1
|
Chen W, Sang S, Shao L, Li Y, Li T, Gan L, Liu L, Wang D, Zhou L. Biogeographic Patterns and Community Assembly Processes of Bacterioplankton and Potential Pathogens in Subtropical Estuaries in China. Microbiol Spectr 2023; 11:e0368322. [PMID: 36507672 PMCID: PMC9927264 DOI: 10.1128/spectrum.03683-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial communities in coastal waters are diverse and dynamic and play important roles in ecosystem functions and services. Despite the ecological impact of bacterioplankton or pathogens, little is known about whether bacterioplankton and pathogen communities exhibit similar patterns. Here, using 16S RNA gene amplicon sequencing, the geographic patterns and assembly processes of bacterioplankton and pathogen communities in 30 subtropical estuaries were studied. Results showed that the estuarine bacterioplankton communities mainly consisted of Proteobacteria (49.06%), Actinobacteria (17.62%), and Bacteroidetes (16.33%), among which 31 pathogen genera (186 amplicon sequence variants [ASVs]) were identified. Under the influence of salinity, bacterioplankton and pathogens showed similar biogeographic patterns. Redundancy and correlation analyses indicated that the bacterioplankton communities were strongly correlated with estuarine environmental factors, but potential pathogens were less influenced. Co-occurrence network analysis revealed a close relationship between bacterioplankton and potential pathogens, with two pathogens identified as connectors (i.e., ASV340 [Clostridium perfringens] and ASV1624 [Brevundimonas diminuta]), implying potential impacts of pathogens on structure, function, and stability of estuarine bacterioplankton communities. Null-model analysis revealed that deterministic processes (heterogeneous selection) dominated bacterioplankton community assembly, while stochastic processes (undominated effect) shaped the potential pathogen community. Our findings illustrate the biogeographic patterns and community assembly mechanisms of bacterioplankton and pathogens in estuaries, which should provide guidance and a reference for the control of potential pathogenic bacteria. IMPORTANCE Bacterioplankton play an important role in estuarine ecosystem functions and services; however, potentially pathogenic bacteria may exhibit infectivity and pose a serious threat to environmental and human health. In this study, geographic patterns and assembly processes of bacterioplankton communities in 30 subtropical estuaries were explored, and potential pathogenic bacteria in the estuaries were detected and profiled. Our results demonstrate here that bacterioplankton and pathogens show similar biogeographic patterns under the influence of salinity. Interestingly, heterogeneous selection dominated bacterioplankton assembly, while stochasticity dominated pathogen assembly. This study provides important information for future risk assessment of potential pathogenic bacteria as well as management in estuarine ecosystems.
Collapse
Affiliation(s)
- Wenjian Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Liyi Shao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yusen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Tongzhou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lihong Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Gao J, Feng W, Yang F, Liu J, Fan W, Wang Y, Zhang Q, Yang W. Effects of water quality and bacterial community composition on dissolved organic matter structure in Daihai lake and the mechanisms. ENVIRONMENTAL RESEARCH 2022; 214:114109. [PMID: 35981612 DOI: 10.1016/j.envres.2022.114109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The migration of organic matter in salinized lakes was critical in maintaining ecological balance and material circulation process of inland shallow lakes. To clarify the ecological and microbial mechanism of material transport and transformation, the microbial community structure and the characteristics of dissolved organic matter (DOM) in the sediment of Daihai Lake, a typical saline lake at the Yellow River Basin, were explored with three-dimensional excitation and emission matrix fluorescence (3DEEM), parallel factor analysis (PARAFAC) and 16 S rRNA techniques. The correlation between environmental factors, DOM composition and the bacterial community structure were also studied for identifying the key factors of community formation. DOM in the lake demonstrated both terrigenous and endogenous characteristics. Protein-like materials accounted for 74% of the total fluorescence intensity in the sediment, where 1127 species, 671 genera, 468 families, 157 classes, 317 orders, 59 phyla of microorganisms were detected. Among the top 10 abundant taxa of each level, Firmicutes, Actinobacterota, Acidimicrobiia and Alphaproteobacteria had the greatest influence on the composition and structure of DOM (|R| > 0.7, p < 0.01). Microbial metabolism was a key process of transforming sediment organic matter from terrestrial humic-like to protein-like matter, accounting for 81% of total fluorescence signal in saline lake samples, while salinity, temperature, dissolved oxygen and electrical conductivity also had significant impacts during the process (|R|>0.7, p < 0.05). The research provides fundamental data and enlightenment for the improvement of the saline inland lake environment.
Collapse
Affiliation(s)
- Jiayue Gao
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing, 100191, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Qi Zhang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenhuan Yang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
3
|
Wang J, Guo X, Li Y, Song G, Zhao L. Understanding the Variation of Bacteria in Response to Summertime Oxygen Depletion in Water Column of Bohai Sea. Front Microbiol 2022; 13:890973. [PMID: 35756048 PMCID: PMC9221365 DOI: 10.3389/fmicb.2022.890973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Aiming to reveal the variation in bacteria community under oxygen depletion formed every summer in water column of central Bohai Sea, a time-scenario sampling from June to August in 2018 at a 20-day interval along one inshore-offshore transect was settled. Water samples were collected at the surface, middle, and bottom layer and then analyzed by high-throughput sequencing targeting both 16S rRNA and nosZ genes. Compared to the surface and middle water, oxygen depletion occurred at bottom layer in August. In top two layers, Cyanobacteria dominated the bacterial community, whereas heterotrophic bacteria became dominant in bottom water of Bohai Sea. Based on the time scenario, distinct community separation was observed before (June and July) and after (August) oxygen depletion (p = 0.003). Vertically, strict stratification of nosZ gene was stably formed along 3 sampling layers. As a response to oxygen depletion, the diversity indices of both total bacteria (16S rRNA) and nosZ gene-encoded denitrification bacteria all increased, which indicated the intense potential of nitrogen lose when oxygen depleted. Dissolved oxygen (DO) was the key impacting factor on the community composition of total bacteria in June, whereas nutrients together with DO play the important roles in August for both total and denitrifying bacteria. The biotic impact was revealed further by strong correlations which showed between Cyanobacteria and heterotrophic bacteria in June from co-occurrence network analysis, which became weak in August when DO was depleted. This study discovered the variation in bacteria community in oxygen-depleted water with further effort to understand the potential role of denitrifying bacteria under oxygen depletion in Bohai Sea for the first time, which provided insights into the microbial response to the world-wide expanding oxygen depletion and their contributions in the ocean nitrogen cycling.
Collapse
Affiliation(s)
- Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Xiaoxiao Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yanying Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Guisheng Song
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Liang Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
4
|
Bacterial and Protistan Community Variation across the Changjiang Estuary to the Ocean with Multiple Environmental Gradients. Microorganisms 2022; 10:microorganisms10050991. [PMID: 35630434 PMCID: PMC9144284 DOI: 10.3390/microorganisms10050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Plankton microorganisms play central roles in the marine food web and global biogeochemical cycles, while their distribution and abundance are affected by environmental variables. The determinants of microbial community composition and diversity in estuaries and surrounding waters with multiple environmental gradients at a fine scale remain largely unclear. Here, we investigated bacterial and protistan community assembly in surface waters from 27 stations across the Changjiang Estuary to the ocean, with salinity ranging from 0 to 32.1, using 16S rRNA and 18S rRNA gene amplicon sequencing. Statistical analyses revealed that salinity is the major factor structuring both bacterial and protistan communities. Salinity also acted as a significant environmental determinant influencing alpha-diversity patterns. Alpha diversity indices for bacterial and protistan communities revealed a species minimum in higher-salinity waters (22.1–32.1). Contrary to the protistan community, the highest bacterial diversity was identified in medium-salinity waters (2.8–18.8), contrasting Remane’s Artenminimum concept. The distribution of major planktonic taxa followed the expected pattern, and the salinity boundary for Syndiniales was specifically identified. These findings revealed the significant effects of salinity on the microbial community across an estuary to ocean transect and the distinct response to salinity between bacterial and protistan communities.
Collapse
|
5
|
Montero P, Gutiérrez MH, Daneri G, Jacob B. The Effect of Salmon Food-Derived DOM and Glacial Melting on Activity and Diversity of Free-Living Bacterioplankton in Chilean Patagonian Fjords. Front Microbiol 2022; 12:772900. [PMID: 35087485 PMCID: PMC8787161 DOI: 10.3389/fmicb.2021.772900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Fjord ecosystems cycle and export significant amounts of carbon and appear to be extremely sensitive to climate change and anthropogenic perturbations. To identify patterns of microbial responses to ongoing natural and human-derived changes in the fjords of Chilean Patagonia, we examined the effect of organic enrichment associated with salmon aquaculture and freshening produced by glacial melting on bacterial production (BP), extracellular enzymatic activity (EEA), and community diversity of free-living bacterioplankton. We assayed the effects of salmon food-derived dissolved organic matter (SF-DOM) and meltwaters through microcosm experiments containing waters from Puyuhuapi Fjord and the proglacial fjords of the Southern Patagonia Icefield, respectively. Rates of BP and EEA were 2 times higher in the presence of SF-DOM than in controls, whereas the addition of autochthonous organic matter derived from diatoms (D-DOM) resulted in rates of BP and EEA similar to those measured in the controls. The addition of SF-DOM also reduced species richness and abundance of a significant fraction of the representative taxa of bacterioplankton of Puyuhuapi Fjord. In the proglacial fjords, bacterioplankton diversity was reduced in areas more heavily influenced by meltwaters and was accompanied by moderate positive changes in BP and EEA. Our findings strongly suggest that SF-DOM is highly reactive, promoting enhanced rates of microbial activity while could be influencing the diversity of bacterioplankton communities in Patagonian fjords with a strong salmon farming activity. These findings challenge the traditional view of phytoplankton production as the primary source of labile DOM that fuels heterotrophic activity in coastal ecosystems impacted by anthropogenic organic enrichment. Given the intensive local production of salmon, we analyze the significance of this emerging source of rich "allochthonous" organic substrates for autotrophic/heterotrophic balance, carbon exportation, and hypoxia in Patagonian fjords. The effect of human DOM enrichment can be enhanced in proglacial fjords, where progressive glacial melting exerts additional selective pressure on bacterioplankton diversity.
Collapse
Affiliation(s)
- Paulina Montero
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
- Center for Oceanographic Research COPAS Sur-Austral and COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Marcelo H. Gutiérrez
- Center for Oceanographic Research COPAS Sur-Austral and COPAS COASTAL, Universidad de Concepción, Concepción, Chile
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Giovanni Daneri
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
- Center for Oceanographic Research COPAS Sur-Austral and COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Bárbara Jacob
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| |
Collapse
|
6
|
Ice Melt-Induced Variations of Structural and Functional Traits of the Aquatic Microbial Community along an Arctic River (Pasvik River, Norway). WATER 2021. [DOI: 10.3390/w13162297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of climate change-induced ice melting on the microbial communities in different glacial-fed aquatic systems have been reported, but seasonal dynamics remain poorly investigated. In this study, the structural and functional traits of the aquatic microbial community were assessed along with the hydrological and biogeochemical variation patterns of the Arctic Pasvik River under riverine and brackish conditions at the beginning (May = Ice-melt (−)) and during the ice-melting season (July = Ice-melt (+)). The microbial abundance and morphometric analysis showed a spatial diversification between the riverine and brackish stations. Results highlighted different levels of microbial respiration and activities with different carbon and phosphorous utilization pathways, thus suggesting an active biogeochemical cycling along the river especially at the beginning of the ice-melting period. At Ice-melt (−), Gammaproteobacteria and Alphaproteobacteria were dominant in riverine and brackish stations, respectively. Conversely, at Ice-melt (+), the microbial community composition was more homogeneously distributed along the river (Gammaproteobacteria > Alphaproteobacteria > Bacteroidetes). Our findings provide evidence on how riverine microbial communities adapt and respond to seasonal ice melting in glacial-fed aquatic ecosystems.
Collapse
|
7
|
Grunert BK, Tzortziou M, Neale P, Menendez A, Hernes P. DOM degradation by light and microbes along the Yukon River-coastal ocean continuum. Sci Rep 2021; 11:10236. [PMID: 33986333 PMCID: PMC8119953 DOI: 10.1038/s41598-021-89327-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
The Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.
Collapse
Affiliation(s)
- Brice K Grunert
- Department of Earth and Atmospheric Sciences, The City College of New York, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA.
| | - Maria Tzortziou
- Department of Earth and Atmospheric Sciences, The City College of New York, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Patrick Neale
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Alana Menendez
- Department of Earth and Atmospheric Sciences, The City College of New York, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Peter Hernes
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Wang J, Wang L, Hu W, Pan Z, Zhang P, Wang C, Wang J, Wu S, Li YZ. Assembly processes and source tracking of planktonic and benthic bacterial communities in the Yellow River estuary. Environ Microbiol 2021; 23:2578-2591. [PMID: 33754415 DOI: 10.1111/1462-2920.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/04/2023]
Abstract
Estuaries connect rivers with the ocean and are considered transition regions due to the continuous inputs from rivers. Microbiota from different sources converge and undergo succession in these transition regions, but their assembly mechanisms along environmental gradients remain unclear. Here, we found that salinity had a stronger effect on planktonic than on benthic microbial communities, and the dominant planktonic bacteria changed more distinctly than the dominant benthic bacteria with changes in salinity. The planktonic bacteria in the brackish water came mainly from seawater, which was confirmed in the laboratory, whereas the benthic bacteria were weakly affected by salinity, which appeared to be a mixture of the bacteria from riverine and oceanic sediments. Benthic bacterial community assembly in the sediments was mainly controlled by homogeneous selection and almost unaffected by changes in salinity, the dominant assemblage processes for planktonic bacteria changed dramatically along the salinity gradient, from homogeneous selection in freshwater to drift in seawater. Our results highlight that salinity is the key driver of estuarine microbial succession and that salinity is more important in shaping planktonic than benthic bacterial communities in the Yellow River estuary.
Collapse
Affiliation(s)
- Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lidong Wang
- National Nature Reserve Administration of Yellow River Delta, Dongying, 257091, China
| | - Weifeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
9
|
Rasmussen AN, Damashek J, Eloe-Fadrosh EA, Francis CA. In-depth Spatiotemporal Characterization of Planktonic Archaeal and Bacterial Communities in North and South San Francisco Bay. MICROBIAL ECOLOGY 2021; 81:601-616. [PMID: 33150499 DOI: 10.1007/s00248-020-01621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Despite being the largest estuary on the west coast of North America, no in-depth survey of microbial communities in San Francisco Bay (SFB) waters currently exists. In this study, we analyze bacterioplankton and archaeoplankton communities at several taxonomic levels and spatial extents (i.e., North versus South Bay) to reveal patterns in alpha and beta diversity. We assess communities using high-throughput sequencing of the 16S rRNA gene in 177 water column samples collected along a 150-km transect over a 2-year monthly time-series. In North Bay, the microbial community is strongly structured by spatial salinity changes while in South Bay seasonal variations dominate community dynamics. Along the steep salinity gradient in North Bay, we find that operational taxonomic units (OTUs; 97% identity) have higher site specificity than at coarser taxonomic levels and turnover ("species" replacement) is high, revealing a distinct brackish community (in oligo-, meso-, and polyhaline samples) from fresh and marine end-members. At coarser taxonomic levels (e.g., phylum, class), taxa are broadly distributed across salinity zones (i.e., present/abundant in a large number of samples) and brackish communities appear to be a mix of fresh and marine communities. We also observe variations in brackish communities between samples with similar salinities, likely related to differences in water residence times between North and South Bay. Throughout SFB, suspended particulate matter is positively correlated with richness and influences changes in beta diversity. Within several abundant groups, including the SAR11 clade (comprising up to 30% of reads in a sample), OTUs appear to be specialized to a specific salinity range. Some other organisms also showed pronounced seasonal abundance, including Synechococcus, Ca. Actinomarina, and Nitrosopumilus-like OTUs. Overall, this study represents the first in-depth spatiotemporal survey of SFB microbial communities and provides insight into how planktonic microorganisms have specialized to different niches along the salinity gradient.
Collapse
Affiliation(s)
- Anna N Rasmussen
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA
| | - Julian Damashek
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA
- Department of Biology, Utica College, Utica, NY, 13502, USA
| | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, 473 Via Ortega, Y2E2 Bldg Rm 140, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Abstract
Viruses are ubiquitous and abundant in the oceans, and viral metagenomes (viromes) have been investigated extensively via several large-scale ocean sequencing projects. However, there have not been any systematic viromic studies in estuaries. Here, we investigated the viromes of the Delaware Bay and Chesapeake Bay, two Mid-Atlantic estuaries. Deep sequencing generated a total of 48,190 assembled viral sequences (>5 kb) and 26,487 viral populations (9,204 virus clusters and 17,845 singletons), including 319 circular viral contigs between 7.5 kb and 161.8 kb. Unknown viruses represented the vast majority of the dominant populations, while the composition of known viruses, such as pelagiphage and cyanophage, appeared to be relatively consistent across a wide range of salinity gradients and in different seasons. A difference between estuarine and ocean viromes was reflected by the proportions of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and a few well-studied virus representatives. The difference in viral community between the Delaware Bay and Chesapeake Bay is significantly more pronounced than the difference caused by temperature or salinity, indicating strong local profiles caused by the unique ecology of each estuary. Interestingly, a viral contig similar to phages infecting Acinetobacter baumannii (“Iraqibacter”) was found to be highly abundant in the Delaware Bay but not in the Chesapeake Bay, the source of which is yet to be identified. Highly abundant viruses in both estuaries have close hits to viral sequences derived from the marine single-cell genomes or long-read single-molecule sequencing, suggesting that important viruses are still waiting to be discovered in the estuarine environment. IMPORTANCE This is the first systematic study about spatial and temporal variation of virioplankton communities in estuaries using deep metagenomics sequencing. It is among the highest-quality viromic data sets to date, showing remarkably consistent sequencing depth and quality across samples. Our results indicate that there exists a large pool of abundant and diverse viruses in estuaries that have not yet been cultivated, their genomes only available thanks to single-cell genomics or single-molecule sequencing, demonstrating the importance of these methods for viral discovery. The spatiotemporal pattern of these abundant uncultivated viruses is more variable than that of cultured viruses. Despite strong environmental gradients, season and location had surprisingly little impact on the viral community within an estuary, but we saw a significant distinction between the two estuaries and also between estuarine and open ocean viromes.
Collapse
|
11
|
Lu Q, Song Y, Mao G, Lin B, Wang Y, Gao G. Spatial variation in bacterial biomass, community composition and driving factors across a eutrophic river. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111113. [PMID: 32836153 DOI: 10.1016/j.ecoenv.2020.111113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Eutrophication is a global problem, and bacterial diversity and community composition are usually affected by eutrophication. However, limited information on the ecological significance of bacterial community during algae blooms of rivers has been given, more studies should be focused on the bacterial diversity and distribution characteristics in eutrophic rivers. In this study, we explored the spatial variations of bacterial biomass, community structure, and their relationship with environmental factors in the eutrophic Xiangxi River. The content of Chlorophyll (Chl) was about 16 mg/L in the midstream (S2, S3), which was in the range of light eutrophication. Significant spatial variation of bacterial community structure was found at different sites and depths (p < 0.05), and the driving environmental factor was found to be nitrogen, mainly detected as total nitrogen (TN), Kjeldahl nitrogen (KN), and ammonia nitrogen (NH4+) (p < 0.05). The midstream sites had some significantly different bacteria, including algicidal bacteria and dominant lineages during algal blooms. This result was consistent with the functional prediction, where significant higher abundance of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was associated with algicidal substances in the midstream. At different water depths, some populations adapted to the surface layer, such as the class Flavobacteriia, and others preferred to inhabit in the bottom layer, such as Betaproteobacteria and Acidobacteria. The bacterial biomass was higher in the bottom layer than that in the surface and middle layer, and temperature and pH were found to be the major driving factors. The bacterial diversity increased with the increasing of depths in most sampling sites according to operational taxonomic units (OTUs), Chao1 and ACE indexes, and PO43- was demonstrated to be the most significant factor. In summary, this study offered the evidence for microbial distribution characteristics across different sites and depths in summer, and its relationship with environmental variables in a eutrophic river.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300371, China
| | - Yuhao Song
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300371, China
| | - Guannan Mao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300371, China
| | - Binliang Lin
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, China
| | - Yingying Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300371, China.
| | - Guanghai Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300371, China; State Key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| |
Collapse
|
12
|
Noyer M, Reoyo-Prats B, Aubert D, Bernard M, Verneau O, Palacios C. Particle-attached riverine bacteriome shifts in a pollutant-resistant and pathogenic community during a Mediterranean extreme storm event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139047. [PMID: 32473395 DOI: 10.1016/j.scitotenv.2020.139047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Rivers are representative of the overall contamination found in their catchment area. Contaminant concentrations in watercourses depend on numerous factors including land use and rainfall events. Globally, in Mediterranean regions, rainstorms are at the origin of fluvial multipollution phenomena as a result of Combined Sewer Overflows (CSOs) and floods. Large loads of urban-associated microorganisms, including faecal bacteria, are released from CSOs which place public health - as well as ecosystems - at risk. The impacts of freshwater contamination on river ecosystems have not yet been adequately addressed, as is the case for the release of pollutant mixtures linked to extreme weather events. In this context, microbial communities provide critical ecosystem services as they are the only biological compartment capable of degrading or transforming pollutants. Through the use of 16S rRNA gene metabarcoding of environmental DNA at different seasons and during a flood event in a typical Mediterranean coastal river, we show that the impacts of multipollution phenomena on structural shifts in the particle-attached riverine bacteriome were greater than those of seasonality. Key players were identified via multivariate statistical modelling combined with network module eigengene analysis. These included species highly resistant to pollutants as well as pathogens. Their rapid response to contaminant mixtures makes them ideal candidates as potential early biosignatures of multipollution stress. Multiple resistance gene transfer is likely enhanced with drastic consequences for the environment and human-health, particularly in a scenario of intensification of extreme hydrological events.
Collapse
Affiliation(s)
- Mégane Noyer
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | - Brice Reoyo-Prats
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | - Dominique Aubert
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | - Maria Bernard
- Univ. Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; INRAE, SIGENAE, 78350 Jouy-en-Josas, France
| | - Olivier Verneau
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France; Unit. for Environmental Sciences and Management, North-West University, ZA-2520 Potchefstroom, South Africa
| | - Carmen Palacios
- Univ. Perpignan Via Domitia, CEFREM, UMR5110, F-66860 Perpignan, France; CNRS, CEFREM, UMR5110, F-66860 Perpignan, France.
| |
Collapse
|
13
|
Niche Partitioning between Coastal and Offshore Shelf Waters Results in Differential Expression of Alkane and Polycyclic Aromatic Hydrocarbon Catabolic Pathways. mSystems 2020; 5:5/4/e00668-20. [PMID: 32843540 PMCID: PMC7449609 DOI: 10.1128/msystems.00668-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments. Marine oil spills can impact both coastal and offshore marine environments, but little information is available on how the microbial response to oil and dispersants might differ between these biomes. Here, we describe the compositional and functional response of microbial communities to different concentrations of oil and chemically dispersed oil in coastal and offshore surface waters from the Texas-Louisiana continental shelf. Using a combination of analytical chemistry and 16S rRNA amplicon and metatranscriptomic sequencing, we provide a broad, comparative overview of the ecological response of hydrocarbon-degrading bacteria and their expression of hydrocarbon-degrading genes in marine surface waters over time between two oceanic biomes. We found evidence for the existence of different ecotypes of several commonly described hydrocarbon-degrading bacterial taxa which behaved differentially in coastal and offshore shelf waters despite being exposed to similar concentrations of oil, dispersants, and nutrients. This resulted in the differential expression of catabolic pathways for n-alkanes and polycyclic aromatic hydrocarbons (PAHs)—the two major categories of compounds found in crude oil—with preferential expression of n-alkane degradation genes in coastal waters while offshore microbial communities trended more toward the expression of PAH degradation genes. This was unexpected as it contrasts with the generally held view that n-alkanes, being more labile, are attacked before the more refractory PAHs. Collectively, our results provide new insights into the existence and potential consequences of niche partitioning of hydrocarbon-degrading taxa between neighboring marine environments. IMPORTANCE In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments.
Collapse
|
14
|
Mohapatra M, Behera P, Kim JY, Rastogi G. Seasonal and spatial dynamics of bacterioplankton communities in a brackish water coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:134729. [PMID: 31838414 DOI: 10.1016/j.scitotenv.2019.134729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Coastal ecosystems, one of the most productive ecosystems, are subjected to natural and anthropogenic stresses. Coastal bacterioplankton communities are highly dynamic due to spatiotemporal heterogeneity in the environmental parameters. We investigated the seasonal and spatial variation in bacterioplankton communities, their abundances and environmental drivers during one year period in Chilika, a brackish water coastal lagoon of India. High-throughput sequencing of 16S rRNA genes of bacterioplankton communities showed that they were dominated by heterotrophs namely α-Proteobacteria SAR11 and their sub-clades (SAR11_Ib, Chesapeake-Delaware_Bay, Candidatus_Pelagibacter, and SAR11_Surface_1), actinobacterial lineages (hgcI, CL500-29, and Candidatus_Aquiluna), β-Proteobacteria MWH-UniP1, β-Proteobacteria OM43, and verrucomicrobial clade Spartobacteria 'LD29'. Synechococcus was the dominant member within autotrophic cyanobacterial community. Response ratio derived from comparisons of taxon-specific absolute abundances and indicator analyses showed that SAR11_Surface_1 sub-clade occupied high-salinity environment especially during summer and winter and emerged as a strong indicator for mesohaline-polyhaline salinity regime. In contrast, Spartobacteria 'LD29', Actinobacteria hgcI, and CL500-29 preferred low-salinity freshwater environment and were strong indicators for oligohaline-mesohaline regimes. Spatiotemporal patterns were governed by 'distance-decay' and 'similarity-time' relationships. Bacterioplankton communities were mostly determined by salinity, dissolved oxygen, phosphate, and pH which resulted 'species sorting' leading to biogeographical patterns in the bacterioplankton communities. Modeling analysis revealed the characteristic shift in the indicator bacterioplankton taxa along with estuarine salinity gradient. This study has provided baseline information on the bacterioplankton communities and their environmental drivers within an anthropogenically impacted cyclone prone coastal lagoon which would be useful in assessing the impact of multiple stressors on this vulnerable ecosystem.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha 752030, India; School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Pratiksha Behera
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha 752030, India
| | - Ji Yoon Kim
- Center for Climate Change Adaptation, National Institute of Environmental Studies, Tsukuba 305-8506, Japan
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha 752030, India.
| |
Collapse
|
15
|
Xuan L, Sheng Z, Lu J, Qiu Q, Chen J, Xiong J. Bacterioplankton community responses and the potential ecological thresholds along disturbance gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134015. [PMID: 31470324 DOI: 10.1016/j.scitotenv.2019.134015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 05/28/2023]
Abstract
Increasing intensity and frequency of coastal pollutions are the trajectory to be expected due to anthropogenic pressures. However, it is still unclear how and to what extent bacterioplankton communities respond to the two factors, despite the functional importance of bacterioplankton in biogeochemical cycles. In this study, significant organic pollution index (OPI) and offshore distance gradients, as respective proxies of disturbance intensity and disturbance frequency, were detected in a regional scale across the East China Sea. A multiple regression on matrices (MRM) revealed that the biogeography of bacterioplankton community depended on spatial scale, which was governed by local characters. Bacterioplankton community compositions (BCCs) were primarily governed by the conjointly direct (-0.28) and indirect (-0.48) effects of OPI, while offshore distance contributed a large indirectly effect (0.52). A SEGMENTED analysis depicted non-linear responses of BCCs to increasing disturbance intensity and disturbance frequency, as evidenced by significant tipping points. This was also true for the dominant bacterial phyla. Notably, we screened 30 OPI-discriminatory taxa that could quantitatively diagnose coastal OPI levels, with an overall 79.3% accuracy. Collectively, the buffer capacity of bacterioplankton communities to increasing disturbance intensity and disturbance frequency is limited, of which the significant tipping points afford a warning line for coastal management. In addition, coastal pollution level can be accurately diagnosed by a few OPI-discriminatory taxa.
Collapse
Affiliation(s)
- Lixia Xuan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheliang Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Adyasari D, Hassenrück C, Oehler T, Sabdaningsih A, Moosdorf N. Microbial community structure associated with submarine groundwater discharge in northern Java (Indonesia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:590-601. [PMID: 31279205 DOI: 10.1016/j.scitotenv.2019.06.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Submarine groundwater discharge (SGD) can be an important pathway for chemical or biological pollutants from land to the ocean around the world. However, studies on the microbial communities associated with SGD in Southeast Asia, which has been hypothesized as SGD hotspot, remain scarce. In this study, we examined the microbial community composition with 16S rRNA gene sequencing along the hydrological continuum of an SGD site in a tropical urban area of Indonesia. Of the observed parameters in this study, salinity and temperature were the most determinant variables explaining patterns in microbial community composition. The bacterial taxon Burkholderiaceae was predominantly found in low salinity samples, including those from terrestrial groundwater and brackish pore water, while cyanobacteria of the genus Synechococcus sp. CC9902 were indicative of saline SGD and seawater samples. The composition of microbial taxa in each sample pointed to the influence of shallow terrestrial groundwater in the beach pore water, while seawater recirculation dominated the SGD sampling points situated further offshore. We identified taxa containing fecal indicators and potential pathogens at the SGD compartments; however, while a likely explanation, we could not conclude with certainty that SGD was a conduit for these bacteria. Overall, the results from this study show that microbial community analysis can highlight hydrological processes and water quality at the SGD site; thus, they could be useful for environmental policymakers to formulate water management strategies in coastal areas.
Collapse
Affiliation(s)
- Dini Adyasari
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany.
| | - Christiane Hassenrück
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany
| | - Till Oehler
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany
| | - Aninditia Sabdaningsih
- Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. H. Soedarto, S.H., 50275 Semarang, Indonesia
| | - Nils Moosdorf
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Institute of Geosciences, University of Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
| |
Collapse
|
17
|
Ghosh A, Bhadury P. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. Microbiologyopen 2018; 8:e00741. [PMID: 30303297 PMCID: PMC6528645 DOI: 10.1002/mbo3.741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Estuaries provide an ideal niche to study structure and function of bacterioplankton communities owing to the presence of a multitude of environmental stressors. Bacterioplankton community structures from nine global estuaries were compared to understand their broad‐scale biogeographic patterns. Bacterioplankton community structure from four estuaries of Sundarbans, namely Mooriganga, Thakuran, Matla, and Harinbhanga, was elucidated using Illumina sequencing. Bacterioplankton communities from these estuaries were compared against available bacterioplankton sequence data from Columbia, Delaware, Jiulong, Pearl, and Hangzhou estuaries. All nine estuaries were dominated by Proteobacteria. Other abundant phyla included Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Verrucomicrobia. The abundant bacterial phyla showed a ubiquitous presence across the estuaries. At class level, the overwhelming abundance of Gammaproteobacteria in the estuaries of Sundarbans and Columbia estuary clearly stood out amidst high abundance of Alphaproteobacteria observed in the other estuaries. Abundant bacterial families including Rhodobacteriaceae, Shingomonadaceae, Acidobacteriaceae, Vibrionaceae, and Xanthomondaceae also showed ubiquitous presence in the studied estuaries. However, rare taxa including Chloroflexi, Tenericutes, Nitrospirae, and Deinococcus‐Thermus showed clear site‐specific distribution patterns. Such distribution patterns were also reinstated by nMDS ordination plots. Such clustering patterns could hint toward the potential role of environmental parameters and substrate specificity which could result in distinct bacterioplankton communities at specific sites. The ubiquitous presence of abundant bacterioplankton groups along with their strong correlation with surface water temperature and dissolved nutrient concentrations indicates the role of such environmental parameters in shaping bacterioplankton community structure in estuaries. Overall, studies on biogeographic patters of bacterioplankton communities can provide interesting insights into ecosystem functioning and health of global estuaries.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
18
|
Roberto AA, Van Gray JB, Leff LG. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition. WATER RESEARCH 2018; 134:353-369. [PMID: 29454907 DOI: 10.1016/j.watres.2018.01.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 05/25/2023]
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial communities are understudied. In this study, we examined the effect of urban discharge on the spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha (α) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA profiles revealed significant spatial and temporal effects on beta (β) diversity and community composition and identified a number of significant correlative abiotic parameters. Clustering of upstream and reference sites from downstream sites of Tinkers Creek combined with the dominant families observed in specific locales suggests that environmentally-induced species sorting had a strong impact on the composition of sediment bacterial communities. Distinct groupings of bacterial families that are often associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experiencing higher degrees of discharge associated with urbanization. Additionally, there were marked seasonal changes in community composition, with individual taxa exhibiting different seasonal abundance patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community functional profiles. Together, these results suggest that local environmental drivers and niche filtering from discharge events associated with urbanization shape the bacterial community structure. However, dispersal limitations and interactions among other species likely play a role as well.
Collapse
Affiliation(s)
- Alescia A Roberto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Jonathon B Van Gray
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
19
|
Mansour I, Heppell CM, Ryo M, Rillig MC. Application of the microbial community coalescence concept to riverine networks. Biol Rev Camb Philos Soc 2018; 93:1832-1845. [PMID: 29700966 DOI: 10.1111/brv.12422] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
Flows of water, soil, litter, and anthropogenic materials in and around rivers lead to the mixing of their resident microbial communities and subsequently to a resultant community distinct from its precursors. Consideration of these events through a new conceptual lens, namely, community coalescence, could provide a means of integrating physical, environmental, and ecological mechanisms to predict microbial community assembly patterns better in these habitats. Here, we review field studies of microbial communities in riverine habitats where environmental mixing regularly occurs, interpret some of these studies within the community coalescence framework and posit novel hypotheses and insights that may be gained in riverine microbial ecology through the application of this concept. Particularly in the face of a changing climate and rivers under increasing anthropogenic pressures, knowledge about the factors governing microbial community assembly is essential to forecast and/or respond to changes in ecosystem function. Additionally, there is the potential for microbial ecology studies in rivers to become a driver of theory development: riverine systems are ideal for coalescence studies because regular and predictable environmental mixing occurs. Data appropriate for testing community coalescence theory could be collected with minimal alteration to existing study designs.
Collapse
Affiliation(s)
- India Mansour
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany.,School of Geography, Queen Mary University of London, London E1 4NS, UK
| | | | - Masahiro Ryo
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Matthias C Rillig
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| |
Collapse
|
20
|
Tandon K, Yang SH, Wan MT, Yang CC, Baatar B, Chiu CY, Tsai JW, Liu WC, Tang SL. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan. Microbes Environ 2018; 33:120-126. [PMID: 29681561 PMCID: PMC6031399 DOI: 10.1264/jsme2.me17148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes—located 21 km apart and with disparate trophic characteristics—and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University
| | | | - Min-Tao Wan
- EcoHealth Microbiology Laboratory, WanYu Co., Ltd
| | | | | | | | - Jeng-Wei Tsai
- China Medical University, Department of Biological Science and Technology
| | - Wen-Cheng Liu
- Department of Civil and Disaster Prevention Engineering, National United University
| | | |
Collapse
|
21
|
Leight AK, Crump BC, Hood RR. Assessment of Fecal Indicator Bacteria and Potential Pathogen Co-Occurrence at a Shellfish Growing Area. Front Microbiol 2018; 9:384. [PMID: 29593669 PMCID: PMC5861211 DOI: 10.3389/fmicb.2018.00384] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
Routine monitoring of shellfish growing waters for bacteria indicative of human sewage pollution reveals little about the bacterial communities that co-occur with these indicators. This study investigated the bacterial community, potential pathogens, and fecal indicator bacteria in 40 water samples from a shellfish growing area in the Chesapeake Bay, USA. Bacterial community composition was quantified with deep sequencing of 16S rRNA gene amplicons, and absolute gene abundances were estimated with an internal standard (Thermus thermophilus genomes). Fecal coliforms were quantified by culture, and Vibrio vulnificus and V. parahaemolyticus with quantitative PCR. Fecal coliforms and V. vulnificus were detected in most samples, and a diverse assemblage of potential human pathogens were detected in all samples. These taxa followed two general patterns of abundance. Fecal coliforms and 16S rRNA genes for Enterobacteriaceae, Aeromonas, Arcobacter, Staphylococcus, and Bacteroides increased in abundance after a 1.3-inch rain event in May, and, for some taxa, after smaller rain events later in the season, suggesting that these are allochthonous organisms washed in from land. Clostridiaceae and Mycobacterium 16S rRNA gene abundances increased with day of the year and were not positively related to rainfall, suggesting that these are autochthonous organisms. Other groups followed both patterns, such as Legionella. Fecal coliform abundance did not correlate with most other taxa, but were extremely high following the large rainstorm in May when they co-occurred with a broad range of potential pathogen groups. V. vulnificus were absent during the large rainstorm, and did not correlate with 16S rRNA abundances of Vibrio spp. or most other taxa. These results highlight the complex nature of bacterial communities and the limited utility of using specific bacterial groups as indicators of pathogen presence.
Collapse
Affiliation(s)
- Andrew K Leight
- Cooperative Oxford Laboratory, National Ocean Service/National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration (NOAA), Oxford, MD, United States.,Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Raleigh R Hood
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States
| |
Collapse
|
22
|
Herfort L, Crump BC, Fortunato CS, McCue LA, Campbell V, Simon HM, Baptista AM, Zuber P. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima. Microbiologyopen 2017; 6. [PMID: 28782284 PMCID: PMC5727365 DOI: 10.1002/mbo3.522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 11/30/2022] Open
Abstract
Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production (3H‐leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1–24 PSU), but summer non‐ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free‐living (0.2–3 μm) assemblages of non‐ETM waters were similar to each other, indicating that particle‐attached (>3 μm) non‐ETM bacteria do not develop a distinct community. Brackish water type (ETM or non‐ETM) is thus a major factor affecting particle‐attached bacterial communities. Heterotrophic production was higher in particle‐attached than free‐living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM‐impacted waters). However, free‐living communities showed higher productivity prior to or after an ETM event (i.e., non‐ETM‐impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the existence of three particle types characterized by different bacterial communities in ETM, ETM‐impacted, and non‐ETM‐impacted brackish waters. Taxonomic analysis suggests that ETM key biological function is to remineralize organic matter.
Collapse
Affiliation(s)
- Lydie Herfort
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Byron C Crump
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA.,College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Caroline S Fortunato
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA.,Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Lee Ann McCue
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Victoria Campbell
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA
| | - Holly M Simon
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - António M Baptista
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Peter Zuber
- NSF Science & Technology Center for Coastal Margin Observation & Prediction (CMOP), Portland, OR, USA.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Sipler RE, Kellogg CTE, Connelly TL, Roberts QN, Yager PL, Bronk DA. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic. Front Microbiol 2017. [PMID: 28649233 PMCID: PMC5465303 DOI: 10.3389/fmicb.2017.01018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM) on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively) to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.
Collapse
Affiliation(s)
- Rachel E Sipler
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| | - Colleen T E Kellogg
- Department of Microbiology & Immunology, University of British Columbia, VancouverBC, Canada
| | - Tara L Connelly
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Quinn N Roberts
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Deborah A Bronk
- The Virginia Institute of Marine Science, College of William & Mary, Gloucester PointVA, United States
| |
Collapse
|
24
|
Huggett MJ, Kavazos CRJ, Bernasconi R, Czarnik R, Horwitz P. Bacterioplankton assemblages in coastal ponds reflect the influence of hydrology and geomorphological setting. FEMS Microbiol Ecol 2017; 93:3828103. [PMID: 28505366 DOI: 10.1093/femsec/fix067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/14/2017] [Indexed: 02/01/2023] Open
Abstract
The factors that shape microbial community assembly in aquatic ecosystems have been widely studied; yet it is still unclear how distinct communities within a connected landscape influence one another. Coastal lakes are recipients of, and thus are connected to, both marine and terrestrial environments. Thus, they may host microbial assemblages that reflect the relative degree of influence by, and connectivity to, either system. In order to address this idea, we interrogated microbial community diversity at 49 sites in seven ponds in two seasons in the Lake MacLeod basin, a system fed by seawater flowing inland through underground karst. Environmental and spatial variation within ponds explain <9% of the community structure, while identity of the pond that samples were taken from explains 50% of community variation. That is, ponds each host distinct assemblages despite similarities in size, environment and position in the landscape, indicating a dominant role for local species sorting. The ponds contain a substantial amount of previously unknown microbial taxa, reflecting the unusual nature of this inland system. Rare marine taxa, possibly dispersed from seawater assemblages via the underground karst connection, are abundant within the inland system, suggesting an important role for regional dispersal within the metacommunities.
Collapse
Affiliation(s)
- Megan J Huggett
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Christopher R J Kavazos
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Rachele Bernasconi
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Robert Czarnik
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia.,Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Pierre Horwitz
- Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| |
Collapse
|
25
|
Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, Medeiros PM, Payet JP, Richey JE, Satinsky BM, Sawakuchi HO, Ward ND, Crump BC. Bacterial Biogeography across the Amazon River-Ocean Continuum. Front Microbiol 2017; 8:882. [PMID: 28588561 PMCID: PMC5440517 DOI: 10.3389/fmicb.2017.00882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
Collapse
Affiliation(s)
- Mary Doherty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Victoria J Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Caroline S Fortunato
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods HoleMA, United States
| | - Alex V Krusche
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Patricia M Medeiros
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| | - Jeffrey E Richey
- School of Oceanography, University of Washington, SeattleWA, United States
| | | | - Henrique O Sawakuchi
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, SequimWA, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| |
Collapse
|
26
|
Differential Impacts of Land-Based Sources of Pollution on the Microbiota of Southeast Florida Coral Reefs. Appl Environ Microbiol 2017; 83:AEM.03378-16. [PMID: 28341673 PMCID: PMC5411493 DOI: 10.1128/aem.03378-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Coral reefs are dynamic ecosystems known for decades to be endangered due, in large part, to anthropogenic impacts from land-based sources of pollution (LBSP). In this study, we utilized an Illumina-based next-generation sequencing approach to characterize prokaryotic and fungal communities from samples collected off the southeast coast of Florida. Water samples from coastal inlet discharges, oceanic outfalls of municipal wastewater treatment plants, treated wastewater effluent before discharge, open ocean samples, and coral tissue samples (mucus and polyps) were characterized to determine the relationships between microbial communities in these matrices and those in reef water and coral tissues. Significant differences in microbial communities were noted among all sample types but varied between sampling areas. Contamination from outfalls was found to be the greatest potential source of LBSP influencing native microbial community structure among all reef samples, although pollution from inlets was also noted. Notably, reef water and coral tissue communities were found to be more greatly impacted by LBSP at southern reefs, which also experienced the most degradation during the course of the study. The results of this study provide new insights into how microbial communities from LBSP can impact coral reefs in southeast Florida and suggest that wastewater outfalls may have a greater influence on the microbial diversity and structure of these reef communities than do contaminants carried in runoff, although the influences of runoff and coastal inlet discharge on coral reefs are still substantial. IMPORTANCE Coral reefs are known to be endangered due to sewage discharge and to runoff of nutrients, pesticides, and other substances associated with anthropogenic activity. Here, we used next-generation sequencing to characterize the microbial communities of potential contaminant sources in order to determine how environmental discharges of microbiota and their genetic material may influence the microbiomes of coral reef communities and coastal receiving waters. Runoff delivered through inlet discharges impacted coral microbial communities, but impacts from oceanic outfalls carrying treated wastewater were greater. Geographic differences in the degree of impact suggest that coral microbiomes may be influenced by the microbiological quality of treated wastewater.
Collapse
|
27
|
Fan L, Song C, Meng S, Qiu L, Zheng Y, Wu W, Qu J, Li D, Zhang C, Hu G, Chen J. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River. Sci Rep 2016; 6:39147. [PMID: 27966673 PMCID: PMC5155431 DOI: 10.1038/srep39147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022] Open
Abstract
Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.
Collapse
Affiliation(s)
- Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Jianhong Qu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Cong Zhang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Yangtze River, Wuxi 214081, China
| |
Collapse
|
28
|
Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis. GENOMICS DATA 2016; 11:39-42. [PMID: 27942457 PMCID: PMC5133466 DOI: 10.1016/j.gdata.2016.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022]
Abstract
Next generation sequencing using platforms such as Illumina MiSeq provides a deeper insight into the structure and function of bacterioplankton communities in coastal ecosystems compared to traditional molecular techniques such as clone library approach which incorporates Sanger sequencing. In this study, structure of bacterioplankton communities was investigated from two stations of Sundarbans mangrove ecoregion using both Sanger and Illumina MiSeq sequencing approaches. The Illumina MiSeq data is available under the BioProject ID PRJNA35180 and Sanger sequencing data under accession numbers KX014101-KX014140 (Stn1) and KX014372-KX014410 (Stn3). Proteobacteria-, Firmicutes- and Bacteroidetes-like sequences retrieved from both approaches appeared to be abundant in the studied ecosystem. The Illumina MiSeq data (2.1 GB) provided a deeper insight into the structure of bacterioplankton communities and revealed the presence of bacterial phyla such as Actinobacteria, Cyanobacteria, Tenericutes, Verrucomicrobia which were not recovered based on Sanger sequencing. A comparative analysis of bacterioplankton communities from both stations highlighted the presence of genera that appear in both stations and genera that occur exclusively in either station. However, both the Sanger sequencing and Illumina MiSeq data were coherent at broader taxonomic levels. Pseudomonas, Devosia, Hyphomonas and Erythrobacter-like sequences were the abundant bacterial genera found in the studied ecosystem. Both the sequencing methods showed broad coherence although as expected the Illumina MiSeq data helped identify rarer bacterioplankton groups and also showed the presence of unassigned OTUs indicating possible presence of novel bacterioplankton from the studied mangrove ecosystem.
Collapse
|
29
|
Wang L, Liu X, Yu S, Shi X, Wang X, Zhang XH. Bacterial community structure in intertidal sediments of Fildes Peninsula, maritime Antarctica. Polar Biol 2016. [DOI: 10.1007/s00300-016-1958-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. Sediments and Soils Act as Reservoirs for Taxonomic and Functional Bacterial Diversity in the Upper Mississippi River. MICROBIAL ECOLOGY 2016; 71:814-24. [PMID: 26879939 DOI: 10.1007/s00248-016-0729-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/11/2016] [Indexed: 05/25/2023]
Abstract
In this study, we utilized Illumina next-generation sequencing of 16S rDNA to characterize the bacterial communities in water, sediments, and soils at four sites along the Mississippi River and Minnesota River, in Minnesota, in order to evaluate community exchanges between these habitats. Communities in water and sediment were hypothesized to show greater taxonomic similarity than those in soil, while microbial communities in sediment and soil would show greater functional similarity. Habitat-specific communities showed significant differences in phylogenetic structure and β-diversity (P < 0.001), but site-specific differences in community structures within a single habitat type did not differ greatly (P ≥ 0.083). Community exchange among habitats generally influenced < 5% of the total community composition in a single sample, with the exception of the sediment community at the Minnesota River site, which contributed to a mean of 14% of the microbial community in the water column. Communities from all habitat types were significantly correlated with each other (r = 0.44-0.64, P ≤ 0.004). Furthermore, approximately 33% of the taxonomic units were found in all samples and comprised at least 40% of the bacterial community. Functional annotation of shotgun sequencing data revealed similar functional profiles for sediment and soil communities that were distinct from those in the water. Results of this study suggest that sediments, when disturbed, contribute significantly to bacterial communities in the water and that a core bacterial community may be supported in the soils and sediments. Furthermore, a high degree of functional redundancy results in similar functional profiles in sediment and soil communities.
Collapse
Affiliation(s)
- Christopher Staley
- BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - Trevor J Gould
- BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, St. Paul, MN, 55108, USA
- Biology Program, University of Minnesota, St. Paul, MN, USA
| | - Ping Wang
- BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - Jane Phillips
- Biology Program, University of Minnesota, St. Paul, MN, USA
| | - James B Cotner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, St. Paul, MN, 55108, USA.
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
31
|
Wada M, Urakawa T, Tamaki A. Dynamics of bacterial community structure on intertidal sandflat inhabited by the ghost shrimp Nihonotrypaea harmandi (Decapoda: Axiidea: Callianassidae) in Tomioka Bay, Amakusa, Japan. Gene 2016; 576:657-66. [PMID: 26497271 DOI: 10.1016/j.gene.2015.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Callianassid (ghost) shrimp has been claimed as an ecosystem engineer, as it is one of the most powerful bioturbating macrobenthos in intertidal sandflats. However, our knowledge about the relationship between areal distribution of bottom-dwelling ghost shrimps and dynamics of sediment microbial community structure remains obscured. We used automated ribosomal intergenic spacer analysis (ARISA) to reveal the bacterial community dynamics in the sediment of intertidal sandflat of Tomioka Bay, Kyushu, Japan, which is predominantly inhabited by a burrow-dwelling callianassid shrimp Nihonotrypaea harmandi. We found that the bacterial community structures of high and middle shrimp population areas were significantly differentiated from those of low population area (ANOSIM, R=0.10-0.18, p<0.01), while the former two areas were statistically indistinguishable (ANOSIM, R=-0.015, p>0.1). These results illustrated the potential importance of shrimp population density as a key factor in shaping the bacterial community structure and interpreting their dynamics in the sandflat. Furthermore, greater similarity between burrow and non-burrow communities was found in samples taken in autumn through winter than in those in summer (one-way ANOVA, p<0.05), whereas the phylotype richness was not simply differentiated by seasons. These results suggest not only that environmental variables including water temperature and salinity of the water column overlying the sandflat could exert notable impacts on the sediment bacterial community dynamics, but that the bio-irrigation and mixing by the ghost shrimp in permeable sandflat would strongly homogenize sediment particles, enhance solute transport surrounding the burrow and ambient subsurface substrate, and therefore reduce spatial differentiation of the bacterial community structure between the two sites. A comparison between present and previous studies of axiidean (former taxonomic group name, thalassinidean) ghost shrimps provides us with a comprehensive understanding of the shrimps' impacts on bacterial community dynamics, highlighting the importance of sediment permeability, a characteristic determined by the type of sediment, as a key controlling factor to shape spatial heterogeneity of bacterial community structure around burrow.
Collapse
Affiliation(s)
- Minoru Wada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
| | - Tatsuyuki Urakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Akio Tamaki
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
32
|
Comprehensive Genomic Analyses of the OM43 Clade, Including a Novel Species from the Red Sea, Indicate Ecotype Differentiation among Marine Methylotrophs. Appl Environ Microbiol 2015; 82:1215-1226. [PMID: 26655752 DOI: 10.1128/aem.02852-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022] Open
Abstract
The OM43 clade within the family Methylophilaceae of Betaproteobacteria represents a group of methylotrophs that play important roles in the metabolism of C1 compounds in marine environments and other aquatic environments around the globe. Using dilution-to-extinction cultivation techniques, we successfully isolated a novel species of this clade (here designated MBRS-H7) from the ultraoligotrophic open ocean waters of the central Red Sea. Phylogenomic analyses indicate that MBRS-H7 is a novel species that forms a distinct cluster together with isolate KB13 from Hawaii (Hawaii-Red Sea [H-RS] cluster) that is separate from the cluster represented by strain HTCC2181 (from the Oregon coast). Phylogenetic analyses using the robust 16S-23S internal transcribed spacer revealed a potential ecotype separation of the marine OM43 clade members, which was further confirmed by metagenomic fragment recruitment analyses that showed trends of higher abundance in low-chlorophyll and/or high-temperature provinces for the H-RS cluster but a preference for colder, highly productive waters for the HTCC2181 cluster. This potential environmentally driven niche differentiation is also reflected in the metabolic gene inventories, which in the case of the H-RS cluster include those conferring resistance to high levels of UV irradiation, temperature, and salinity. Interestingly, we also found different energy conservation modules between these OM43 subclades, namely, the existence of the NADH:quinone oxidoreductase complex I (NUO) system in the H-RS cluster and the nonhomologous NADH:quinone oxidoreductase (NQR) system in the HTCC2181 cluster, which might have implications for their overall energetic yields.
Collapse
|
33
|
Fortunato CS, Crump BC. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient. PLoS One 2015; 10:e0140578. [PMID: 26536246 PMCID: PMC4633275 DOI: 10.1371/journal.pone.0140578] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/26/2015] [Indexed: 11/17/2022] Open
Abstract
Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.
Collapse
Affiliation(s)
- Caroline S Fortunato
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Byron C Crump
- College of Earth, Oceans, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
34
|
Liu J, Fu B, Yang H, Zhao M, He B, Zhang XH. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Front Microbiol 2015; 6:64. [PMID: 25713564 PMCID: PMC4322608 DOI: 10.3389/fmicb.2015.00064] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/18/2015] [Indexed: 02/03/2023] Open
Abstract
The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in determining distribution patterns of both individual taxa and bacterial communities inhabited local estuarine regions remain elusive. Here, bacterioplankton community structures of surface and bottom waters from eight sites along the Pearl Estuary were characterized with 16S rRNA gene pyrosequencing. The results showed significant differences of bacterioplankton community between freshwater and saltwater sites, and further between surface and bottom waters of saltwater sites. Synechococcus dominated the surface water of saltwater sites while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in freshwater sites, with no significant difference between water layers. Occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all samples in the Pearl Estuary. Methylophilales (mainly PE2 clade) was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade) was negatively correlated. Moreover, high nutrient inputs to the freshwater area of the Pearl Estuary have shifted the bacterial communities toward copiotrophic groups, such as Sphingomonadales. The present study demonstrated that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions and provided insights into the potential ecological roles of specific taxa in estuarine environments.
Collapse
Affiliation(s)
- Jiwen Liu
- College of Marine Life Sciences, Ocean University of China Qingdao, China
| | - Bingbing Fu
- College of Marine Life Sciences, Ocean University of China Qingdao, China
| | - Hongmei Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China
| | - Meixun Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China
| | - Biyan He
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China ; School of Bioengineering, Jimei University Xiamen, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China Qingdao, China
| |
Collapse
|
35
|
Llirós M, Inceoğlu Ö, García-Armisen T, Anzil A, Leporcq B, Pigneur LM, Viroux L, Darchambeau F, Descy JP, Servais P. Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS One 2014; 9:e116145. [PMID: 25541975 PMCID: PMC4277477 DOI: 10.1371/journal.pone.0116145] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022] Open
Abstract
In order to investigate the factors controlling the bacterial community composition (BCC) in reservoirs, we sampled three freshwater reservoirs with contrasted physical and chemical characteristics and trophic status. The BCC was analysed by 16S rRNA gene amplicon 454 pyrosequencing. In parallel, a complete dataset of environmental parameters and phytoplankton community composition was also collected. BCC in the analysed reservoirs resembled that of epilimnetic waters of natural freshwater lakes with presence of Actinobacteria, Alpha- and Betaproteobacteria, Cytophaga–Flavobacteria–Bacteroidetes (CFB) and Verrucomicrobia groups. Our results evidenced that the retrieved BCC in the analysed reservoirs was strongly influenced by pH, alkalinity and organic carbon content, whereas comparatively little change was observed among layers in stratified conditions.
Collapse
Affiliation(s)
- Marc Llirós
- Laboratory of Freshwater Ecology, University of Namur, Namur, Belgium
| | - Özgül Inceoğlu
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Adriana Anzil
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Leporcq
- Laboratory of Freshwater Ecology, University of Namur, Namur, Belgium
| | | | - Laurent Viroux
- Laboratory of Freshwater Ecology, University of Namur, Namur, Belgium
| | | | - Jean-Pierre Descy
- Laboratory of Freshwater Ecology, University of Namur, Namur, Belgium
| | - Pierre Servais
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
36
|
Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River. Front Microbiol 2014; 5:524. [PMID: 25339945 PMCID: PMC4189419 DOI: 10.3389/fmicb.2014.00524] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/21/2014] [Indexed: 11/13/2022] Open
Abstract
Local and regional associations between bacterial communities and nutrient and chemical concentrations were assessed in the Upper Mississippi River in Minnesota to determine if community structure was associated with discrete types of chemical inputs associated with different land cover. Bacterial communities were characterized by Illumina sequencing of the V6 region of 16S rDNA and compared to >40 chemical and nutrient concentrations. Local bacterial community structure was shaped primarily by associations among bacterial orders. However, order abundances were correlated regionally with nutrient and chemical concentrations, and were also related to major land coverage types. Total organic carbon and total dissolved solids were among the primary abiotic factors associated with local community composition and co-varied with land cover. Escherichia coli concentration was poorly related to community composition or nutrient concentrations. Abundances of 14 bacterial orders were related to land coverage type, and seven showed significant differences in abundance (P ≤ 0.046) between forested or anthropogenically-impacted sites. This study identifies specific bacterial orders that were associated with chemicals and nutrients derived from specific land cover types and may be useful in assessing water quality. Results of this study reveal the need to investigate community dynamics at both the local and regional scales and to identify shifts in taxonomic community structure that may be useful in determining sources of pollution in the Upper Mississippi River.
Collapse
Affiliation(s)
| | - Trevor J Gould
- BioTechnology Institute, University of Minnesota St. Paul, MN, USA ; Department of Biology Teaching and Learning, University of Minnesota St. Paul, MN, USA
| | - Ping Wang
- BioTechnology Institute, University of Minnesota St. Paul, MN, USA
| | - Jane Phillips
- Department of Biology Teaching and Learning, University of Minnesota St. Paul, MN, USA
| | - James B Cotner
- Department of Ecology, Evolution, and Behavior, University of Minnesota St. Paul, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota St. Paul, MN, USA ; Department of Soil, Water and Climate, University of Minnesota St. Paul, MN, USA
| |
Collapse
|
37
|
Pommier T, Merroune A, Bettarel Y, Got P, Janeau JL, Jouquet P, Thu TD, Toan TD, Rochelle-Newall E. Off-site impacts of agricultural composting: role of terrestrially derived organic matter in structuring aquatic microbial communities and their metabolic potential. FEMS Microbiol Ecol 2014; 90:622-32. [PMID: 25195703 DOI: 10.1111/1574-6941.12421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/02/2014] [Accepted: 08/29/2014] [Indexed: 11/27/2022] Open
Abstract
While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems.
Collapse
Affiliation(s)
- Thomas Pommier
- UMR CNRS 5557, USC 1364 INRA, Ecologie Microbienne, Université Lyon1, Université de Lyon, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front Microbiol 2014; 5:414. [PMID: 25152748 PMCID: PMC4126211 DOI: 10.3389/fmicb.2014.00414] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Taxonomic characterization of environmental microbial communities via high-throughput DNA sequencing has revealed that patterns in microbial biogeography affect community structure. However, shifts in functional diversity related to variation in taxonomic composition are poorly understood. To overcome limitations due to the prohibitive cost of high-depth metagenomic sequencing, tools to infer functional diversity based on phylogenetic distributions of functional traits have been developed. In this study we characterized functional microbial diversity at 11 sites along the Mississippi River in Minnesota using both metagenomic sequencing and functional-inference-based (PICRUSt) approaches. This allowed us to determine how distance and variation in land cover throughout the river influenced the distribution of functional traits, as well as to validate PICRUSt inferences. The distribution and abundance of functional traits, by metagenomic analysis, were similar among sites, with a median standard deviation of 0.0002% among tier 3 functions in KEGG. Overall inferred functional variation was significantly different (P ≤ 0.035) between two water basins surrounded by agricultural vs. developed land cover, and abundances of bacterial orders that correlated with functional traits by metagenomic analysis were greater where abundances of the trait were inferred to be higher. PICRUSt inferences were significantly correlated (r = 0.147, P = 1.80 × 10(-30)) with metagenomic annotations. Discrepancies between metagenomic and PICRUSt taxonomic-functional relationships, however, suggested potential functional redundancy among abundant and rare taxa that impeded the ability to accurately assess unique functional traits among rare taxa at this sequencing depth. Results of this study suggest that a suite of "core functional traits" is conserved throughout the river and distributions of functional traits, rather than specific taxa, may shift in response to environmental heterogeneity.
Collapse
Affiliation(s)
| | - Trevor J Gould
- BioTechnology Institute, University of Minnesota St. Paul, MN, USA ; Biology Program, University of Minnesota St. Paul, MN, USA
| | - Ping Wang
- BioTechnology Institute, University of Minnesota St. Paul, MN, USA
| | - Jane Phillips
- Biology Program, University of Minnesota St. Paul, MN, USA
| | - James B Cotner
- Department of Ecology, Evolution and Behavior, University of Minnesota St. Paul, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota St. Paul, MN, USA ; Department of Soil, Water and Climate, University of Minnesota St. Paul, MN, USA
| |
Collapse
|
39
|
Kellogg CT, Deming JW. Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean. FEMS Microbiol Ecol 2014; 89:360-75. [DOI: 10.1111/1574-6941.12330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Jody W. Deming
- School of Oceanography; University of Washington; Seattle WA USA
| |
Collapse
|
40
|
Hu A, Yang X, Chen N, Hou L, Ma Y, Yu CP. Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 472:746-756. [PMID: 24333997 DOI: 10.1016/j.scitotenv.2013.11.097] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/27/2013] [Accepted: 11/19/2013] [Indexed: 06/03/2023]
Abstract
This study used 16S rRNA gene-based pyrosequencing (16S-pyrotag) to investigate both planktonic and benthic bacterial communities in two main tributaries (North River and West River) of the Jiulong River Watershed (JRW), a mesoscale subtropical watershed that has experienced intensive human perturbation in recent decades. The results of 16S-pyrotag showed that benthic bacterial communities were clearly more diverse and uniform than surface bacterioplankton communities. The results of taxonomic assignments indicated that Betaproteobacteria, Actinobacteria and Firmicutes were significantly more abundant in planktonic than in benthic communities, whereas the relative abundances of Acidobacteria, Delta-, Gammaproteobacteria, Chloroflexi and Nitrospira were higher in sediment than in water samples. In particular, several sewer- and fecal-pollution bacterial indicators were observed in water samples, implying that the water bodies of the JRW were contaminated by fecal pollution. Using the typical freshwater bacteria (TFB) taxonomic framework, 57.6 ± 10%, 27.6 ± 10.9% and 10.4 ± 6.9% of sequences recovered from planktonic communities could be assigned to lineages, clades and tribes of TFB, respectively. The relatively lower abundance of TFB implied that some unknown or unique autochthonous bacterioplankton populations occurred in the JRW. The principal coordinate analysis (PCoA) and one way analysis of similarity (ANOSIM) analysis demonstrated that planktonic bacterial community structures were significantly different between North River and West River, whereas benthic communities from these two tributaries were grouped together. Multivariate statistical analysis revealed that nutrient concentrations and stoichiometry were the key drivers of both α- and β-diversity patterns of bacterioplankton communities. Overall, our results indicate that the diversity, composition and structure of planktonic bacterial communities are sensitive to water chemistry (e.g., nutrient concentrations and stoichiometry) in the JRW, and therefore can serve as a good sentinel of environmental changes in this watershed.
Collapse
Affiliation(s)
- Anyi Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyong Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Nengwang Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Liyuan Hou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ying Ma
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Chang-Ping Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
41
|
Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME JOURNAL 2013; 7:1899-911. [PMID: 23719153 DOI: 10.1038/ismej.2013.79] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/13/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=-0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.
Collapse
|
42
|
Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc Natl Acad Sci U S A 2013; 110:3429-34. [PMID: 23401500 DOI: 10.1073/pnas.1214104110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of this C is unknown but will depend on its reactivity to sunlight and microbial attack, and the light available at the surface. In this study we manipulated water released from areas of thermokarst activity to show that newly exposed DOC is >40% more susceptible to microbial conversion to CO(2) when exposed to UV light than when kept dark. When integrated over the water column of receiving rivers, this susceptibility translates to the light-stimulated bacterial activity being on average from 11% to 40% of the total areal activity in turbid versus DOC-colored rivers, respectively. The range of DOC lability to microbes seems to depend on prior light exposure, implying that sunlight may act as an amplification factor in the conversion of frozen C stores to C gases in the atmosphere.
Collapse
|
43
|
Ruiz-González C, Proia L, Ferrera I, Gasol JM, Sabater S. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol Ecol 2013; 84:316-31. [PMID: 23278359 DOI: 10.1111/1574-6941.12063] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 11/30/2022] Open
Abstract
Large rivers are commonly regulated by damming, yet the effects of such disruption on prokaryotic communities have seldom been studied. We describe the effects of the three large reservoirs of the Ebro River (NE Iberian Peninsula) on bacterioplankton assemblages by comparing several sites located before and after the impoundments on three occasions. We monitored the abundances of several bacterial phylotypes identified by rRNA gene probing, and those of two functional groups (picocyanobacteria and aerobic anoxygenic phototrophic bacteria-AAPs). Much greater numbers of particles colonized by bacteria were found in upstream waters than downstream sites. Picocyanobacteria were found in negligible numbers at most sites, whereas AAPs constituted up to 14% of total prokaryotes, but there was no clear effect of reservoirs on the spatial dynamics of these two groups. Instead, damming caused a pronounced decline in Betaproteobacteria, Gammaproteobacteria and Bacteroidetes from upstream to downstream sites, whereas Alphaproteobacteria and Actinobacteria significantly increased after the reservoirs. Redundancy analysis revealed that conductivity, temperature and dissolved inorganic nitrogen were the environmental predictors that best explained the observed variability in bacterial community composition. Our data show that impoundments exerted significant impacts on bacterial riverine assemblages and call attention to the unforeseen ecological consequences of river regulation.
Collapse
|
44
|
Li K, Bihan M, Yooseph S, Methé BA. Analyses of the microbial diversity across the human microbiome. PLoS One 2012; 7:e32118. [PMID: 22719823 PMCID: PMC3374608 DOI: 10.1371/journal.pone.0032118] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/19/2012] [Indexed: 02/02/2023] Open
Abstract
Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology. The National Institutes of Health Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA gene sequences (16 S) from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate the maximum number of unique taxa, S(max), and taxa discovery rate for habitats across individuals. Next, our results demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel rank-based diversity measure, the Tail statistic, ("τ"), based on the standard deviation of the rank abundance curve if made symmetric by reflection around the most abundant taxon. Due to τ's greater sensitivity to low abundant taxa, its application to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The greatest range of τ values within and across individuals was found in stool, which also exhibited the most undiscovered taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse. Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis methods tuned specifically for next-generation sequence data, further revealing that low abundant taxa serve as an important reservoir of genetic diversity in the human microbiome.
Collapse
Affiliation(s)
- Kelvin Li
- J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Monika Bihan
- J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Shibu Yooseph
- J Craig Venter Institute, Rockville, Maryland, United States of America
| | - Barbara A. Methé
- J Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
45
|
Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME JOURNAL 2011; 6:554-63. [PMID: 22011718 DOI: 10.1038/ismej.2011.135] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=-0.83) and depth (ρ=-0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April-July) and late year (August-Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.
Collapse
|