1
|
Lu WL, Xie XG, Ai HW, Wu HF, Dai YY, Wang LN, Rahman K, Su J, Sun K, Han T. Crosstalk between H 2O 2 and Ca 2+ signaling is involved in root endophyte-enhanced tanshinone biosynthesis of Salvia miltiorrhiza. Microbiol Res 2024; 285:127740. [PMID: 38795408 DOI: 10.1016/j.micres.2024.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.
Collapse
Affiliation(s)
- Wei-Lan Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xing-Guang Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Hong-Wei Ai
- The 967th hospital of PLA, Dalian 116000, People's Republic of China
| | - Hui-Fen Wu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Yuan-Yuan Dai
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, People's Republic of China
| | - Lu-Nuan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
2
|
Sun K, Pan YT, Jiang HJ, Xu JY, Ma CY, Zhou J, Liu Y, Shabala S, Zhang W, Dai CC. Root endophyte-mediated alteration in plant H2O2 homeostasis regulates symbiosis outcome and reshapes the rhizosphere microbiota. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3153-3170. [PMID: 38394357 DOI: 10.1093/jxb/erae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and the root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of the root endophyte in reshaping the rhizosphere microbiota.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jia-Yan Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jiayu Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 60909, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
3
|
Ma CY, Zhang W, Luo DL, Jiang HJ, Wu XH, Sun K, Dai CC. Fungal endophyte promotes plant growth and disease resistance of Arachis hypogaea L. by reshaping the core root microbiome under monocropping conditions. Microbiol Res 2023; 277:127491. [PMID: 37769598 DOI: 10.1016/j.micres.2023.127491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Fungal endophytes play critical roles in helping plants adapt to adverse environmental conditions. The root endophyte Phomopsis liquidambaris can promote the growth and disease control of peanut plants grown under monocropping systems; however, how such beneficial traits are produced is largely unknown. Since the plant endophytic microbiome is directly linked to plant growth and health, and the composition of which has been found to be potentially influenced by microbial inoculants, this study aims to clarify the roles of root endophytic bacterial communities in P. liquidambaris-mediated plant fitness enhancement under monocropping conditions. Here, we found that P. liquidambaris inoculation induced significant changes in the root bacterial community: enriching some beneficial bacteria such as Bradyrhizobium sp. and Streptomyces sp. in the roots, and improving the core microbial-based interaction network. Next, we assembled and simplified a synthetic community (SynII) based on P. liquidambaris-derived key taxa, including Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces sp. MB6, and Bradyrhizobium sp. MB15. Furthermore, the application of the simplified synthetic community suppressed root rot caused by Fusarium oxysporum, promoted plant growth, and increased peanut yields under continuous monocropping conditions. The resistance of synII to F. oxysporum is related to the increased activity of defense enzymes. In addition, synII application significantly increased shoot and root biomass, and yield by 35.56%, 81.19%, and 34.31%, respectively. Collectively, our results suggest that the reshaping of root core microbiota plays an important role in the probiotic-mediated adaptability of plants under adverse environments.
Collapse
Affiliation(s)
- Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiao-Han Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology and Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
5
|
Du YC, Kong LJ, Cao LS, Zhang W, Zhu Q, Ma CY, Sun K, Dai CC. Endophytic Fungus Phomopsis liquidambaris Enhances Fe Absorption in Peanuts by Reducing Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2022; 13:872242. [PMID: 35574149 PMCID: PMC9100952 DOI: 10.3389/fpls.2022.872242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency in alkaline calcium soil is a problem that needs to be solved urgently as Fe is an essential and commonly limiting nutrient for plants. Endophytic fungus, Phomopsis liquidambaris (P. liquidambaris), has been reported to promote Fe absorption in peanuts (Arachis hypogaea L.), however, the mechanisms remain unclear. Under prolonged Fe deficiency, an increase in hydrogen peroxide (H2O2) often triggers a series of signaling events and leads to the inhibition of Fe acquisition. The main purpose of this study was to explore whether and how the endophytic fungus P. liquidambaris promote Fe absorption in peanut through regulating H2O2 and assisting in resisting oxidative stress. In this study, we detected the Fe deficiency-induced transcription factor (FIT), Fe2+ transporter (IRT1), and ferric reduction oxidase 2 (FRO2) of peanuts, and confirmed that they were negatively related to Fe concentration. Similarly, FIT, IRT1, and FRO2 were also inhibited by H2O2. The addition of P. liquidambaris reduces H2O2 under Fe-deficiency with an increase in Fe content, while the exogenous addition of H2O2 further decreases it, and the addition of catalase (CAT) under Fe-deficiency reverses this phenomenon. Through transcriptome analysis, we proved that the expression of FIT, IRT1, FRO2 and CAT are consistent with our hypothesis, and P. liquidambaris has a stress-mitigating effect on peanuts mainly via CAT, glutathione peroxidase, and malondialdehyde. Our study proved the Fe-absorption promoting effect and stress mitigation effect of P. liquidambaris under Fe-deficiency in peanuts, and their combined usage may help peanuts grow better.
Collapse
|
6
|
Overexpression of chitinase in the endophyte Phomopsis liquidambaris enhances wheat resistance to Fusarium graminearum. Fungal Genet Biol 2021; 158:103650. [PMID: 34923123 DOI: 10.1016/j.fgb.2021.103650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022]
Abstract
Fusarium head blight (FHB) is a disease that affects wheat crops worldwide and is caused by Fusarium graminearum. Effective and safe strategies for the prevention and treatment of the disease are very limited. Phomopsis liquidambaris, a universal endophyte, can colonize wheat. Two engineered strains, Phomopsis liquidambaris OE-Chi and IN-Chi, were constructed by transformation with a plasmid and integration of a chitinase into the genome, respectively. The OE-Chi and IN-Chi strains could inhibit the expansion of Fusarium sp. in plate confrontation assays in vitro. Colonization of the OE-Chi strain in wheat showed better effects than colonization of the IN-Chi strain and alleviated the inhibition of wheat growth caused by F. graminearum. The shoot length, root length and fresh weight of infected wheat increased by 164.9%, 115.4%, and 190.7%, respectively, when the plants were inoculated with the OE-Chi strain. The peroxidase (POD) activity in the wheat root increased by 38.0%, and it was maintained at a high level in the shoot, which suggested that the OE-Chi strain could enhance the resistance of wheat to F. graminearum. The root and shoot superoxide dismutase (SOD) activities were decreased by 11.8% and 19.0%, respectively, which may be helpful for colonization by the OE-Chi strain. These results suggested that the Phomopsis liquidambaris OE-Chi strain may be a potential endophyte in the biocontrol of FHB.
Collapse
|
7
|
Wang Y, Yuan J, Li S, Hui L, Li Y, Chen K, Meng T, Yu C, Leng F, Ma J. Comparative analysis of carbon and nitrogen metabolism, antioxidant indexes, polysaccharides and lobetyolin changes of different tissues from Codonopsis pilosula co-inoculated with Trichoderma. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153546. [PMID: 34736004 DOI: 10.1016/j.jplph.2021.153546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Codonopsis pilosula is a traditional Chinese herbal medicinal plant and contains various bioactive components, such as C. pilosula polysaccharides (CPPs) and lobetyolin (Lob). Hydrogen peroxide (H2O2) and nitric oxide (NO) are gaseous molecule and have been well known for their ability to relieve some adverse influences on plant from abiotic stress. Endophytic fungus is non-pathogenic plant-associated fungus that could play a significant role in improving plant tolerance by signal molecule. In this work, we determined how inoculation of Trichoderma strain RHTA01 with C. pilosula changed the plant's growth, metabolite accumulation, and related enzyme activity. Results demonstrated that application of Trichoderma strain RHTA01 significantly improved the growth of C. pilosula. Moreover, it noticeably decreased antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activity in C. pilosula leaves, reduced the content of H2O2 and malondialdehyde (MDA), and weakened the peroxidation of cell membrane lipids, which reduced the damage of abiotic stress to C. pilosula. Research has shown that it had obvious effects on levels of nitrogen and carbon metabolic enzymes. For example, sucrose synthase (SS) and acid invertase (AI) levels in C. pilosula roots were nearly 1.43 and 1.7 times higher, respectively, than those in the control (CK) group. In addition, it was notable that the production of CPPs and Lob, the most significant secondary metabolites in C. pilosula, were influenced by Trichoderma strain RHTA01. The obtained results indicate that inoculating C. pilosula with Trichoderma stimulates the carbon and nitrogen metabolism of the plant, and helps to increase the content of CPPs and Lob in the root of the plant.
Collapse
Affiliation(s)
- Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jiaping Yuan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shaowei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Hui
- Gansu Shule River Basin Water Resources Bureau, Yumen 735200, China.
| | - Yuanli Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Kai Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tongtong Meng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Gansu Academy for water Conservancy, Lanzhou 730030, China
| | - Chengqun Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
8
|
Muñoz VL, Figueredo MS, Reinoso H, Fabra A. Role of ethylene in effective establishment of the peanut-bradyrhizobia symbiotic interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1141-1148. [PMID: 34490719 DOI: 10.1111/plb.13333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ethylene has been implicated in nitrogen fixing symbioses in legumes, where rhizobial invasion occurs via infection threads (IT). In the symbiosis between peanut (Arachis hypogaea L.) and bradyrhizobia, the bacteria penetrate the root cortex intercellularly and IT are not formed. Little attention has been paid to the function of ethylene in the establishment of this symbiosis. The aim of this article is to evaluate whether ethylene plays a role in the development of this symbiotic interaction and the participation of Nod Factors (NF) in the regulation of ethylene signalling. Manipulation of ethylene in peanut was accomplished by application of 1-aminocyclopropane-1-carboxylic acid (ACC), which mimics applied ethylene, or AgNO3, which blocks ethylene responses. To elucidate the participation of NF in the regulation of ethylene signalling, we inoculated plants with a mutant isogenic rhizobial strain unable to produce NF and evaluated the effect of AgNO3 on gene expression of NF and ethylene responsive signalling pathways. Data revealed that ethylene perception is required for the formation of nitrogen-fixing nodules, while addition of ACC does not affect peanut symbiotic performance. This phenotypic evidence is in agreement with transcriptomic data from genes involved in symbiotic and ethylene signalling pathways. NF seem to modulate the expression of ethylene signalling genes. Unlike legumes infected through IT formation, ACC addition to peanut does not adversely affect nodulation, but ethylene perception is required for establishment of this symbiosis. Evidence for the contribution of NF to the modulation of ethylene-inducible defence gene expression is provided.
Collapse
Affiliation(s)
- V L Muñoz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - M S Figueredo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - H Reinoso
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
9
|
Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide. Sci Rep 2021; 11:2365. [PMID: 33504905 PMCID: PMC7840948 DOI: 10.1038/s41598-021-81990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Shiraia bambusicola has been used as a traditional Chinese medicine for a long history. Its major medicinal active metabolites are perylenequinones, including hypocrellin A, elsinochrome A and so on. At present, the fermentation yield of perylenequinones is low, and its complex biosynthesis and regulatory pathways are still unclear. In this study, nitric oxide, as a downstream signal molecule of hydrogen peroxide, regulates the biosynthesis of perylenequinones. Exogenous addition of 0.01 mM sodium nitroprusside (nitric oxide donor) can promote perylenequinones production by 156% compared with the control. Further research found that hydrogen peroxide and nitric oxide increased the transcriptional level of the biosynthetic genes of hypocrellin A. The results showed that nitric oxide is involved in the biosynthesis and regulation of perylenequinones in Shiraia bambusicola as a signal molecule. In the future, the yield of perylenequinones can be increased by adding exogenous nitric oxide in fermentation.
Collapse
|
10
|
Burragoni SG, Jeon J. Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 2021; 245:126691. [PMID: 33508761 DOI: 10.1016/j.micres.2020.126691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Endophytes are emerging as integral components of plant microbiomes. Some of them play pivotal roles in plant development and plant responses to pathogens and abiotic stresses, whereas others produce useful and/or interesting secondary metabolites. The appreciation of their abilities to affect plant phenotypes and produce useful compounds via genetic and molecular interactions has paved the way for these abilities to be exploited for health and welfare of plants, humans and ecosystems. Here we comprehensively review current and potential applications of endophytes in the agricultural, pharmaceutical, and industrial sectors. In addition, we briefly discuss the research objectives that should be focused upon in the coming years in order for endophytes and their metabolites to be fully harnessed for potential use in diverse areas.
Collapse
Affiliation(s)
- Sravanthi Goud Burragoni
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
11
|
Lou HW, Zhao Y, Chen BX, Yu YH, Tang HB, Ye ZW, Lin JF, Guo LQ. Cmfhp Gene Mediates Fruiting Body Development and Carotenoid Production in Cordyceps militaris. Biomolecules 2020; 10:biom10030410. [PMID: 32155914 PMCID: PMC7175373 DOI: 10.3390/biom10030410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Cordyceps militaris fruiting bodies contain a variety of bioactive components that are beneficial to the human body. However, the low yield of fruiting bodies and the low carotenoid content in C. militaris have seriously hindered the development of the C. militaris industry. To elucidate the developmental mechanism of the fruiting bodies of C. militaris and the biosynthesis mechanism of carotenoids, the function of the flavohemoprotein-like Cmfhp gene of C. militaris was identified for the first time. The Cmfhp gene was knocked out by the split-marker method, and the targeted gene deletion mutant ΔCmfhp was obtained. An increased nitric oxide (NO) content, no fruiting body production, decreased carotenoid content, and reduced conidial production were found in the mutant ΔCmfhp. These characteristics were restored when the Cmfhp gene expression cassette was complemented into the ΔCmfhp strain by the Agrobacterium tumefaciens-mediated transformation method. Nonetheless, the Cmfhp gene had no significant effect on the mycelial growth rate of C. militaris. These results indicated that the Cmfhp gene regulated the biosynthesis of NO and carotenoids, the development of fruiting bodies, and the formation of conidia. These findings potentially pave the way to reveal the developmental mechanism of fruiting bodies and the biosynthesis mechanism of carotenoids in C. militaris.
Collapse
Affiliation(s)
- Hai-Wei Lou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;
| | - Yu Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;
| | - Bai-Xiong Chen
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Ying-Hao Yu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Hong-Biao Tang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
- Correspondence: (J.-F.L.); (L.-Q.G.)
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
- Correspondence: (J.-F.L.); (L.-Q.G.)
| |
Collapse
|
12
|
Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME JOURNAL 2020; 14:1015-1029. [PMID: 31974462 DOI: 10.1038/s41396-020-0587-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The access of rhizobia to legume host is a prerequisite for nodulation. Rhizobia are poorly motile in soil, while filamentous fungi are known to grow extensively across soil pores. Since root exudates-driven bacterial chemotaxis cannot explain rhizobial long-distance dispersal, mycelia could constitute ideal dispersal networks to help rhizobial enrichment in the legume rhizosphere from bulk soil. Thus, we hypothesized that mycelia networks act as vectors that enable contact between rhizobia and legume and influence subsequent nodulation. By developing a soil microcosm system, we found that a facultatively biotrophic fungus, Phomopsis liquidambaris, helps rhizobial migration from bulk soil to the peanut (Arachis hypogaea) rhizosphere and, hence, triggers peanut-rhizobium nodulation but not seen in the absence of mycelia. Assays of dispersal modes suggested that cell proliferation and motility mediated rhizobial dispersal along mycelia, and fungal exudates might contribute to this process. Furthermore, transcriptomic analysis indicated that genes associated with the cell division, chemosensory system, flagellum biosynthesis, and motility were regulated by Ph. liquidambaris, thus accounting for the detected rhizobial dispersal along hyphae. Our results indicate that rhizobia use mycelia as dispersal networks that migrate to legume rhizosphere and trigger nodulation. This work highlights the importance of mycelial network-based bacterial dispersal in legume-rhizobium symbiosis.
Collapse
|
13
|
Chitnis VR, Suryanarayanan TS, Nataraja KN, Prasad SR, Oelmüller R, Shaanker RU. Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. FRONTIERS IN PLANT SCIENCE 2020; 11:561007. [PMID: 33193487 PMCID: PMC7652991 DOI: 10.3389/fpls.2020.561007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
Endophytes are non-disease causing microbes (bacteria and fungi) surviving in living tissues of plants. Their intimate association and possible coevolution with their plant partners have resulted in them contributing to an array of plant growth benefits ranging from enhanced growth and biomass accumulation, tolerance to abiotic and biotic stresses and in nutrient acquisition. The last couple of decades have witnessed a burgeoning literature on the role of endophytes (Class 3 type) in regulating plant growth and development and their adaptation to abiotic and biotic stresses. Though the underlying mechanisms of plant-endophyte interactions are far from clear, several studies have raised the hope of their potential application in agriculture, especially in mitigating abiotic and biotic stresses. The use of endophytes is envisaged as a route to reduce the production cost and burden on the environment by lessening the dependence on breeding for crop improvement and agrochemicals. Unfortunately, save a few well documented examples of their use, a little of these insights has been translated into actual agricultural applications. Here, we reflect on this paucity and elaborate on some of the important bottlenecks that might stand in way of fully realizing the potential that endophytes hold for crop improvement. We stress the need to study various facets of the endophyte-plant association for their gainful application in agriculture.
Collapse
Affiliation(s)
- Vijaya R. Chitnis
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, India
- *Correspondence: Vijaya R. Chitnis,
| | - Trichur S. Suryanarayanan
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - S. Rajendra Prasad
- Department of Seed Science and Technology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden Institute, Friedrich-Schiller – University, Jena, Germany
| | - R. Uma Shaanker
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore, India
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, India
- R. Uma Shaanker,
| |
Collapse
|
14
|
Abstract
Endophytic fungi play an important role in balancing the ecosystem and boosting host growth; however, the underpinning mechanisms remain poorly understood. Here, we found that endophytic fungal colonization with P. liquidambaris significantly increased the productivity, nodulation, and N2 fixation of peanuts through the secretion of specific root exudates. We provide a reasonable mechanism explaining how P. liquidambaris promotes peanut nodulation and N2 fixation, whereby the specific root exudates produced by P. liquidambaris colonization decrease rhizosphere soil nitrate (NO3−) and increase the population and biological activities of peanut-nodulating-related Bradyrhizobium strains, which is beneficial to enhancing the peanut-Bradyrhizobium symbiotic interaction. Our study provides reliable empirical evidence to show the mechanism of how an exotic endophytic fungus drives an increase in nodulation and N2 fixation, which will be helpful in erecting a resource-efficient and sustainable agricultural system. Endophytic fungi play important roles in the modification of ecosystem productivity; however, the underlying mechanisms are only partly understood. A 2-year field plot experiment verified that the endophytic fungus Phomopsis liquidambaris increased peanut (Arachis hypogaea L.) yields and significantly increased nodulation and N2 fixation regardless of whether N fertilizers were added. Root exudates collected from P. liquidambaris-colonized plants significantly improved nodulation and N2 fixation. Rhizosphere stimulation experiments further showed that colonized root exudates had significantly decreased soil nitrate (NO3−) concentrations, with decreased abundance and diversity of ammonia oxidizing archaea (AOA). In contrast, the abundance and diversity of diazotrophs significantly increased, and most diazotrophs identified were peanut nodulation-related strains (Bradyrhizobium sp.). P. liquidambaris symbiosis increased the expression of phenolic and flavonoid synthesis-related genes, and the derived phenolics and flavonoids could effectively increase the chemotaxis, biofilm formation, and nodC gene expression (nodulation-related biological processes) of the Bradyrhizobium strain. Metabolic pattern analysis showed that phenolics and flavonoids are more likely to accumulate to higher levels in the rhizosphere soil of peanuts colonized with P. liquidambaris. Finally, a synthetic root exudate experiment further confirmed the underlying mechanisms for the P. liquidambaris-induced improvement in nodulation and N2 fixation, i.e., that the specific root exudates derived from P. liquidambaris colonization decrease nitrate concentration and increase the population and biological activities of peanut nodulation-related Bradyrhizobium species, which beneficially enhance peanut-Bradyrhizobium interactions. Therefore, this study is the first to provide new insight into a positive relationship between an exotic endophytic fungus, crop nodulation, and N2 fixation increase.
Collapse
|
15
|
Xie XG, Zhang FM, Wang XX, Li XG, Dai CC. Phomopsis liquidambari colonization promotes continuous cropping peanut growth by improving the rhizosphere microenvironment, nutrient uptake and disease incidence. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1898-1907. [PMID: 30267426 DOI: 10.1002/jsfa.9385] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The continuous cropping of peanuts is a primary cause of yield and quality loss. Solutions to this problem should be therefore developed to ensure the sustainability of peanut production. RESULTS In this study, colonization by the endophytic fungus Phomopsis liquidambari was detected, which led to significantly improved rhizosphere soil microenvironment, enhanced N, P and K assimilation and suppressed incidence of peanut disease. Statistical analysis demonstrated that the yield enhancement was significantly correlated with improvement of the rhizosphere soil microenvironment and the peanut's physiological status by P. liquidambari colonization. In addition, P. liquidambari colonization also significantly improved peanut quality. CONCLUSION Our results indicate that the practical application of the endophytic fungus P. liquidambari has a strong potential to alleviate the obstacles associated with continuous peanut cropping under field conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng-Min Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xing-Xiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Jiangxi Key Laboratory of Ecological Research of Red Soil, Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China
| | - Xiao-Gang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Jiangxi Key Laboratory of Ecological Research of Red Soil, Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Zhang W, Sun K, Shi RH, Yuan J, Wang XJ, Dai CC. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N 2 -fixation. PLANT, CELL & ENVIRONMENT 2018; 41:2093-2108. [PMID: 29469227 DOI: 10.1111/pce.13170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
Beneficial fungal and rhizobial symbioses share commonalities in phytohormones responses, especially in auxin signalling. Mutualistic fungus Phomopsis liquidambari effectively increases symbiotic efficiency of legume peanut (Arachis hypogaea L.) with another microsymbiont, bradyrhizobium, but the underlying mechanisms are not well understood. We quantified and manipulated the IAA accumulation in ternary P. liquidambari-peanut-bradyrhizobial interactions to uncover its role between distinct symbioses. We found that auxin signalling is both locally and systemically induced by the colonization of P. liquidambari with peanut and further confirmed by Arabidopsis harbouring auxin-responsive reporter, DR5:GUS, and that auxin action, including auxin transport, is required to maintain fungal symbiotic behaviours and beneficial traits of plant during the symbiosis. Complementation and action inhibition experiments reveal that auxin signalling is involved in P. liquidambari-mediated nodule development and N2 -fixation enhancement and symbiotic gene activation. Further analyses showed that blocking of auxin action compromised the P. liquidambari-induced nodule phenotype and physiology changes, including vascular bundle development, symbiosome and bacteroids density, and malate concentrations, while induced the accumulation of starch granules in P. liquidambari-inoculated nodules. Collectively, our study demonstrated that auxin signalling activated by P. liquidambari symbiosis is recruited by peanut for bradyrhizobial symbiosis via symbiotic signalling pathway activation and nodule carbon metabolism enhancement.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
17
|
Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl Microbiol Biotechnol 2018; 102:6279-6298. [PMID: 29808328 DOI: 10.1007/s00253-018-9101-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Endophytes are microorganisms that colonize the interior of host plants without causing apparent disease. They have been widely studied for their ability to modulate relationships between plants and biotic/abiotic stresses, often producing valuable secondary metabolites that can affect host physiology. Owing to the advantages of microbial fermentation over plant/cell cultivation and chemical synthesis, endophytic fungi have received significant attention as a mean for secondary metabolite production. This article summarizes currently reported results on plant-endophyte interaction hypotheses and highlights the biotechnological applications of endophytic fungi and their metabolites in agriculture, environment, biomedicine, energy, and biocatalysts. Current bottlenecks in industrial development and commercial applications as well as possible solutions are also discussed.
Collapse
|
18
|
Izaguirre-Mayoral ML, Brito M, Baral B, Garrido MJ. Silicon and Nitrate Differentially Modulate the Symbiotic Performances of Healthy and Virus-Infected Bradyrhizobium-nodulated Cowpea (Vigna unguiculata), Yardlong Bean (V. unguiculata subsp. sesquipedalis) and Mung Bean (V. radiata). PLANTS (BASEL, SWITZERLAND) 2017; 6:E40. [PMID: 28914770 PMCID: PMC5620596 DOI: 10.3390/plants6030040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022]
Abstract
The effects of 2 mM silicon (Si) and 10 mM KNO₃ (N)-prime signals for plant resistance to pathogens-were analyzed in healthy and Cowpea chlorotic mottle virus (CCMV) or Cowpea mild mottle virus (CMMV)-infected Bradyrhizobium-nodulated cowpea, yardlong bean and mung bean plants. In healthy plants of the three Vigna taxa, nodulation and growth were promoted in the order of Si + N > N > Si > controls. In the case of healthy cowpea and yardlong bean, the addition of Si and N decreased ureide and α-amino acids (AA) contents in the nodules and leaves in the order of Si + N> N > Si > controls. On the other hand, the addition of N arrested the deleterious effects of CCMV or CMMV infections on growth and nodulation in the three Vigna taxa. However, the addition of Si or Si + N hindered growth and nodulation in the CCMV- or CMMV-infected cowpea and yardlong bean, causing a massive accumulation of ureides in the leaves and nodules. Nevertheless, the AA content in leaves and nodules of CCMV- or CMMV-infected cowpea and yardlong bean was promoted by Si but reduced to minimum by Si + N. These results contrasted to the counteracting effects of Si or Si + N in the CCMV- and CMMV-infected mung bean via enhanced growth, nodulation and levels of ureide and AA in the leaves and nodules. Together, these observations suggest the fertilization with Si + N exclusively in virus-free cowpea and yardlong bean crops. However, Si + N fertilization must be encouraged in virus-endangered mung bean crops to enhance growth, nodulation and N-metabolism. It is noteworthy to see the enhanced nodulation of the three Vigna taxa in the presence of 10 mM KNO₃.
Collapse
Affiliation(s)
- Maria Luisa Izaguirre-Mayoral
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas 1020-A, Venezuela.
| | - Miriam Brito
- Laboratorio de VirologíaVegetal, Facultad de Agronomía, Universidad Central de Venezuela, Maracay 1050,Venezuela.
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku 20500, Finland.
| | - Mario José Garrido
- Laboratorio de VirologíaVegetal, Facultad de Agronomía, Universidad Central de Venezuela, Maracay 1050,Venezuela.
| |
Collapse
|