1
|
Dong L, Liu Z, Xin Z, Song C, Bai X, Li J, Zhang Y, Valverde-Pérez B, Zhang C. Runoff variation alters estuarine sediment microbiome and nitrogen removal processes by affecting salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176880. [PMID: 39419209 DOI: 10.1016/j.scitotenv.2024.176880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Runoff variations shape the dynamics of the estuarine environmental factors, profoundly influencing the nitrogen cycle in estuarine sediments. However, our understanding of how these changes regulate microbially-mediated nitrogen removal processes remains limited. In this study, the impacts of changes in environmental factors caused by normal and low runoffs on denitrification and anammox in sediments of the Liao River Estuary in China, were investigated, using continuous-flow experiments combined with 15N tracing techniques and molecular methods. Results indicated that denitrification was the main nitrogen removal process in estuarine sediments under both runoff conditions. Elevated salinity under low runoff condition increased the abundance of nitrifying bacteria (Nitrospina, Nitrosomonas and Nitrosomonadaceae), thereby promoting the coupled nitrification-denitrification nitrogen removal process. Furthermore, seawater intrusion under low runoff contributed to dilute nitrite concentrations, resulting in decreased denitrification rates in sediments. Overall, this study highlighted the impacts of runoff variations on biological nitrogen removal process through affecting environmental factors, gene abundance and microbial community in the estuary.
Collapse
Affiliation(s)
- Liang Dong
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China; Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Zhihong Liu
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315000, China
| | - Zhuohang Xin
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315000, China.
| | - Changchun Song
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Bai
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxin Li
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Chi Zhang
- School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Cheng X, Dong Y, Fan F, Xiao S, Liu J, Wang S, Lin W, Zhou C. Shifts in the high-resolution spatial distribution of dissolved N 2O and the underlying microbial communities and processes in the Pearl River Estuary. WATER RESEARCH 2023; 243:120351. [PMID: 37517146 DOI: 10.1016/j.watres.2023.120351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Estuaries are significant sources of the ozone-depleting greenhouse gas N2O. However, owing to large spatial heterogeneity and discrete measurements, N2O emissions from estuaries are considerably uncertain. Microbial processes are disputed in terms of the dominant N2O production under severe human disturbance. Herein, combining real-time and high-resolution measurements with bioinformatics analysis, we accurately mapped the consecutive two-dimensional N2O distribution in the Pearl River Estuary (PRE), China, and revealed its underlying microbial mechanisms. Both the horizontal and vertical distributions of N2O concentrations varied greatly at fine scales. Supersaturated N2O concentrations (9.1 to 132.2 nmol/L) in the surface water decreased along the estuarine salinity gradient, with several emission hotspots scattering upstream. The vertical N2O distribution showed marked differences from complete mixing upstream to incomplete mixing downstream, with constant or changeable concentrations with increasing depth. Furthermore, spatially varied denitrifying and nitrifying microorganisms controlled the N2O production and distribution in the PRE, with denitrification playing the dominant role. The nirK-type and nirS-type denitrifying bacteria were the primary producers of N2O in the water and sediment columns, respectively. In addition, substrate concentration (NO3- and DOC) regulated N2O production by affecting key microbial processes, while physical influences (water-mass mixing and salt wedges) reshaped N2O distribution. With these information, a conceptual model of estuarine N2O production and distribution was constructed to generalize the possible biochemical processes under environmental constraints, which could provide insights into the N2O biogeochemical cycle and emission mitigation from a mechanistic perspective.
Collapse
Affiliation(s)
- Xiang Cheng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shangbin Xiao
- College of Hydraulic and Environment Engineering, China Three Gorges University, Yichang 443002, China; Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
| | - Jia Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Chunyang Zhou
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
4
|
Torregrosa-Crespo J, Miralles-Robledillo JM, Bernabeu E, Pire C, Martínez-Espinosa RM. Denitrification in hypersaline and coastal environments. FEMS Microbiol Lett 2023; 370:fnad066. [PMID: 37422443 PMCID: PMC10423024 DOI: 10.1093/femsle/fnad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
As the association of denitrification with global warming and nitrogen removal from ecosystems has gained attention in recent decades, numerous studies have examined denitrification rates and the distribution of denitrifiers across different environments. In this minireview, reported studies focused on coastal saline environments, including estuaries, mangroves, and hypersaline ecosystems, have been analysed to identify the relationship between denitrification and saline gradients. The analyses of the literature and databases stated the direct effect of salinity on the distribution patterns of denitrifiers. However, few works do not support this hypothesis thus making this topic controversial. The specific mechanisms by which salinity influences denitrifier distribution are not fully understood. Nevertheless, several physical and chemical environmental parameters, in addition to salinity, have been shown to play a role in structuring the denitrifying microbial communities. The prevalence of nirS or nirK denitrifiers in ecosystems is a subject of debate in this work. In general terms, in mesohaline environments, the predominant nitrite reductase is NirS type and, NirK is found predominantly in hypersaline environments. Moreover, the approaches used by different researchers are quite different, resulting in a huge amount of unrelated information, making it difficult to establish comparative analysis. The main techniques used to analyse the distribution of denitrifying populations along salt gradients have been also discussed.
Collapse
Affiliation(s)
- Javier Torregrosa-Crespo
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Eric Bernabeu
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
5
|
Zhang K, Zhang Y, Deng M, Wang P, Yue X, Wang P, Li W. Monthly dynamics of microbial communities and variation of nitrogen-cycling genes in an industrial-scale expanded granular sludge bed reactor. Front Microbiol 2023; 14:1125709. [PMID: 36876106 PMCID: PMC9978346 DOI: 10.3389/fmicb.2023.1125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction The expanded granular sludge bed (EGSB) is a major form of anaerobic digestion system during wastewater treatment. Yet, the dynamics of microbial and viral communities and members functioning in nitrogen cycling along with monthly changing physicochemical properties have not been well elucidated. Methods Here, by collecting the anaerobic activated sludge samples from a continuously operating industrial-scale EGSB reactor, we conducted 16S rRNA gene amplicon sequencing and metagenome sequencing to reveal the microbial community structure and variation with the ever-changing physicochemical properties along within a year. Results We observed a clear monthly variation of microbial community structures, while COD, the ratio of volatile suspended solids (VSS) to total suspended solids (TSS) (VSS/TSS ratio), and temperature were predominant factors in shaping community dissimilarities examined by generalized boosted regression modeling (GBM) analysis. Meanwhile, a significant correlation was found between the changing physicochemical properties and microbial communities (p <0.05). The alpha diversity (Chao1 and Shannon) was significantly higher (p <0.05) in both winter (December, January, and February) and autumn (September, October, and November) with higher organic loading rate (OLR), higher VSS/TSS ratio, and lower temperature, resulting higher biogas production and nutrition removal efficiency. Further, 18 key genes covering nitrate reduction, denitrification, nitrification, and nitrogen fixation pathways were discovered, the total abundance of which was significantly associated with the changing environmental factors (p <0.05). Among these pathways, the dissimilatory nitrate reduction to ammonia (DNRA) and denitrification had the higher abundance contributed by the top highly abundant genes narGH, nrfABCDH, and hcp. The COD, OLR, and temperature were primary factors in affecting DNRA and denitrification by GBM evaluation. Moreover, by metagenome binning, we found the DNRA populations mainly belonged to Proteobacteria, Planctomycetota, and Nitrospirae, while the denitrifying bacteria with complete denitrification performance were all Proteobacteria. Besides, we detected 3,360 non-redundant viral sequences with great novelty, in which Siphoviridae, Podoviridae, and Myoviridae were dominant viral families. Interestingly, viral communities likewise depicted clear monthly variation and had significant associations with the recovered populations (p <0.05). Discussion Our work highlights the monthly variation of microbial and viral communities during the continuous operation of EGSB affected by the predominant changing COD, OLR, and temperature, while DNRA and denitrification pathways dominated in this anaerobic system. The results also provide a theoretical basis for the optimization of the engineered system.
Collapse
Affiliation(s)
- Kun Zhang
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Yanling Zhang
- School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
| | - Maocheng Deng
- School of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, China
| | - Pengcheng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.,China National Electric Apparatus Research Institute Co., Ltd., Guangzhou, China
| | - Xiu Yue
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Niu Y, Hu W, Zhou T, He B, Chen X, Li Y. Diversity of nirS and nirK denitrifying bacteria in rhizosphere and non-rhizosphere soils of halophytes in Ebinur Lake Wetland. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2070030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yanhui Niu
- Comprehensive Microbe Resources Lab, School of life Sciences, Shihezi University, Shihezi, P. R. China
| | - Wenge Hu
- Comprehensive Microbe Resources Lab, School of life Sciences, Shihezi University, Shihezi, P. R. China
| | - Tingting Zhou
- Comprehensive Microbe Resources Lab, School of life Sciences, Shihezi University, Shihezi, P. R. China
| | - Bo He
- Comprehensive Microbe Resources Lab, School of life Sciences, Shihezi University, Shihezi, P. R. China
| | - Xuemei Chen
- Comprehensive Microbe Resources Lab, School of life Sciences, Shihezi University, Shihezi, P. R. China
| | - Yang Li
- Comprehensive Microbe Resources Lab, School of life Sciences, Shihezi University, Shihezi, P. R. China
| |
Collapse
|
7
|
Wang Z, Feng K, Wei Z, Wu Y, Isobe K, Senoo K, Peng X, Wang D, He Q, Du X, Li S, Li Y, Deng Y. Evaluation and redesign of the primers for detecting nitrogen cycling genes in environments. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
- College of Tropical Crops Hainan University Haikou China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
| | - Ziyan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Yueni Wu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences Peking University Beijing China
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Shuzhen Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology Dalian University of Technology Dalian China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences (CAS) Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
8
|
Cai M, Hong Y, Wu J, Moore SS, Vamerali T, Ye F, Wang Y. Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment. Microorganisms 2022; 10:microorganisms10071429. [PMID: 35889148 PMCID: PMC9317351 DOI: 10.3390/microorganisms10071429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Denitrification and anammox occur widely in aquatic ecosystems serving vital roles in nitrogen pollution removal. However, small waterbodies are sensitive to external influences; stormwater runoff carrying nutrients and oxygen, flows into waterbodies resulting in a disruption of geochemical and microbial processes. Nonetheless, little is known about how these short-term external inputs affect the microbial processes of nitrogen removal in small waterbodies. To investigate the effects of NO3−, NH4+, dissolved oxygen (DO) and organic C on microbial nitrogen removal in pond sediments, regulation experiments have been conducted using slurry incubation experiments and 15N tracer techniques in this study. It was demonstrated the addition of NO3− (50 to 800 μmol L−1) significantly promoted denitrification rates, as expected by Michaelis-Menten kinetics. Ponds with higher NO3− concentrations in the overlying water responded more greatly to NO3− additions. Moreover, N2O production was also promoted by such an addition of NO3−. Denitrification was significantly inhibited by the elevation of DO concentration from 0 to 2 mg L−1, after which no significant increase in inhibition was observed. Denitrification rates increased when organic C was introduced. Due to the abundant NH4+ in pond sediments, the addition demonstrated little influence on nitrogen removal. Moreover, anammox rates showed no significant changes to any amendment.
Collapse
Affiliation(s)
- Min Cai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; (M.C.); (Y.H.); (J.W.)
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; (M.C.); (Y.H.); (J.W.)
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; (M.C.); (Y.H.); (J.W.)
| | - Selina Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35122 Padova, Italy; (S.S.M.); (T.V.)
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35122 Padova, Italy; (S.S.M.); (T.V.)
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; (M.C.); (Y.H.); (J.W.)
- Correspondence: (F.Y.); (Y.W.)
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; (M.C.); (Y.H.); (J.W.)
- Correspondence: (F.Y.); (Y.W.)
| |
Collapse
|
9
|
Diverse key nitrogen cycling genes nifH, nirS and nosZ associated with Pichavaram mangrove rhizospheres as revealed by culture-dependent and culture-independent analyses. Arch Microbiol 2022; 204:109. [PMID: 34978623 DOI: 10.1007/s00203-021-02661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/02/2022]
Abstract
Mangroves are highly productive unique ecosystems harboring diverse unexplored microbial communities that play crucial roles in nutrient cycling as well as in maintaining ecosystem services. The mangrove-associated microbial communities transform the dead vegetation into nutrient sources of nitrogen, phosphorus, potash, etc. To understand the genetic and functional diversity of the bacterial communities involved in nitrogen cycling of this ecosystem, this study explored the diversity and distribution of both the nitrogen fixers and denitrifiers associated with the rhizospheres of Avicennia marina, Rhizophora mucronata, Suaeda maritima, and Salicornia brachiata of the Pichavaram mangroves. A combination of both culturable and unculturable (PCR-DGGE) approaches was adopted to explore the bacterial communities involved in nitrogen fixation by targeting the nifH genes, and the denitrifiers were explored by targeting the nirS and nosZ genes. Across the rhizospheres, Gammaproteobacteria was found to be predominant representing both nitrogen fixers and denitrifiers as revealed by culturable and unculturable analyses. Sequence analysis of soil nifH, nirS and nosZ genes clustered to unculturable, with few groups clustering with culturable groups, viz., Pseudomonas sp. and Halomonas sp. A total of 16 different culturable genera were isolated and characterized in this study. Other phyla like Firmicutes and Actinobacteria were also observed. The PCR-DGGE analysis also revealed the presence of 29 novel nifH sequences that were not reported earlier. Thus, the mangrove ecosystems serve as potential source for identifying unexplored novel microbial communities that contribute to nutrient cycling.
Collapse
|
10
|
Wang P, Li J, Luo X, Ahmad M, Duan L, Yin L, Fang B, Li S, Yang Y, Jiang L, Li W. Biogeographical distributions of nitrogen‐cycling functional genes in a subtropical estuary. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Pandeng Wang
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Jia‐Ling Li
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Xiao‐Qing Luo
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Manzoor Ahmad
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Li Duan
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Ling‐Zi Yin
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Bao‐Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi PR China
| | - Shan‐Hui Li
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
| | - Lin Jiang
- School of Biological Sciences Georgia Institute of Technology Atlanta GA USA
| | - Wen‐Jun Li
- State Key Laboratory of Biocontrol Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Ecology & School of Life Sciences Sun Yat‐Sen University Guangzhou PR China
- State Key Laboratory of Desert and Oasis Ecology Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi PR China
| |
Collapse
|
11
|
Miralles-Robledillo JM, Bernabeu E, Giani M, Martínez-Serna E, Martínez-Espinosa RM, Pire C. Distribution of Denitrification among Haloarchaea: A Comprehensive Study. Microorganisms 2021; 9:1669. [PMID: 34442748 PMCID: PMC8400030 DOI: 10.3390/microorganisms9081669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Microorganisms from the Halobacteria class, also known as haloarchaea, inhabit a wide range of ecosystems of which the main characteristic is the presence of high salt concentration. These environments together with their microbial communities are not well characterized, but some of the common features that they share are high sun radiation and low availability of oxygen. To overcome these stressful conditions, and more particularly to deal with oxygen limitation, some microorganisms drive alternative respiratory pathways such as denitrification. In this paper, denitrification in haloarchaea has been studied from a phylogenetic point of view. It has been demonstrated that the presence of denitrification enzymes is a quite common characteristic in Halobacteria class, being nitrite reductase and nitric oxide reductase the enzymes with higher co-occurrence, maybe due to their possible role not only in denitrification, but also in detoxification. Moreover, copper-nitrite reductase (NirK) is the only class of respiratory nitrite reductase detected in these microorganisms up to date. The distribution of this alternative respiratory pathway and their enzymes among the families of haloarchaea has also been discussed and related with the environment in which they constitute the major populations. Complete denitrification phenotype is more common in some families like Haloarculaceae and Haloferacaceae, whilst less common in families such as Natrialbaceae and Halorubraceae.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Elena Martínez-Serna
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (J.M.M.-R.); (E.B.); (M.G.); (E.M.-S.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
12
|
Guo H, Han S, Lee DJ. Genomic studies on natural and engineered aquatic denitrifying eco-systems: A research update. BIORESOURCE TECHNOLOGY 2021; 326:124740. [PMID: 33497924 DOI: 10.1016/j.biortech.2021.124740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Excess nitrogenous compounds in municipal or industrial wastewaters can stimulate growth of denitrifying bacteria, in return, to convert potentially hazardous nitrate to inorganic nitrogen gas. To explore the community structure, distributions and succession of functional strains, and their interactions with other microbial communities, contemporary studies were performed based on detailed genomic analysis. This mini-review updated contemporary genomic studies on denitrifying genes in natural and engineered aquatic systems, with the constructed wetlands being the demonstrative system for the latter. Prospects for the employment of genomic studies on denitrifying systems for process design, optimization and development of novel denitrifying processes were discussed.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan; College of Engineering, Tunghai University, Taichung 40070, Taiwan.
| |
Collapse
|
13
|
Chen Q, Fan J, Ming H, Su J, Wang Y, Wang B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China. MARINE POLLUTION BULLETIN 2020; 160:111621. [PMID: 32919123 DOI: 10.1016/j.marpolbul.2020.111621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The ability of denitrifying microorganisms to respond to different ecological pressures remains unknown, especially in marine sediments rich in various heavy metals. Here, gene abundance and transcriptional abundance of five functional denitrification genes (narG, nirK, nirS, norB, and nosZ) in Bohai Sea sediments were examined, and high-throughput Illumina sequencing was used to analyze the community structure of nirK and nirS denitrifying bacteria. The nirS- and nirK-type denitrifying bacteria were classified into different genera. The heavy metal content in sediments was negatively correlated with transcriptional abundance of denitrifying genes, and RNA: DNA ratio for each gene was highest in central Bohai Sea. These results indicated the distribution of nitrite reductase denitrifying bacterial communities was affected by depth, total nitrogen, total phosphorus and sediment grain size. Heavy metal contamination in sediment environment may negatively regulate the transcriptional abundance of denitrifying genes and cause geographical differences in the denitrifying bacterial community structure.
Collapse
Affiliation(s)
- Quanrui Chen
- National Marine Environmental Monitoring Center, Dalian 116023, China; Xiamen University, Xiamen 361000, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Hongxia Ming
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jie Su
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yantao Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China; Dalian Ocean University, Dalian 116000, China
| | - Bin Wang
- Dalian Ocean University, Dalian 116000, China
| |
Collapse
|
14
|
Dai HT, Zhu RB, Sun BW, Che CS, Hou LJ. Effects of Sea Animal Activities on Tundra Soil Denitrification and nirS- and nirK-Encoding Denitrifier Community in Maritime Antarctica. Front Microbiol 2020; 11:573302. [PMID: 33162954 PMCID: PMC7581892 DOI: 10.3389/fmicb.2020.573302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
In maritime Antarctica, sea animals, such as penguins or seals, provide a large amount of external nitrogen input into tundra soils, which greatly impact nitrogen cycle in tundra ecosystems. Denitrification, which is closely related with the denitrifiers, is a key step in nitrogen cycle. However, effects of sea animal activities on tundra soil denitrification and denitrifier community structures still have received little attention. Here, the abundance, activity, and diversity of nirS- and nirK-encoding denitrifiers were investigated in penguin and seal colonies, and animal-lacking tundra in maritime Antarctica. Sea animal activities increased the abundances of nirS and nirK genes, and the abundances of nirS genes were significantly higher than those of nirK genes (p < 0.05) in all tundra soils. Soil denitrification rates were significantly higher (p < 0.05) in animal colonies than in animal-lacking tundra, and they were significantly positively correlated (p < 0.05) with nirS gene abundances instead of nirK gene abundances, indicating that nirS-encoding denitrifiers dominated the denitrification in tundra soils. The diversity of nirS-encoding denitrifiers was higher in animal colonies than in animal-lacking tundra, but the diversity of nirK-encoding denitrifiers was lower. Both the compositions of nirS- and nirK-encoding denitrifiers were similar in penguin or seal colony soils. Canonical correspondence analysis indicated that the community structures of nirS- and nirK-encoding denitrifiers were closely related to tundra soil biogeochemical processes associated with penguin or seal activities: the supply of nitrate and ammonium from penguin guano or seal excreta, and low C:N ratios. In addition, the animal activity-induced vegetation presence or absence had an important effect on tundra soil denitrifier activities and nirK-encoding denitrifier diversities. This study significantly enhanced our understanding of the compositions and dynamics of denitrifier community in tundra ecosystems of maritime Antarctica.
Collapse
Affiliation(s)
- Hai-Tao Dai
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Ren-Bin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Bo-Wen Sun
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Chen-Shuai Che
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Raes EJ, Karsh K, Kessler AJ, Cook PLM, Holmes BH, van de Kamp J, Bodrossy L, Bissett A. Can We Use Functional Genetics to Predict the Fate of Nitrogen in Estuaries? Front Microbiol 2020; 11:1261. [PMID: 32655525 PMCID: PMC7325967 DOI: 10.3389/fmicb.2020.01261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.
Collapse
Affiliation(s)
- Eric J Raes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Kristen Karsh
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Adam J Kessler
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Bronwyn H Holmes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| |
Collapse
|
16
|
Abundance, diversity, and distribution patterns along with the salinity of four nitrogen transformation-related microbes in the Yangtze Estuary. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01561-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The abundance and composition of nitrogen transformation-related microbes with certain environmental parameters for living conditions provide information about the nitrogen cycle in the Yangtze Estuary. The aim of this study was to explore the impacts of salinity on four N-related microbes and reveal the phylogenetic characteristics of microorganisms in the Yangtze Estuary ecosystem. A molecular biology method was used for the quantitation and identification of four microbes in the Yangtze River: ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), denitrifying microbes (nirS-type), and anaerobic ammonia-oxidizing (anammox) bacteria. Sequence identification was performed on the levels of phylum, class, order, family, and genus, and the sequences were then matched to species.
Result
The results showed that the dominant species of AOA were crenarchaeote enrichment cultures, thaumarchaeote enrichment cultures, and Nitrosopumilus maritimus cultures, and the dominant AOB species were betaproteobacterium enrichment cultures and Nitrosomona sp. The denitrifying microbes were identified as the phylum Proteobacteria, classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, and the species Thauera selenatis. The dominant species of the anammox bacteria was Candidatus Brocadia sp. In the estuarine sediments of the Yangtze River, the nirS gene abundance (1.31 × 107–9.50 × 108 copies g−1 sediments) was the highest among all the detected genes, and the abundance of bacterial amoA, archaeal amoA, and nirS was significantly correlated. Closely correlated with the abundance of the bacterial amoA gene, salinity was an important factor in promoting the abundance and restraining the community diversity of AOB. Moreover, the distribution of the AOB species exhibited regional patterns in the estuarine zone.
Conclusions
The results indicated that salinity might promote abundance while limiting the diversity of AOB and that salinity might have reverse impacts on AOA. Denitrifying microbes, which showed a significant correlation with the other genes, were thought to interact with the other genes during nitrogen migration. The results also implied that AOA has a lower potential nitrification rate than AOB and that both the anammox and denitrification processes (defined by nirS gene) account for N2 production.
Collapse
|
17
|
Hu J, Zhou Y, Lei Z, Liu G, Hua Y, Zhou W, Wan X, Zhu D, Zhao J. Effects of Potamogeton crispus decline in the rhizosphere on the abundance of anammox bacteria and nirS denitrifying bacteria ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114018. [PMID: 31991343 DOI: 10.1016/j.envpol.2020.114018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH4+ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO3- showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH4+/NO3- being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.
Collapse
Affiliation(s)
- Jinlong Hu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhao Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyan Lei
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiong Wan
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Xie H, Hong Y, Liu H, Jiao L, Wu J, Wang L. Spatio-temporal shifts in community structure and activity of nirS-type denitrifiers in the sediment cores of Pearl River Estuary. PLoS One 2020; 15:e0231271. [PMID: 32315323 PMCID: PMC7173864 DOI: 10.1371/journal.pone.0231271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 12/04/2022] Open
Abstract
Denitrification, an important process in microbial mediated nitrogen cycle, plays important roles in nitrogen loss in estuarine sediments. However, the function of denitrifiers in the estuarine subsurface sediments remained poorly understood. In this study, we analyzed the potential activity, abundance and community structure of nirS-type denitrifiers using 15N-labeled incubation quantitative-PCR and high throughput sequencing techniques in sediment cores from Pearl River Estuary (PRE). Results showed that subsurface sediments had nearly same level denitrification potential activity compare to surface sediments, although the abundance of nirS gene decreased sharply from surface to bottom in sediment cores. Meanwhile, nirS gene abundance exhibit significant temporal variations, which is consistent with denitrification potential activity. Moreover, the community structure and diversity of nirS-type denitrifiers in sediment cores exhibited remarkable temporal shift pattern. For spatial variation, no significant difference was observed of denitrifiers community structure in each sediment core from the surface to the subsurface, while there were significant different diversity characteristic among different cores. Redundancy analysis (RDA) showed that multiple environmental factors including salinity, pH, oxidation-reduction potential, nutrient content and organic substances synergistically shaped the diversity and distribution of nirS-type denitrifers in PRE sediments. Our results showed that nirS-type denitrifers played important roles in the nitrogen removal in subsurface sediments of PRE.
Collapse
Affiliation(s)
- Haitao Xie
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
- The School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
- * E-mail: (YH); (HL)
| | - Huamin Liu
- The School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- * E-mail: (YH); (HL)
| | - Lijing Jiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Lixin Wang
- The School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
Wang Y, Qi L, Huang R, Wang F, Wang Z, Gao M. Characterization of Denitrifying Community for Application in Reducing Nitrogen: a Comparison of nirK and nirS Gene Diversity and Abundance. Appl Biochem Biotechnol 2020; 192:22-41. [PMID: 32212109 DOI: 10.1007/s12010-020-03250-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023]
Abstract
Studies have shown that the addition of biochar to agricultural soils has the potential to mitigate climate change by decreasing nitrous oxide (N2O) emissions resulting from denitrification. Rice paddy field soils have been known to have strong denitrifying activity, but the response of microbes to biochar for weakening denitrification in rice paddy field soils is not well known. In this work, compared with the chemical fertilizer alone, the chemical fertilizer + 20 t hm-2 biochar fertilizer slightly decreased denitrifying the nitrite reductase activity (S-NiR) and N2O emission without statistic difference, whereas the chemical fertilizer + 40 t hm-2 biochar significantly boosted them. The abundance of nir-denitrifiers contributed to S-NiR and N2O emission, especially nirS-denitrifiers, rather than the variation of community structure. Pearson correlation analysis showed that NO2--N was a key factor for controlling the abundance of nir-denitrifiers, S-NiR and N2O emission. The biochar addition fertilization treatments strongly shaped the community structure of nirK-denitrifiers, while the community structure of nirS-denitrifiers remained relatively stable. In addition, Paracoccus and Sinorhizobium were revealed to be as the predominant lineage of nirS- and nirK-containing denitrifiers, respectively. Distance-based redundancy analysis (db-RDA) showed that changes in the nir-denitrifier community structure were significantly related to soil organic carbon, NO3--N, and total phosphorus. Our findings suggest that, although the nirS- and nirK-denitrifiers are both controlling nitrite reductase, their responses to biochar addition fertilization treatments showed significant discrepancies of diversity, abundance, and contribution to N2O and S-NiR in a paddy soil.
Collapse
Affiliation(s)
- Yingyan Wang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China
| | - Le Qi
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China
| | - Rong Huang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China.,College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuhua Wang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China
| | - Zifang Wang
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China.
| | - Ming Gao
- College of Resources and Environment, Southwest University, No. 2, Tiansheng Street, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
20
|
Broman E, Motwani NH, Bonaglia S, Landberg T, Nascimento FJA, Sjöling S. Denitrification responses to increasing cadmium exposure in Baltic Sea sediments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105328. [PMID: 31629202 DOI: 10.1016/j.aquatox.2019.105328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Benthic ecosystems have come under intense pressure, due to eutrophication-driven oxygen decline and industrial metal contamination. One of the most toxic metals is Cadmium (Cd), which is lethal to many aquatic organisms already at low concentrations. Denitrification by facultative anaerobic microorganisms is an essential process to transform, but also to remove, excess nitrate in eutrophied systems. Cd has been shown to decrease denitrification and sequester free sulfide, which is available when oxygen is scarce and generally inhibits complete denitrification (i.e. N2O to N2). In polluted sediments, an interaction between oxygen and Cd may influence denitrification and this relationship has not been studied. For example, in the Baltic Sea some sediments are double exposed to both Cd and hypoxia. In this study, we examined how the double exposure of Cd and fluctuations in oxygen affects denitrification in Baltic Sea sediment. Results show that oxygen largely regulated N2O and N2 production after 21 days of exposure to Cd (ranging from 0 to 500 μg/L, 5 different treatments, measured by the isotope pairing technique (IPT)). In the high Cd treatment (500 μg/L) the variation in N2 production increased compared to the other treatments. Increases in N2 production are suggested to be an effect of 1) enhanced nitrification that increases NO3- availability thus stimulating denitrification, and 2) Cd successfully sequestrating sulfide (yielding CdS), which allows for full denitrification to N2. The in situ field sediment contained initially high Cd concentrations in the pore water (∼10 μg/L) and microbial communities might already have been adapted to metal stress, making the effect of low Cd levels negligible. Here we show that high levels of cadmium pollution might increase N2 production and influence nitrogen cycling in marine sediments.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden.
| | - Nisha H Motwani
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, 141 89, Sweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden; Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Tommy Landberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, 106 91, Sweden
| | - Sara Sjöling
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, 141 89, Sweden
| |
Collapse
|
21
|
Coupling between Nitrification and Denitrification as well as Its Effect on Phosphorus Release in Sediments of Chinese Shallow Lakes. WATER 2019. [DOI: 10.3390/w11091809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coupling of nitrification and denitrification has attracted wide attention since it plays an important role in mitigating eutrophication in aquatic ecosystems. However, the underlying mechanism is largely unknown. In order to study the coupling relationship between nitrification and denitrification, as well as its effect on phosphorus release, nutrient levels, functional gene abundance and potential rates involved in nitrification and denitrification were analyzed in three shallow urban lakes with different nutrient status. Trophic level was found positively related to not only copy numbers of functional genes of nitrosomonas and denitrifiers, but also the potential nitrification and denitrification rates. In addition, the concentrations of different forms of phosphorus showed a positive correlation with the number of nitrosomonas and denitrifiers, as well as potential nitrification and denitrification rates. Furthermore, the number of functional genes of nitrosomonas exhibited positive linear correlations with functional genes and rate of denitrification. These facts suggested that an increase in phosphorus concentration might have promoted the coupling of nitrification and denitrification by increasing their functional genes. Strong nitrification–denitrification fueled the nitrogen removal from the system, and accelerated the phosphorus release due to the anaerobic state caused by organic matter decomposition and nitrification. Moreover, dissolved organic nitrogen was also released into the water column during this process, which was favorable for balancing the nitrogen and phosphorus ratio. In conclusion, the close coupling between nitrification and denitrification mediated by nitrifier denitrification had an important effect on the cycling mode of nitrogen and phosphorus.
Collapse
|
22
|
Dale H, Taylor JD, Solan M, Lam P, Cunliffe M. Polychaete mucopolysaccharide alters sediment microbial diversity and stimulates ammonia-oxidising functional groups. FEMS Microbiol Ecol 2018; 95:5247715. [DOI: 10.1093/femsec/fiy234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Harriet Dale
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Joe D Taylor
- School of Environment and Life Sciences, University of Salford, The Crescent, Salford, M5 4WT, UK
| | - Martin Solan
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Phyllis Lam
- Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Marine Biology and Ecology Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
23
|
Mai YZ, Lai ZN, Li XH, Peng SY, Wang C. Structural and functional shifts of bacterioplanktonic communities associated with spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary, South China. MARINE POLLUTION BULLETIN 2018; 136:309-321. [PMID: 30509812 DOI: 10.1016/j.marpolbul.2018.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 06/09/2023]
Abstract
In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.
Collapse
Affiliation(s)
- Yong-Zhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zi-Ni Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Hui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Song-Yao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
24
|
Lisa JA, Jayakumar A, Ward BB, Song B. nirS-type denitrifying bacterial assemblages respond to environmental conditions of a shallow estuary. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:766-778. [PMID: 28914491 DOI: 10.1111/1758-2229.12594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered 'generalist' and 'specialist' archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 8%-29% of the abundant NRE archetypes. Archetypes found in a particular site, 'specialists', were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe2+ . A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H2 S respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among nirS-type denitrifying communities and supports the essential role of individual community members in overall ecosystem function.
Collapse
Affiliation(s)
- Jessica A Lisa
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & May, Gloucester Point, VA, USA
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Bongkeun Song
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & May, Gloucester Point, VA, USA
| |
Collapse
|
25
|
Lee JA, Francis CA. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition. Environ Microbiol 2017; 19:4897-4912. [PMID: 28892301 DOI: 10.1111/1462-2920.13920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022]
Abstract
Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems.
Collapse
Affiliation(s)
- Jessica A Lee
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
26
|
Lee SH, Megonigal PJ, Kang H. How do Elevated CO 2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System. MICROBIAL ECOLOGY 2017; 74:670-680. [PMID: 28331950 DOI: 10.1007/s00248-017-0960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 120-749, South Korea
| | | | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 120-749, South Korea.
| |
Collapse
|
27
|
Li F, Li M, Shi W, Li H, Sun Z, Gao Z. Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary, China. Can J Microbiol 2017; 63:708-718. [PMID: 28414921 DOI: 10.1139/cjm-2017-0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Denitrification is considered to be the critical process in removing reactive nitrogen in estuarine ecosystems. In the present study, the abundance, diversity, and community structure of nirK- and nirS-type denitrifiers were compared in sediments from the Yellow River estuary. Quantitative polymerase chain reaction showed that the 2 types of denitrifiers exhibited different distribution patterns among the samples, indicating their distinct habitat preference. Phylogenetic analysis revealed that most of the sequences from clusters I, III, IV, and V for nirK-type denitrifiers were dominant and were distributed at sites where dissolved oxygen (DO) was lower, and the sequences in the other clusters were dominant at sites with higher DO. However, there was no spatially heterogeneous distribution for the nirS-type denitrifier community. Canonical correlation analysis and correlation analysis demonstrated that the community structure of nirK was more responsive to environmental factors than was that of nirS. Inversely, the abundance and α-diversity targeting nirS gene could be more easily influenced by environmental parameters. These findings can extend our current knowledge about the distribution patterns of denitrifying bacteria and provide a basic theoretical reference for the dynamics of denitrifying communities in estuarine ecosystem of China.
Collapse
Affiliation(s)
- Fenge Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Mingcong Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wenchong Shi
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Han Li
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhongtao Sun
- b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zheng Gao
- a State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, People's Republic of China.,b College of Life Sciences, Shandong Agricultural University, Tai'an, People's Republic of China.,c State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|