for sulfate reducers that are substantially present in several deep bedrock environments. Aceticlastic methanogens use acetate as an electron donor and/or a carbon source. The goal of this study was to shed light on carbon cycling and competition in microbial communities in fracture fluids of Finnish crystalline bedrock groundwater system. Fracture fluid was anaerobically collected from a fracture zone at 967 m depth of the Outokumpu Deep Drill Hole and amended with acetate, acetate + sulfate, sulfate only or left unamended as a control and incubated up to 68 days. The headspace atmosphere of microcosms consisted of 80% hydrogen and 20% CO2. We studied the changes in the microbial communities with community fingerprinting technique as well as high-throughput 16S rRNA gene amplicon sequencing. The amended microcosms hosted more diverse bacterial communities compared to the intrinsic fracture zone community and the control treatment without amendments. The majority of the bacterial populations enriched with acetate belonged to clostridial hydrogenotrophic thiosulfate reducers and Alphaproteobacteria affiliating with groups earlier found from subsurface and groundwater environments. We detected a slight increase in the number of sulfate reducers after the 68 days of incubation. The microbial community changed significantly during the experiment, but increase in specifically acetate-cycling microbial groups was not observed.
Collapse
Affiliation(s)
- Lotta Purkamo
- VTT Technical Research Centre of Finland Espoo, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Espoo, Finland
| | | | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki Helsinki, Finland
| | | |
Collapse
|
14
|
Miettinen H, Kietäväinen R, Sohlberg E, Numminen M, Ahonen L, Itävaara M. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland. Front Microbiol 2015; 6:1203. [PMID: 26579109 PMCID: PMC4626562 DOI: 10.3389/fmicb.2015.01203] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/15/2015] [Indexed: 02/01/2023] Open
Abstract
Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 10(4) cells mL(-1)) in water. The water for nucleic acid analysis went through high decompression (60-130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear.
Collapse
Affiliation(s)
- Hanna Miettinen
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| | | | - Elina Sohlberg
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Mikko Numminen
- Pyhäsalmi Mine Oy, First Quantum Minerals Ltd.Pyhäsalmi, Finland
| | | | - Merja Itävaara
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd.Espoo, Finland
| |
Collapse
|
15
|
Kietäväinen R, Purkamo L. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front Microbiol 2015; 6:725. [PMID: 26236303 PMCID: PMC4505394 DOI: 10.3389/fmicb.2015.00725] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/02/2015] [Indexed: 11/13/2022] Open
Abstract
The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites.
Collapse
Affiliation(s)
| | - Lotta Purkamo
- VTT Technical Research Centre of Finland Espoo, Finland
| |
Collapse
|
16
|
Coolen MJL, Orsi WD. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 2015; 6:197. [PMID: 25852660 PMCID: PMC4360760 DOI: 10.3389/fmicb.2015.00197] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
Collapse
Affiliation(s)
- Marco J. L. Coolen
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
- Western Australia Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin UniversityPerth, WA, Australia
| | - William D. Orsi
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| |
Collapse
|
17
|
Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. Antonie van Leeuwenhoek 2014; 107:519-31. [DOI: 10.1007/s10482-014-0348-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
18
|
Wilson SL, Voordouw G, Walker VK. Towards the selection of a produced water enrichment for biological gas hydrate inhibitors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10254-10261. [PMID: 24819435 DOI: 10.1007/s11356-014-2912-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Economic concerns associated with the recovery of non-conventional hydrocarbon reserves include unexpected ice as well as ice-like gas hydrate formation. Antifreeze proteins (AFPs) inhibit ice growth, and experiments with fish, plant, and insect AFPs have shown promise of effective gas hydrate inhibition in lab-scale experiments. If produced on an industrial scale, AFPs could provide a more environmentally friendly alternative to kinetic inhibitors, but a large-scale production of these AFPs is not currently feasible. We believe that these difficulties could be surmounted by the production of microbial AFPs, but to date, only a few such proteins have been identified and purified, and none of these are associated with hydrocarbon reserves. Here, we have used ice-affinity and freeze-thaw stress to select microbes derived from oil and gas formation water, or produced water, as a source of anaerobic microbial communities. Ice-affinity successfully incorporated anaerobic bacteria under aerobic conditions, and the mixed culture had ice-associating properties. Under these conditions, ice-affinity selection does not result in cultivatable isolates, but similar, cultivable microbes were obtained following freeze-thaw selection under anaerobic conditions. Since these mixed cultures inhibited the growth of ice crystals, they also have the potential to inhibit hydrate growth. Overall, freeze-thaw selection provides a promising first step towards the isolation of microbes capable of the inhibition of ice and gas hydrate growth, for possible application for energy exploration and recovery at high-latitudes and in-deep, cold waters.
Collapse
Affiliation(s)
- Sandra L Wilson
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada,
| | | | | |
Collapse
|
19
|
Nejdl L, Kudr J, Cihalova K, Chudobova D, Zurek M, Zalud L, Kopecny L, Burian F, Ruttkay-Nedecky B, Krizkova S, Konecna M, Hynek D, Kopel P, Prasek J, Adam V, Kizek R. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis 2014; 35:2333-45. [DOI: 10.1002/elps.201300576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
| | - Jiri Kudr
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
| | - Dagmar Chudobova
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
| | - Michal Zurek
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
| | - Ludek Zalud
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Lukas Kopecny
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Frantisek Burian
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Marie Konecna
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Jan Prasek
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry; Faculty of Agronomy; Mendel University in Brno; Czech Republic
- Central European Institute of Technology; Brno University of Technology; Czech Republic
| |
Collapse
|
20
|
Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, Itävaara M, Auvinen P. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME JOURNAL 2013; 8:126-38. [PMID: 23949662 DOI: 10.1038/ismej.2013.125] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/08/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Microbial life in the nutrient-limited and low-permeability continental crystalline crust is abundant but remains relatively unexplored. Using high-throughput sequencing to assess the 16S rRNA gene diversity, we found diverse bacterial and archaeal communities along a 2516-m-deep drill hole in continental crystalline crust in Outokumpu, Finland. These communities varied at different sampling depths in response to prevailing lithology and hydrogeochemistry. Further analysis by shotgun metagenomic sequencing revealed variable carbon and nutrient utilization strategies as well as specific functional and physiological adaptations uniquely associated with specific environmental conditions. Altogether, our results show that predominant geological and hydrogeochemical conditions, including the existence and connectivity of fracture systems and the low amounts of available energy, have a key role in controlling microbial ecology and evolution in the nutrient and energy-poor deep crustal biosphere.
Collapse
Affiliation(s)
- Mari Nyyssönen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Jenni Hultman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Merja Itävaara
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 2012; 16:177-91. [PMID: 22246205 DOI: 10.1007/s00792-011-0417-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Lost Hammer (LH) spring is a unique hypersaline, subzero, perennial high Arctic spring arising through thick permafrost. In the present study, the microbial and geochemical characteristics of the LH outflow channels, which remain unfrozen at ≥-18°C and are more aerobic/less reducing than the spring source were examined and compared to the previously characterized spring source environment. LH channel sediments contained greater microbial biomass (~100-fold) and greater microbial diversity reflected by the 16S rRNA clone libraries. Phylotypes related to methanogenesis, methanotrophy, sulfur reduction and oxidation were detected in the bacterial clone libraries while the archaeal community was dominated by phylotypes most closely related to THE ammonia-oxidizing Thaumarchaeota. The cumulative percent recovery of (14)C-acetate mineralization in channel sediment microcosms exceeded ~30% and ~10% at 5 and -5°C, respectively, but sharply decreased at -10°C (≤1%). Most bacterial isolates (Marinobacter, Planococcus, and Nesterenkonia spp.) were psychrotrophic, halotolerant, and capable of growth at -5°C. Overall, the hypersaline, subzero LH spring channel has higher microbial diversity and activity than the source, and supports a variety of niches reflecting the more dynamic and heterogeneous channel environment.
Collapse
|
22
|
Detection and quantification of microbial cells in subsurface sediments. ADVANCES IN APPLIED MICROBIOLOGY 2011; 76:79-103. [PMID: 21924972 DOI: 10.1016/b978-0-12-387048-3.00003-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantification of total cell abundance is one of the most fundamental parameters in the exploration of subsurface life. Despite all recent advances in molecular techniques, this parameter is usually determined by fluorescence microscopy. In order to obtain reliable and reproducible results, it is important not just to focus on the actual cell enumeration but also to consider the entire chain of processing. Starting with the retrieval of the sample, over subsampling and sample processing to the final step of fluorescence microscopy, there are many potential sources of contamination that have to be assessed and, if possible, avoided. Because some degree of sample contamination will always occur, it is necessary to employ some form of contamination control. Different tracers are available, each one with its specific advantages and drawbacks. In many cases, the problems arise not after the sample has arrived in a well-equipped laboratory with highly trained personnel, but much earlier at the drill site or in a field camp. In this review, I discuss the different aspects of cell enumeration in subsurface sediment, evaluating every step in the long process chain.
Collapse
|
23
|
Stotler RL, Frape SK, Freifeld BM, Holden B, Onstott TC, Ruskeeniemi T, Chan E. Hydrogeology, chemical and microbial activity measurement through deep permafrost. GROUND WATER 2011; 49:348-364. [PMID: 20550588 DOI: 10.1111/j.1745-6584.2010.00724.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ(18) O values ∼5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH(4) was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH(4) is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.
Collapse
Affiliation(s)
- Randy L Stotler
- Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Rastogi G, Osman S, Kukkadapu R, Engelhard M, Vaishampayan PA, Andersen GL, Sani RK. Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. MICROBIAL ECOLOGY 2010; 60:539-550. [PMID: 20386898 DOI: 10.1007/s00248-010-9657-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Community structure of subsurface biofilms in the thermal sulfidic caves ofAcquasanta Terme, Italy. Appl Environ Microbiol 2010; 76:5902-10. [PMID: 20639361 DOI: 10.1128/aem.00647-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We performed a microbial community analysis of biofilms inhabiting thermal (35 to 50 degrees C) waters more than 60 m below the ground surface near Acquasanta Terme, Italy. The groundwater hosting the biofilms has 400 to 830 microM sulfide, <10 microM O(2), pH of 6.3 to 6.7, and specific conductivity of 8,500 to 10,500 microS/cm. Based on the results of 16S rRNA gene cloning and fluorescent in situ hybridization (FISH), the biofilms have low species richness, and lithoautotrophic (or possibly mixotrophic) Gamma- and Epsilonproteobacteria are the principle biofilm architects. Deltaproteobacteria sequences retrieved from the biofilms have <90% 16S rRNA similarity to their closest relatives in public databases and may represent novel sulfate-reducing bacteria. The Acquasanta biofilms share few species in common with Frasassi cave biofilms (13 degrees C, 80 km distant) but have a similar community structure, with representatives in the same major clades. The ecological success of Sulfurovumales-group Epsilonproteobacteria in the Acquasanta biofilms is consistent with previous observations of their dominance in sulfidic cave waters with turbulent water flow and high dissolved sulfide/oxygen ratios.
Collapse
|