1
|
Li J, Du J, Ding G, Zhang W, Zhou Y, Xu Y, Zhou D, Sun Y, Liu X, Shen B. Isolation, characterization and functional analysis of a bacteriophage targeting Culex pipiens pallens resistance-associated Aeromonas hydrophila. Parasit Vectors 2024; 17:222. [PMID: 38745242 PMCID: PMC11094981 DOI: 10.1186/s13071-024-06281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangshuo Ding
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenxing Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinghui Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yidan Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqiu Liu
- Department of Pathogen Biology, China Medical University, Shenyang, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Garrigós M, Garrido M, Morales-Yuste M, Martínez-de la Puente J, Veiga J. Survival effects of antibiotic exposure during the larval and adult stages in the West Nile virus vector Culex pipiens. INSECT SCIENCE 2024; 31:542-550. [PMID: 37559499 DOI: 10.1111/1744-7917.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
The ability of mosquitoes to transmit a pathogen is affected, among other factors, by their survival rate, which is partly modulated by their microbiota. Mosquito microbiota is acquired during the larval phase and modified during their development and adult feeding behavior, being highly dependent on environmental factors. Pharmaceutical residues including antibiotics are widespread pollutants potentially being present in mosquito breeding waters likely affecting their microbiota. Here, we used Culex pipiens mosquitoes to assess the impact of antibiotic exposure during the larval and adult stages on the survival rate of adult mosquitoes. Wild-collected larvae were randomly assigned to two treatments: larvae maintained in water supplemented with antibiotics and control larvae. Emerged adults were subsequently assigned to each of two treatments, fed with sugar solution with antibiotics and fed only with sugar solution (controls). Larval exposure to antibiotics significantly increased the survival rate of adult females that received a control diet. In addition, the effect of adult exposure to antibiotics on the survival rate of both male and female mosquitoes depended on the number of days that larvae fed ad libitum in the laboratory before emergence. In particular, shorter larval ad libitum feeding periods reduced the survival rate of antibiotic-treated adult mosquitoes compared with those that emerged after a longer larval feeding period. These differences were not found in control adult mosquitoes. Our results extend the current understanding of the impact of antibiotic exposure of mosquitoes on a key component of vectorial capacity, that is the vector survival rate.
Collapse
Affiliation(s)
- Marta Garrigós
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Mario Garrido
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Manuel Morales-Yuste
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jesús Veiga
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Hegde S, Khanipov K, Hornett EA, Nilyanimit P, Pimenova M, Saldaña MA, de Bekker C, Golovko G, Hughes GL. Interkingdom interactions shape the fungal microbiome of mosquitoes. Anim Microbiome 2024; 6:11. [PMID: 38454530 PMCID: PMC10921588 DOI: 10.1186/s42523-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mosquito microbiome is an important modulator of vector competence and vectoral capacity. Unlike the extensively studied bacterial microbiome, fungal communities in the mosquito microbiome (the mycobiome) remain largely unexplored. To work towards getting an improved understanding of the fungi associated with mosquitoes, we sequenced the mycobiome of three field-collected and laboratory-reared mosquito species (Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus). RESULTS Our analysis showed both environment and host species were contributing to the diversity of the fungal microbiome of mosquitoes. When comparing species, Ae. albopictus possessed a higher number of diverse fungal taxa than Cx. quinquefasciatus, while strikingly less than 1% of reads from Ae. aegypti samples were fungal. Fungal reads from Ae. aegypti were < 1% even after inhibiting host amplification using a PNA blocker, indicating that this species lacked a significant fungal microbiome that was amplified using this sequencing approach. Using a mono-association mosquito infection model, we confirmed that mosquito-derived fungal isolates colonize Aedes mosquitoes and support growth and development at comparable rates to their bacterial counterparts. Strikingly, native bacterial taxa isolated from mosquitoes impeded the colonization of symbiotic fungi in Ae. aegypti suggesting interkingdom interactions shape fungal microbiome communities. CONCLUSION Collectively, this study adds to our understanding of the fungal microbiome of different mosquito species, that these fungal microbes support growth and development, and highlights that microbial interactions underpin fungal colonization of these medically relevent species.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Life Sciences, Keele University, Newcastle, UK.
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine , Chulalongkorn University, Bangkok, Thailand
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Charissa de Bekker
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
4
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Cappelli A, Damiani C, Capone A, Bozic J, Mensah P, Clementi E, Spaccapelo R, Favia G, Ricci I. Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes. Front Microbiol 2023; 14:1157299. [PMID: 37396392 PMCID: PMC10311912 DOI: 10.3389/fmicb.2023.1157299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Jovana Bozic
- Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Department of Entomology, Penn State University, University Park, PA, United States
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Emanuela Clementi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, CIRM Italian Malaria Network, Functional Genomic Center (C.U.R.Ge.F), Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| |
Collapse
|
6
|
Spruijtenburg B, Rudramurthy SM, Meijer EFJ, van Haren MHI, Kaur H, Chakrabarti A, Meis JF, de Groot T. Application of Novel Short Tandem Repeat Typing for Wickerhamomyces anomalus Reveals Simultaneous Outbreaks within a Single Hospital. Microorganisms 2023; 11:1525. [PMID: 37375027 DOI: 10.3390/microorganisms11061525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Wickerhamomyces anomalus, previously known as Candida pelliculosa, occasionally causes candidemia in humans, primarily infecting neonates, and infants. The mortality rate of these invasive infections is high, and isolates with a reduced susceptibility to fluconazole have been reported. W. anomalus outbreaks are regularly reported in healthcare facilities, especially in neonatal intensive care units (NICUs). In order to rapidly genotype isolates with a high-resolution, we developed and applied a short tandem repeat (STR) typing scheme for W. anomalus. Six STR markers were selected and amplified in two multiplex PCRs, M3 and M6, respectively. In total, 90 W. anomalus isolates were typed, leading to the identification of 38 different genotypes. Four large clusters were found, unveiling simultaneous outbreak events spread across multiple units within the same hospital. STR typing results of 11 isolates were compared to whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) calling, and the identified genotypic relationships were highly concordant. We performed antifungal susceptibility testing of these isolates, and a reduced susceptibility to fluconazole was found for two (2.3%) isolates. ERG11 genes of these two isolates were examined using WGS data, which revealed a novel I469L substitution in one isolate. By constructing a homology model for W. anomalus ERG11p, the substitution was found in close proximity to the fluconazole binding site. In summary, we showed multiple W. anomalus outbreak events by applying a novel STR genotyping scheme.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Eelco F J Meijer
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Merlijn H I van Haren
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Department I of Internal Medicine, University of Cologne, Excellence Center for Medical Mycology, 50931 Cologne, Germany
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| |
Collapse
|
7
|
Khalil SMS, Alahmed AM, Munawar K. RNAi-mediated mortality of Culex quinquefasciatus using two delivery methods of potential field application. Acta Trop 2023; 243:106938. [PMID: 37146864 DOI: 10.1016/j.actatropica.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
With increasing reports of resistance to traditional insecticides, there is a need for innovative ways for mosquito control. RNAi is a sequence-specific molecular biology technique for gene silencing through degradation of mRNA and prevention of protein translation. Some genes are essential for insect life and their silencing can lead to insect morbidity and/or mortality. Searching for lethal genes in Culex quinquefasciatus, we found dynamin, ROP, HMGR and JHAMT to be lethal targets for RNAi in initial screening through larval soaking in dsRNA solution. Two delivery methods, chitosan nanoparticles and genetically modified yeast cells, were used in this study and proved effective in inducing high larval mortality and low adult emergence. Adult emergence after chitosan nanoparticles/dsRNA treatment was 12.67% ± 1.76 (HMGR), 17.33% ± 1.76 (dynamin), 18.67% ± 0.67 (ROP), and 35.33% ± 0.67 (JHAMT). Genetically modified yeast increased mortalities as adult emergence was 8.33% ± 1.67 (HMGR), 13.33% ± 3.33 (dynamin), and 10% ± 2.89 (JHAMT and ROP). Chitosan nanoparticles retained 75% of its biological activity whereas yeast cells retained >95% of their activities after 7 days of incubation in water. In conclusion, our results showed that these four genes are good targets for C. quinquefasciatus control using RNAi packaged in either chitosan nanoparticles or genetically modified yeast cells.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia; Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, 12619, Egypt.
| | - Azzam M Alahmed
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Guégan M, Martin E, Tran Van V, Fel B, Hay AE, Simon L, Butin N, Bellvert F, Haichar FEZ, Valiente Moro C. Mosquito sex and mycobiota contribute to fructose metabolism in the Asian tiger mosquito Aedes albopictus. MICROBIOME 2022; 10:138. [PMID: 36038937 PMCID: PMC9425969 DOI: 10.1186/s40168-022-01325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/11/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Plant floral nectars contain natural sugars such as fructose, which are a primary energy resource for adult mosquitoes. Despite the importance of carbohydrates for mosquito metabolism, a limited knowledge is available about the pathways involved in sugar assimilation by mosquitoes and their associated microbiota. To this end, we used 13C-metabolomic and stable isotope probing approaches coupled to high-throughput sequencing to reveal fructose-related mosquito metabolic pathways and the dynamics of the active gut microbiota following fructose ingestion. RESULTS Our results revealed significant differences in metabolic pathways between males and females, highlighting different modes of central carbon metabolism regulation. Competitive and synergistic interactions of diverse fungal taxa were identified within the active mycobiota following fructose ingestion. In addition, we identified potential cross-feeding interactions between this. Interestingly, there is a strong correlation between several active fungal taxa and the presence of fructose-derived metabolites. CONCLUSIONS Altogether, our results provide novel insights into mosquito carbohydrate metabolism and demonstrate that dietary fructose as it relates to mosquito sex is an important determinant of mosquito metabolism; our results also further highlight the key role of active mycobiota interactions in regulating the process of fructose assimilation in mosquitoes. This study opens new avenues for future research on mosquito-microbiota trophic interactions related to plant nectar-derived sugars. Video abstract.
Collapse
Affiliation(s)
- Morgane Guégan
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Van Tran Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Benjamin Fel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Anne-Emmanuelle Hay
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Noémie Butin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Floriant Bellvert
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Feth El Zahar Haichar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon, 10 rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France.
| |
Collapse
|
9
|
Muema JM, Bargul JL, Obonyo MA, Njeru SN, Matoke-Muhia D, Mutunga JM. Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions. Parasit Vectors 2022; 15:298. [PMID: 36002857 PMCID: PMC9404607 DOI: 10.1186/s13071-022-05367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
An integrated approach to innovatively counter the transmission of various arthropod-borne diseases to humans would benefit from strategies that sustainably limit onward passage of infective life cycle stages of pathogens and parasites to the insect vectors and vice versa. Aiming to accelerate the impetus towards a disease-free world amid the challenges posed by climate change, discovery, mindful exploitation and integration of active natural products in design of pathogen transmission-blocking interventions is of high priority. Herein, we provide a review of natural compounds endowed with blockade potential against transmissible forms of human pathogens reported in the last 2 decades from 2000 to 2021. Finally, we propose various translational strategies that can exploit these pathogen transmission-blocking natural products into design of novel and sustainable disease control interventions. In summary, tapping these compounds will potentially aid in integrated combat mission to reduce disease transmission trends.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.,International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - James M Mutunga
- Department of Biological Sciences, Mount Kenya University (MKU), P.O. Box 54, Thika, 01000, Kenya.,School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Flores GAM, Lopez RP, Cerrudo CS, Consolo VF, Berón CM. Culex quinquefasciatus Holobiont: A Fungal Metagenomic Approach. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918052. [PMID: 37746232 PMCID: PMC10512223 DOI: 10.3389/ffunb.2022.918052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 09/26/2023]
Abstract
Microorganisms associated with mosquitoes have fundamental roles, not only in their nutrition, but also in physiological and immunological processes, and in their adaptation to the environment as well. Studies on mosquito hologenomes have increased significantly during the last years, achieving important advances in the characterization of the "core bacteriome" of some species of health importance. However, the fungal mycobiome has not been exhaustively researched, especially throughout the life cycle of some hematophagous mosquito species. In this work, the diversity and composition of fungal communities in different developmental stages, sexes, and adult nutrition of Culex quinquefasciatus reared on laboratory conditions were characterized, using internal transcribed spacer high throughput amplicon sequencing. Larvae presented a higher fungal richness, while sucrose-fed males and females showed a similar diversity between them. Blood-fed females presented few operational taxonomic units with an even distribution. Results are consistent with the reduction of larval microbiota after molting, observed for the bacterial microbiome in other mosquito species. The filamentous Ascomycota Penicillium polonicum and Cladosporium sp. were present in all stages of the mosquitoes; in addition, the presence of yeasts in the insects or their subsequent colonization associated with their diet is also discussed. These results suggest that some species of fungi could be essential for the nutrition and development of mosquitoes throughout their life cycle.
Collapse
Affiliation(s)
- Guillermo A. M. Flores
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Rocio P. Lopez
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Carolina S. Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular (LIGBCM), Area Virosis de Insectos (AVI), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - V. Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Corina M. Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
11
|
Tawidian P, Jumpponen A, Michel K. Patterns of Fungal Community Assembly Across Two Culex Mosquito Species. Front Ecol Evol 2022; 10. [DOI: 10.3389/fevo.2022.911085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the aquatic environment, mosquito larvae encounter bacteria and fungi that assemble into bacterial and fungal communities. The composition and impact of mosquito-associated bacterial community has been reported across larvae of various mosquito species. However, knowledge on the composition of mosquito-associated fungal communities and the drivers of their assembly remain largely unclear, particularly across mosquito species. In this study, we used high throughput sequencing of the fungal Internal transcribed spacer 2 (ITS2) metabarcode marker to identify fungal operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) associated with field-collected Culex restuans and Culex pipiens larvae and their breeding water. Our analyses identified diverse fungal communities across larval breeding sites collected on a fine geographic scale. Our data show that the larval breeding site is the major determinant of fungal community assembly in these mosquito species. We also identified distinct fungal communities in guts and carcasses within each species. However, these tissue-specific patterns were less evident in Cx. restuans than in Cx. pipiens larvae. The broad ecological patterns of fungal community assembly in mosquito larvae did not vary between OTU and ASV analyses. Together, this study provides the first insight into the fungal community composition and diversity in field collected Cx. restuans and Cx. pipiens larvae using OTUs and ASVs. While these findings largely recapitulate our previous analyses in Aedes albopictus larvae, we report minor differences in tissue-specific fungal community assembly in Cx. restuans larvae. Our results suggest that while the fungal community assembly in mosquito larvae may be generalized across mosquito species, variation in larval feeding behavior may impact fungal community assembly in the guts of mosquito larvae.
Collapse
|
12
|
Djihinto OY, Medjigbodo AA, Gangbadja ARA, Saizonou HM, Lagnika HO, Nanmede D, Djossou L, Bohounton R, Sovegnon PM, Fanou MJ, Agonhossou R, Akoton R, Mousse W, Djogbénou LS. Malaria-Transmitting Vectors Microbiota: Overview and Interactions With Anopheles Mosquito Biology. Front Microbiol 2022; 13:891573. [PMID: 35668761 PMCID: PMC9164165 DOI: 10.3389/fmicb.2022.891573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria remains a vector-borne infectious disease that is still a major public health concern worldwide, especially in tropical regions. Malaria is caused by a protozoan parasite of the genus Plasmodium and transmitted through the bite of infected female Anopheles mosquitoes. The control interventions targeting mosquito vectors have achieved significant success during the last two decades and rely mainly on the use of chemical insecticides through the insecticide-treated nets (ITNs) and indoor residual spraying (IRS). Unfortunately, resistance to conventional insecticides currently being used in public health is spreading in the natural mosquito populations, hampering the long-term success of the current vector control strategies. Thus, to achieve the goal of malaria elimination, it appears necessary to improve vector control approaches through the development of novel environment-friendly tools. Mosquito microbiota has by now given rise to the expansion of innovative control tools, such as the use of endosymbionts to target insect vectors, known as "symbiotic control." In this review, we will present the viral, fungal and bacterial diversity of Anopheles mosquitoes, including the bacteriophages. This review discusses the likely interactions between the vector microbiota and its fitness and resistance to insecticides.
Collapse
Affiliation(s)
- Oswald Y. Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Adandé A. Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Albert R. A. Gangbadja
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Helga M. Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Hamirath O. Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Dyane Nanmede
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Roméo Bohounton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Marie-Joel Fanou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Wassiyath Mousse
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Luc S. Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
13
|
Tawidian P, Coon KL, Jumpponen A, Cohnstaedt LW, Michel K. Host-Environment Interplay Shapes Fungal Diversity in Mosquitoes. mSphere 2021; 6:e0064621. [PMID: 34585960 PMCID: PMC8550294 DOI: 10.1128/msphere.00646-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquito larvae encounter diverse assemblages of bacteria (i.e., "microbiota") and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus, is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control.
Collapse
Affiliation(s)
- Patil Tawidian
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
14
|
Cappelli A, Amantini C, Maggi F, Favia G, Ricci I. Formulation and Safety Tests of a Wickerhamomyces anomalus-Based Product: Potential Use of Killer Toxins of a Mosquito Symbiotic Yeast to Limit Malaria Transmission. Toxins (Basel) 2021; 13:676. [PMID: 34678969 PMCID: PMC8538654 DOI: 10.3390/toxins13100676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/16/2023] Open
Abstract
Wickerhamomyces anomalus strain WaF17.12 is a yeast with an antiplasmodial property based on the production of a killer toxin. For its symbiotic association with Anopheles mosquitoes, it has been proposed for the control of malaria. In an applied view, we evaluated the yeast formulation by freeze-drying WaF17.12. The study was carried out by comparing yeast preparations stored at room temperature for different periods, demonstrating that lyophilization is a useful method to obtain a stable product in terms of cell growth reactivation and maintenance of the killer toxin antimicrobial activity. Moreover, cytotoxic assays on human cells were performed, showing no effects on the cell viability and the proinflammatory response. The post-formulation effectiveness of the killer toxin and the safety tests indicate that WaF17.12 is a promising bioreagent able to impair the malaria parasite in vector mosquitoes.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy;
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.C.); (C.A.); (G.F.)
| |
Collapse
|
15
|
Girard M, Martin E, Vallon L, Raquin V, Bellet C, Rozier Y, Desouhant E, Hay AE, Luis P, Valiente Moro C, Minard G. Microorganisms Associated with Mosquito Oviposition Sites: Implications for Habitat Selection and Insect Life Histories. Microorganisms 2021; 9:1589. [PMID: 34442667 PMCID: PMC8401263 DOI: 10.3390/microorganisms9081589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Mosquitoes are considered one of the most important threats worldwide due to their ability to vector pathogens. They are responsible for the transmission of major pathogens such as malaria, dengue, zika, or chikungunya. Due to the lack of treatments or prophylaxis against many of the transmitted pathogens and an increasing prevalence of mosquito resistance to insecticides and drugs available, alternative strategies are now being explored. Some of these involve the use of microorganisms as promising agent to limit the fitness of mosquitoes, attract or repel them, and decrease the replication and transmission of pathogenic agents. In recent years, the importance of microorganisms colonizing the habitat of mosquitoes has particularly been investigated since they appeared to play major roles in their development and diseases transmission. In this issue, we will synthesize researches investigating how microorganisms present within water habitats may influence breeding site selection and oviposition strategies of gravid mosquito females. We will also highlight the impact of such microbes on the fate of females' progeny during their immature stages with a specific focus on egg hatching, development rate, and larvae or pupae survival.
Collapse
Affiliation(s)
- Maxime Girard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Laurent Vallon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Vincent Raquin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Christophe Bellet
- Entente Interdépartementale Rhône-Alpes pour la Démoustication, F-73310 Chindrieux, France; (C.B.); (Y.R.)
| | - Yves Rozier
- Entente Interdépartementale Rhône-Alpes pour la Démoustication, F-73310 Chindrieux, France; (C.B.); (Y.R.)
| | - Emmanuel Desouhant
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire de Biométrie et de Biologie Evolutive, UMR CNRS 5558, VetAgro Sup, F-69622 Villeurbanne, France;
| | - Anne-Emmanuelle Hay
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (M.G.); (E.M.); (L.V.); (V.R.); (A.-E.H.); (P.L.); (C.V.M.)
| |
Collapse
|
16
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
17
|
The Possible Role of Microorganisms in Mosquito Mass Rearing. INSECTS 2021; 12:insects12070645. [PMID: 34357305 PMCID: PMC8305455 DOI: 10.3390/insects12070645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 01/12/2023]
Abstract
Simple Summary One of the most promising control methods against Aedes albopictus is the sterile insect technique, which consists of mass rearing the target species, separation of males from females, and male exposure to sterilizing ionizing radiation. Once released in the environment, the sterile males are expected to search for wild females to mate with. The quality of sterile males is a crucial aspect in SIT programs in order to optimize effectiveness and limit production costs. The integration of probiotic microorganisms in larval and adult mosquito diets could enhance the quality parameters of the released sterile males. Abstract In Europe, one of the most significant mosquitoes of public health importance is Aedes albopictus (Skuse), an allochthonous species of Asian origin. One of the most promising control methods against Aedes albopictus is the sterile insect technique (SIT), which consists of mass rearing the target species, separation of males from females, and male exposure to sterilizing ionizing radiation. Once released in the environment, the sterile males are expected to search for wild females to mate with. If mating occurs, no offspring is produced. The quality of sterile males is a crucial aspect in SIT programs in order to optimize effectiveness and limit production costs. The integration of probiotic microorganisms in larval and adult mosquito diets could enhance the quality parameters of the released sterile males. In this review, we attempt to give the most representative picture of the present knowledge on the relationships between gut microbiota of mosquitoes and the natural or artificial larval diet. Furthermore, the possible use of probiotic microorganisms for mosquito larvae rearing is explored. Based on the limited amount of data found in the literature, we hypothesize that a better understanding of the interaction between mosquitoes and their microbiota may bring significant improvements in mosquito mass rearing for SIT purposes.
Collapse
|
18
|
Martinson VG, Strand MR. Diet-Microbiota Interactions Alter Mosquito Development. Front Microbiol 2021; 12:650743. [PMID: 34168624 PMCID: PMC8217444 DOI: 10.3389/fmicb.2021.650743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Gut microbes and diet can both strongly affect the biology of multicellular animals, but it is often difficult to disentangle microbiota–diet interactions due to the complex microbial communities many animals harbor and the nutritionally variable diets they consume. While theoretical and empirical studies indicate that greater microbiota diversity is beneficial for many animal hosts, there have been few tests performed in aquatic invertebrates. Most mosquito species are aquatic detritivores during their juvenile stages that harbor variable microbiotas and consume diets that range from nutrient rich to nutrient poor. In this study, we produced a gnotobiotic model that allowed us to examine how interactions between specific gut microbes and diets affect the fitness of Aedes aegypti, the yellow fever mosquito. Using a simplified seven-member community of bacteria (ALL7) and various laboratory and natural mosquito diets, we allowed larval mosquitoes to develop under different microbial and dietary conditions and measured the resulting time to adulthood and adult size. Larvae inoculated with the ALL7 or a more complex community developed similarly when fed nutrient-rich rat chow or fish food laboratory diets, whereas larvae inoculated with individual bacterial members of the ALL7 community exhibited few differences in development when fed a rat chow diet but exhibited large differences in performance when fed a fish food diet. In contrast, the ALL7 community largely failed to support the growth of larvae fed field-collected detritus diets unless supplemented with additional protein or yeast. Collectively, our results indicate that mosquito development and fitness are strongly contingent on both diet and microbial community composition.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Entomology, University of Georgia, Athens, GA, United States.,Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
19
|
E Silva B, Matsena Zingoni Z, Koekemoer LL, Dahan-Moss YL. Microbiota identified from preserved Anopheles. Malar J 2021; 20:230. [PMID: 34022891 PMCID: PMC8141131 DOI: 10.1186/s12936-021-03754-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03754-7.
Collapse
Affiliation(s)
- Bianca E Silva
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zvifadzo Matsena Zingoni
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Parktown, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
20
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
21
|
Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proc Natl Acad Sci U S A 2021; 118:2101080118. [PMID: 33827929 PMCID: PMC8053949 DOI: 10.1073/pnas.2101080118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously determined that several diets used to rear Aedes aegypti and other mosquito species support the development of larvae with a gut microbiota but do not support the development of axenic larvae. In contrast, axenic larvae have been shown to develop when fed other diets. To understand the mechanisms underlying this dichotomy, we developed a defined diet that could be manipulated in concert with microbiota composition and environmental conditions. Initial studies showed that axenic larvae could not grow under standard rearing conditions (27 °C, 16-h light: 8-h dark photoperiod) when fed a defined diet but could develop when maintained in darkness. Downstream assays identified riboflavin decay to lumichrome as the key factor that prevented axenic larvae from growing under standard conditions, while gut community members like Escherichia coli rescued development by being able to synthesize riboflavin. Earlier results showed that conventional and gnotobiotic but not axenic larvae exhibit midgut hypoxia under standard rearing conditions, which correlated with activation of several pathways with essential growth functions. In this study, axenic larvae in darkness also exhibited midgut hypoxia and activation of growth signaling but rapidly shifted to midgut normoxia and arrested growth in light, which indicated that gut hypoxia was not due to aerobic respiration by the gut microbiota but did depend on riboflavin that only resident microbes could provide under standard conditions. Overall, our results identify riboflavin provisioning as an essential function for the gut microbiota under most conditions A. aegypti larvae experience in the laboratory and field.
Collapse
|
22
|
Cappelli A, Favia G, Ricci I. Wickerhamomyces anomalus in Mosquitoes: A Promising Yeast-Based Tool for the "Symbiotic Control" of Mosquito-Borne Diseases. Front Microbiol 2021; 11:621605. [PMID: 33552032 PMCID: PMC7859090 DOI: 10.3389/fmicb.2020.621605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
The ascomycete yeast Wickerhamomyces anomalus is a mutualistic symbiont of different insects, including diptera vectors of diseases. Although fungal symbioses have been so far poorly characterized, the topic is gaining attention as yeast-insect interactions can provide pivotal information on insect biology, such as their environmental adaptation or vectorial capability. We review the symbiosis between W. anomalus and mosquitoes, which implies nutritional and protective functions. Furthermore, we focus on antiplasmodial effects of W. anomalus in malaria vectors and discuss the yeast potential for the “symbiotic control” (SC) of mosquito-borne diseases (MBDs).
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| |
Collapse
|
23
|
Kang X, Wang Y, Li S, Sun X, Lu X, Rajaofera MJN, Lu Y, Kang L, Zheng A, Zou Z, Xia Q. Comparative Analysis of the Gut Microbiota of Adult Mosquitoes From Eight Locations in Hainan, China. Front Cell Infect Microbiol 2021; 10:596750. [PMID: 33384969 PMCID: PMC7769952 DOI: 10.3389/fcimb.2020.596750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3-V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.
Collapse
Affiliation(s)
- Xun Kang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yanhong Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siping Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Xiaomei Sun
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Lu
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yajun Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Le Kang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
24
|
de Oliveira Barbosa Bitencourt R, Reis dos Santos Mallet J, Mesquita E, Silva Gôlo P, Fiorotti J, Rita Elias Pinheiro Bittencourt V, Guedes Pontes E, da Costa Angelo I. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Trop 2021; 213:105732. [PMID: 33188750 DOI: 10.1016/j.actatropica.2020.105732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
Blastospores or conidia (formulated or not) of entomopathogenic fungi were assessed against Aedes aegypti larvae. Larvae (L2) were exposed to 105, 106, 107, and 108 propagules mL-1 water suspension. Mineral oil at 0.1%, 0.5%, or 1.0% (v/v) was employed to observe the effect on larval survival. The 0.1% mineral oil did not affect larval survival. Accordingly, 107 propagules mL-1 and 0.1% mineral oil were used to prepare all fungal emulsions. The fungal suspension or formulation was prepared as follows: 107 propagules mL-1 on 0.03% TweenⓇ 80 (v/v) aqueous solution or 107 propagules mL-1 on 0.03% TweenⓇ 80 plus 0.1% mineral oil; larval survival rates were evaluated for 7 days, and median survival time (S50) was also determined. The presence of fungi in larvae was examined both histologically and by scanning electron microscopy 24 h or 48 h after exposure. To evaluate the larval growth, larvae were exposed to 107 propagules mL-1 for 48 hours and their length measured using a digital caliper. Here, propagules had similar results in reducing the larvae survival rate and time. The treatment with Beauveria bassiana s.l. at 108 propagules mL-1 or with Metarhizium anisopliae s.l. at 108 blastopores mL-1 reduced the larval survival time to two days. M. anisopliae s.l. at 108 conidia mL-1 reduced the survival time to three days. The survival time of larvae submitted to the other treatments ranged from 6 days to over 7 days. M. anisopliae s.l. or B. bassiana s.l. oil-in-water emulsions at 107 propagules mL-1 yielded better results than the water suspensions, the larvae survival rate was 2 days for both propagules in oil-in-water emulsion. Larvae exposed to blastospores from both isolates or M. anisopliae conidia were longer than in the other treatments. Scanning electron microscopy and histology analyzes found fungi predominantly in the gut, mouthparts, and perispiracular lobes of larvae. Formulated fungus yielded better results than the aqueous suspensions for control of mosquito larvae. Thus, for the first time, the effect of mineral oil on the fungal interaction on A. aegypti larvae was observed as well as the effect of entomopathogenic fungi in the growth of larvae, supporting the search for strategies to control this arthropod.
Collapse
|
25
|
Bitencourt RDOB, Salcedo-Porras N, Umaña-Diaz C, da Costa Angelo I, Lowenberger C. Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review. J Invertebr Pathol 2020; 178:107505. [PMID: 33238166 DOI: 10.1016/j.jip.2020.107505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Mosquitoes transmit many parasites and pathogens to humans that cause significant morbidity and mortality. As such, we are constantly looking for new methods to reduce mosquito populations, including the use of effective biological controls. Entomopathogenic fungi are excellent candidate biocontrol agents to control mosquitoes. Understanding the complex ecological, environmental, and molecular interactions between hosts and pathogens are essential to create novel, effective and safe biocontrol agents. Understanding how mosquitoes recognize and eliminate pathogens such as entomopathogenic fungi may allow us to create insect-order specific biocontrol agents to reduce pest populations. Here we summarize the current knowledge of fungal infection, colonization, development, and replication within mosquitoes and the innate immune responses of the mosquitoes towards the fungal pathogens, emphasizing those features required for an effective mosquito biocontrol agent.
Collapse
Affiliation(s)
- Ricardo de Oliveira Barbosa Bitencourt
- Program in Veterinary Science, Institute of Veterinary Science, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil; Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada.
| | - Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada
| | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby BC V5A 1S6, British Columbia, Canada.
| |
Collapse
|
26
|
Meriggi N, Di Paola M, Cavalieri D, Stefanini I. Saccharomyces cerevisiae - Insects Association: Impacts, Biogeography, and Extent. Front Microbiol 2020; 11:1629. [PMID: 32760380 PMCID: PMC7372139 DOI: 10.3389/fmicb.2020.01629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last few years, an increasing number of studies have reported the existence of an association between the budding yeast Saccharomyces cerevisiae and insects. The discovery of this relationship has called into question the hypothesis that S. cerevisiae is unable to survive in nature and that the presence of S. cerevisiae strains in natural specimens is the result of contamination from human-related environments. S. cerevisiae cells benefit from this association as they find in the insect intestine a shelter, but also a place where they can reproduce themselves through mating, the latter being an event otherwise rarely observed in natural environments. On the other hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as nutriment to properly develop, to localize suitable food, and to enhance their immune system. Despite the relevance of this relationship on both yeast and insect ecology, we are still far from completely appreciating its extent and effects. It has been shown that other yeasts are able to colonize only one or a few insect species. Is it the same for S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this association geographically or topographically limited in areas characterized by specific physical features? With this review, we recapitulate the nature of the S. cerevisiae-insect association, disclose its extent in terms of geographical distribution and species involved, and present YeastFinder, a cured online database providing a collection of information on this topic.
Collapse
Affiliation(s)
| | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | | | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Malassigné S, Valiente Moro C, Luis P. Mosquito Mycobiota: An Overview of Non-Entomopathogenic Fungal Interactions. Pathogens 2020; 9:E564. [PMID: 32664706 PMCID: PMC7400530 DOI: 10.3390/pathogens9070564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The growing expansion of mosquito vectors leads to the emergence of vector-borne diseases in new geographic areas and causes major public health concerns. In the absence of effective preventive treatments against most pathogens transmitted, vector control remains one of the most suitable strategies to prevent mosquito-borne diseases. Insecticide overuse raises mosquito resistance and deleterious impacts on the environment and non-target species. Growing knowledge of mosquito biology has allowed the development of alternative control methods. Following the concept of holobiont, mosquito-microbiota interactions play an important role in mosquito biology. Associated microbiota is known to influence many aspects of mosquito biology such as development, survival, immunity or even vector competence. Mosquito-associated microbiota is composed of bacteria, fungi, protists, viruses and nematodes. While an increasing number of studies have focused on bacteria, other microbial partners like fungi have been largely neglected despite their huge diversity. A better knowledge of mosquito-mycobiota interactions offers new opportunities to develop innovative mosquito control strategies. Here, we review the recent advances concerning the impact of mosquito-associated fungi, and particularly nonpathogenic fungi, on life-history traits (development, survival, reproduction), vector competence and behavior of mosquitoes by focusing on Culex, Aedes and Anopheles species.
Collapse
Affiliation(s)
| | | | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France; (S.M.); (C.V.M.)
| |
Collapse
|
28
|
Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito Microbiota and Implications for Disease Control. Trends Parasitol 2020; 36:98-111. [PMID: 31866183 PMCID: PMC9827750 DOI: 10.1016/j.pt.2019.12.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
Mosquito-transmitted diseases account for about 500 000 deaths every year. Blocking these pathogens in the mosquito vector before they are transmitted to humans is an effective strategy to prevent mosquito-borne diseases. Like most higher organisms, mosquitoes harbor a highly diverse and dynamic microbial flora that can be explored for prevention of pathogen transmission. Here we review the structure and function of the mosquito microbiota, including bacteria, fungi, and viruses, and discuss the potential of using components of the microbiota to thwart pathogen transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Chunlai Cui
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Lili Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Correspondence: ,
| | - Sibao Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,Correspondence: ,
| |
Collapse
|
29
|
Guégan M, Tran Van V, Martin E, Minard G, Tran FH, Fel B, Hay AE, Simon L, Barakat M, Potier P, Haichar FEZ, Valiente Moro C. Who is eating fructose within the Aedes albopictus gut microbiota? Environ Microbiol 2020; 22:1193-1206. [PMID: 31943686 DOI: 10.1111/1462-2920.14915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
The Asian tiger mosquito Aedes albopictus is a major public health concern because of its invasive success and its ability to transmit pathogens. Given the low availability of treatments against mosquito-borne diseases, vector control remains the most suitable strategy. The methods used thus far are becoming less effective, but recent strategies have emerged from the study of mosquito-associated microorganisms. Although the role of the microbiota in insect biology does not require further proof, much remains to be deciphered in mosquitoes, especially the contribution of the microbiota to host nutrient metabolism. Mosquitoes feed on plant nectar, composed of mostly fructose. We used stable isotope probing to identify bacteria and fungi assimilating fructose within the gut of Ae. albopictus. Mosquitoes were fed a 13 C-labelled fructose solution for 24 h. Differences in the active microbial community according to the sex of mosquitoes were highlighted. The bacterium Lelliottia and the fungi Cladosporium and Aspergillus dominated the active microbiota in males, whereas the bacterium Ampullimonas and the yeast Cyberlindnera were the most active in females. This study is the first to investigate trophic interactions between Ae. albopictus and its microbiota, thus underscoring the importance of the microbial component in nectar feeding in mosquitoes.
Collapse
Affiliation(s)
- Morgane Guégan
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Van Tran Van
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Edwige Martin
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Guillaume Minard
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Florence-Hélène Tran
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Benjamin Fel
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France.,Université de Lyon, Université Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, CESN Centre d'Etude des Substances Naturelles, 43 Bd du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Anne-Emmanuelle Hay
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France.,Université de Lyon, Université Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, CESN Centre d'Etude des Substances Naturelles, 43 Bd du 11 novembre 1918, 69622, Villeurbanne Cedex, France
| | - Laurent Simon
- UMR 5023 LEHNA, CNRS, Univ Lyon, Université Claude Bernard Lyon 1, Université Lyon 1, ENTPE, Villeurbanne, France
| | - Mohamed Barakat
- Laboratory for Microbial Ecology of the Rhizosphere and Extreme Environment, CNRS, UMR 7265 BIAM, CEA, Aix Marseille University, Saint-Paul-lès-Durance, France
| | - Patrick Potier
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Feth El Zahar Haichar
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| | - Claire Valiente Moro
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Univ Lyon, Université Claude Bernard Lyon 1, UMR INRA, 1418, Villeurbanne, France
| |
Collapse
|
30
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
31
|
Cappelli A, Valzano M, Cecarini V, Bozic J, Rossi P, Mensah P, Amantini C, Favia G, Ricci I. Killer yeasts exert anti-plasmodial activities against the malaria parasite Plasmodium berghei in the vector mosquito Anopheles stephensi and in mice. Parasit Vectors 2019; 12:329. [PMID: 31266522 PMCID: PMC6604151 DOI: 10.1186/s13071-019-3587-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Wickerhamomyces anomalus is a yeast associated with different insects including mosquitoes, where it is proposed to be involved in symbiotic relationships with hosts. Different symbiotic strains of W. anomalus display a killer phenotype mediated by protein toxins with broad-spectrum antimicrobial activities. In particular, a killer toxin purified from a W. anomalus strain (WaF17.12), previously isolated from the malaria vector mosquito Anopheles stephensi, has shown strong in vitro anti-plasmodial activity against early sporogonic stages of the murine malaria parasite Plasmodium berghei. RESULTS Here, we provide evidence that WaF17.12 cultures, properly stimulated to induce the expression of the killer toxin, can directly affect in vitro P. berghei early sporogonic stages, causing membrane damage and parasite death. Moreover, we demonstrated by in vivo studies that mosquito dietary supplementation with activated WaF17.12 cells interfere with ookinete development in the midgut of An. stephensi. Besides the anti-sporogonic action of WaF17.12, an inhibitory effect of purified WaF17.12-killer toxin was observed on erythrocytic stages of P. berghei, with a consequent reduction of parasitaemia in mice. The preliminary safety tests on murine cell lines showed no side effects. CONCLUSIONS Our findings demonstrate the anti-plasmodial activity of WaF17.12 against different developmental stages of P. berghei. New studies on P. falciparum are needed to evaluate the use of killer yeasts as innovative tools in the symbiotic control of malaria.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Matteo Valzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Paolo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
| |
Collapse
|
32
|
Luis P, Vallon L, Tran FH, Hugoni M, Tran-Van V, Mavingui P, Minard G, Moro CV. Aedes albopictus mosquitoes host a locally structured mycobiota with evidence of reduced fungal diversity in invasive populations. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Heu K, Gendrin M. [Mosquito microbiota and its influence on disease vectorial transmission]. Biol Aujourdhui 2019; 212:119-136. [PMID: 30973141 DOI: 10.1051/jbio/2019003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/23/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are found worldwide. Around 100 among 3500 mosquito species are known to be vectors of parasites and viruses, responsible for infectious diseases including malaria and dengue. Mosquitoes host diverse microbial communities that influence disease transmission, either by direct interference or via affecting host immunity and physiology. These microbial communities are present within diverse tissues, including the digestive tract, and vary depending on the sex of the mosquito, its developmental stage, and ecological factors. This review summarizes the current knowledge about the mosquito microbiota, defined as a community of commensal, symbiotic or pathogenic microbes harboured by a host. We first describe the current knowledge on the diversity of the microbiota, that includes bacteria, fungi, parasites and viruses and on its modes of acquisition throughout the mosquito life cycle. We then focus on microbial interactions within the mosquito gut, which notably affect vector competence, and on host-microbe interactions affecting mosquito fitness. Finally, we discuss current or potential methods based on the use of microbes or microbial products to interfere with pathogen transmission or to reduce mosquito lifespan and reproduction.
Collapse
Affiliation(s)
- Katy Heu
- Groupe « Microbiote des Insectes Vecteurs », Institut Pasteur de la Guyane, Cayenne, Guyane, France
| | - Mathilde Gendrin
- Groupe « Microbiote des Insectes Vecteurs », Institut Pasteur de la Guyane, Cayenne, Guyane, France - Département « Parasites et Insectes Vecteurs », Institut Pasteur, Paris, France
| |
Collapse
|
34
|
The digestive tract of Phylloicus (Trichoptera: Calamoceratidae) harbours different yeast taxa in Cerrado streams, Brazil. Symbiosis 2018. [DOI: 10.1007/s13199-018-0577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Strand MR. Composition and functional roles of the gut microbiota in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2018; 28:59-65. [PMID: 30551768 PMCID: PMC6296257 DOI: 10.1016/j.cois.2018.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 05/05/2023]
Abstract
An estimated 3500 species of mosquitoes (family Culicidae) exist worldwide of which several are known vectors of pathogens that cause disease in humans and other vertebrates. Mosquitoes also host communities of microbes in their digestive tract that form a gut microbiota. Recent studies provide important insights on how mosquitoes acquire a gut microbiota and the community of microbes that are present. Results also indicate that the gut microbiota affects several aspects of mosquito biology. Altogether, these effects impact mosquito fitness with potential consequences for disease prevalence.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, United States of America.
| |
Collapse
|
36
|
Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, Mavingui P, Valiente Moro C. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. MICROBIOME 2018; 6:49. [PMID: 29554951 PMCID: PMC5859429 DOI: 10.1186/s40168-018-0435-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
The holobiont concept was first developed for coral ecosystems but has been extended to multiple organisms, including plants and other animals. Studies on insect-associated microbial communities have produced strong evidence that symbiotic bacteria play a major role in host biology. However, the understanding of these symbiotic relationships has mainly been limited to phytophagous insects, while the role of host-associated microbiota in haematophagous insect vectors remains largely unexplored. Mosquitoes are a major global public health concern, with a concomitant increase in people at risk of infection. The global emergence and re-emergence of mosquito-borne diseases has led many researchers to study both the mosquito host and its associated microbiota. Although most of these studies have been descriptive, they have led to a broad description of the bacterial communities hosted by mosquito populations. This review describes key advances and progress in the field of the mosquito microbiota research while also encompassing other microbes and the environmental factors driving their composition and diversity. The discussion includes recent findings on the microbiota functional roles and underlines their interactions with the host biology and pathogen transmission. Insight into the ecology of multipartite interactions, we consider that conferring the term holobiont to the mosquito and its microbiota is useful to get a comprehensive understanding of the vector pathosystem functioning so as to be able to develop innovative and efficient novel vector control strategies.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Karima Zouache
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Colin Démichel
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Patrick Potier
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
- CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
- INRA, UMR1418, Villeurbanne, France
| |
Collapse
|
37
|
Thongsripong P, Chandler JA, Green AB, Kittayapong P, Wilcox BA, Kapan DD, Bennett SN. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol Evol 2018; 8:1352-1368. [PMID: 29375803 PMCID: PMC5773340 DOI: 10.1002/ece3.3676] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Vector-borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito-associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next-generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered (Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human-impacted landscapes that may ultimately affect vector-borne disease risk.
Collapse
Affiliation(s)
- Panpim Thongsripong
- Department of MicrobiologyInstitute of Biodiversity Sciences and SustainabilityCalifornia Academy of SciencesSan FranciscoCAUSA
- Department of Tropical MedicineMedical Microbiology, and PharmacologyUniversity of Hawai'i at ManoaHonoluluHIUSA
- Present address:
Department of Tropical MedicineTulane UniversityNew OrleansLAUSA
| | - James Angus Chandler
- Department of MicrobiologyInstitute of Biodiversity Sciences and SustainabilityCalifornia Academy of SciencesSan FranciscoCAUSA
- Present address:
Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Amy B. Green
- Department of MicrobiologyUniversity of Hawai'i at ManoaHonoluluHIUSA
| | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector‐Borne Diseases and Department of BiologyFaculty of ScienceMahidol University at SalayaNakhon PathomThailand
| | - Bruce A. Wilcox
- Global Health Asia and Integrative Research and Education ProgramFaculty of Public HealthMahidol UniversityBangkokThailand
| | - Durrell D. Kapan
- Department of Entomology and Center for Comparative GenomicsInstitute of Biodiversity Sciences and SustainabilityCalifornia Academy of SciencesSan FranciscoCAUSA
- Center for Conservation and Research TrainingPacific Biosciences Research CenterUniversity of Hawai'i at ManoaHonoluluHIUSA
| | - Shannon N. Bennett
- Department of MicrobiologyInstitute of Biodiversity Sciences and SustainabilityCalifornia Academy of SciencesSan FranciscoCAUSA
| |
Collapse
|
38
|
Bozic J, Capone A, Pediconi D, Mensah P, Cappelli A, Valzano M, Mancini MV, Scuppa P, Martin E, Epis S, Rossi P, Favia G, Ricci I. Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:642-648. [PMID: 28714286 DOI: 10.1111/1758-2229.12569] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
There is still a lack of studies on fungal microbiota in mosquitoes, compared with the number available on bacterial microbiota. This study reports the identification of yeasts of clinical significance in laboratory mosquito species: Anopheles gambiae, Anopheles stephensi, Culex quinquefasciatus, Aedes albopictus and Aedes aegypti. Among the yeasts isolated, they focused on the opportunistic pathogen Candida parapsilosis, since there is a need to better understand breakthrough candidaemia with resistance to the usual antifungals, which requires careful consideration in the broad-spectrum therapy, as documented in many clinical reports. C. parapsilosis occurs widely and has been isolated from diverse sources, including insects, which may contribute to its dissemination. In this study, it was isolated from the gut of An. gambiae and its presence in developmental stages and organs of different mosquito species was studied. Our results indicated that there was a stable association between C. parapsilosis and reared mosquitoes during the entire life cycle, and in adult male and female gut and gonads. A wide occurrence of C. parapsilosis was also documented in several populations of wild mosquitoes. Based on these findings, it can be said that mosquitoes might participate in the spreading of this opportunistic pathogen, not only as a carrier.
Collapse
Affiliation(s)
- Jovana Bozic
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Dario Pediconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Matteo Valzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Maria Vittoria Mancini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Patrizia Scuppa
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Elena Martin
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, 20133, Italy
| | - Sara Epis
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, 20133, Italy
| | - Paolo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile da Varano III 62032, Camerino, Italy
| |
Collapse
|
39
|
Saldaña MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 2017; 112:81-93. [PMID: 28177042 PMCID: PMC5293117 DOI: 10.1590/0074-02760160373] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/03/2023] Open
Abstract
Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to their intimate association with the host, microbes have developed strategies that facilitate their transmission, either horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. We also highlight where further investigation is warranted.
Collapse
Affiliation(s)
- Miguel A Saldaña
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX, USA
| | - Shivanand Hegde
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
| | - Grant L Hughes
- University of Texas Medical Branch, Department of Pathology, Galveston, TX, USA
- University of Texas Medical Branch, Institute for Human Infections and Immunity, Galveston, TX, USA
- University of Texas Medical Branch, Center for Biodefense and Emerging Infectious Disease, Galveston, TX, USA
- University of Texas Medical Branch, Center for Tropical Diseases, Galveston, TX, USA
| |
Collapse
|
40
|
Souza RS, Diaz-Albiter HM, Dillon VM, Dillon RJ, Genta FA. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. PLoS One 2016; 11:e0151403. [PMID: 27007411 PMCID: PMC4805253 DOI: 10.1371/journal.pone.0151403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 01/24/2023] Open
Abstract
Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2h, 100% in 48h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.
Collapse
Affiliation(s)
- Raquel Santos Souza
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, FIOCRUZ, 4365 Brasil Av, Leonidas Deane Building, room 207, Manguinhos, Rio de Janeiro, Brazil, 21040–360
| | - Hector Manuel Diaz-Albiter
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, FIOCRUZ, 4365 Brasil Av, Leonidas Deane Building, room 207, Manguinhos, Rio de Janeiro, Brazil, 21040–360
| | - Vivian Maureen Dillon
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Rod J. Dillon
- Division of Biomedical and Life Sciences, Furness Building, Lancaster University, Bailrigg, Lancaster, LA1 4YG, United Kingdom
- National Institute of Science and Technology for Molecular Entomology, 373 Carlos Chagas Filho Av., Center for Health Science, Building D, Basement, room 5, Cidade Universitária, Rio de Janeiro, Brazil, 21941–590
| | - Fernando Ariel Genta
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, FIOCRUZ, 4365 Brasil Av, Leonidas Deane Building, room 207, Manguinhos, Rio de Janeiro, Brazil, 21040–360
- National Institute of Science and Technology for Molecular Entomology, 373 Carlos Chagas Filho Av., Center for Health Science, Building D, Basement, room 5, Cidade Universitária, Rio de Janeiro, Brazil, 21941–590
- * E-mail:
| |
Collapse
|