1
|
Daddy Gaoh S, Alusta P, Lee YJ, LiPuma JJ, Hussong D, Marasa B, Ahn Y. A Comparative Metagenomic Analysis of Specified Microorganisms in Groundwater for Non-Sterilized Pharmaceutical Products. Curr Microbiol 2024; 81:273. [PMID: 39017960 PMCID: PMC11255085 DOI: 10.1007/s00284-024-03791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
In pharmaceutical manufacturing, ensuring product safety involves the detection and identification of microorganisms with human pathogenic potential, including Burkholderia cepacia complex (BCC), Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Clostridium sporogenes, Candida albicans, and Mycoplasma spp., some of which may be missed or not identified by traditional culture-dependent methods. In this study, we employed a metagenomic approach to detect these taxa, avoiding the limitations of conventional cultivation methods. We assessed the groundwater microbiome's taxonomic and functional features from samples collected at two locations in the spring and summer. All datasets comprised 436-557 genera with Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Cyanobacteria accounting for > 95% of microbial DNA sequences. The aforementioned species constituted less than 18.3% of relative abundance. Escherichia and Salmonella were mainly detected in Hot Springs, relative to Jefferson, while Clostridium and Pseudomonas were mainly found in Jefferson relative to Hot Springs. Multidrug resistance efflux pumps and BlaR1 family regulatory sensor-transducer disambiguation dominated in Hot Springs and in Jefferson. These initial results provide insight into the detection of specified microorganisms and could constitute a framework for the establishment of comprehensive metagenomic analysis for the microbiological evaluation of pharmaceutical-grade water and other non-sterile pharmaceutical products, ensuring public safety.
Collapse
Affiliation(s)
- Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079-9502, USA
| | - Pierre Alusta
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yong-Jin Lee
- Department of Natural Sciences, Albany State University, Albany, GA, 31707, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Bernard Marasa
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079-9502, USA.
| |
Collapse
|
2
|
Liu J, Zhao R, Feng J, Fu W, Cao L, Zhang J, Lei Y, Liang J, Lin L, Li X, Li B. Bacterial assembly and succession patterns in conventional and advanced drinking water systems: From source to tap. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134613. [PMID: 38788571 DOI: 10.1016/j.jhazmat.2024.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.
Collapse
Affiliation(s)
- Jie Liu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Renxin Zhao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Feng
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenjie Fu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lijia Cao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yusha Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiajin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
3
|
Wang S, Nie W, Gu Q, Wang X, Yang D, Li H, Wang P, Liao W, Huang J, Yuan Q, Zhou S, Ahmad I, Kotaro K, Chen G, Zhu B. Spread of antibiotic resistance genes in drinking water reservoirs: Insights from a deep metagenomic study using a curated database. WATER RESEARCH 2024; 256:121572. [PMID: 38621316 DOI: 10.1016/j.watres.2024.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
The exploration of antibiotic resistance genes (ARGs) in drinking water reservoirs is an emerging field. Using a curated database, we enhanced the ARG detection and conducted a comprehensive analysis using 2.2 Tb of deep metagenomic sequencing data to determine the distribution of ARGs across 16 drinking water reservoirs and associated environments. Our findings reveal a greater diversity of ARGs in sediments than in water, underscoring the importance of extensive background surveys. Crucial ARG carriers-specifically Acinetobacter, Pseudomonas, and Mycobacterium were identified in drinking water reservoirs. Extensive analysis of the data uncovered a considerable concern for drinking water safety, particularly in regions reliant on river sources. Mobile genetic elements have been found to contribute markedly to the propagation of ARGs. The results of this research suggest that the establishment of drinking water reservoirs for supplying raw water may be an effective strategy for alleviating the spread of water-mediated ARGs.
Collapse
Affiliation(s)
- Sai Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Qing Gu
- Zhejiang Province Ecological and Environmental Monitoring Centre, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou, 310012, China
| | - Xie Wang
- Southwest China Mountain Agricultural Environment Key Laboratory, Ministry of Agriculture and Rural Areas, Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Shizishan Rd, Chengdu, 610066, China
| | - Danping Yang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources), Chongqing, 401120. China
| | - Hongyu Li
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peihong Wang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Huang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Quan Yuan
- School of Energy and Power Engineering, Xihua University, Chengdu, 610039, China
| | - Shengli Zhou
- Zhejiang Province Ecological and Environmental Monitoring Centre, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Hangzhou, 310012, China
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Kiga Kotaro
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Atnafu B, Desta A, Assefa F. Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of Use Sites in Addis Ababa City, Ethiopia. MICROBIAL ECOLOGY 2022; 84:73-89. [PMID: 34410455 DOI: 10.1007/s00248-021-01819-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Drinking water distribution systems harbor various microbiota despite efforts made in improving water infrastructures in the water industry, especially, in developing countries. Intermittent water supply, long time of water storage, low water pressure, and contaminated source water are among many of the factors responsible for poor drinking water quality affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and household points of use locations (taps). High-throughput Illumina sequencing technology was employed by targeting the V4 region of the 16S rRNA gene and the V1-V3 region of the 18S rRNA gene to analyze the microbial community structure. Proteobacteria followed by Firmicutes, Bacteroidetes, and Actinobacteria were the core dominating taxa. Gammaproteobacteria was also dominant among other proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, and Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmannella, Acanthamoeba, Aspergillus, and Candida were also abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations was influenced by basic factors such as residual chlorine, intermittent water supply, and long-time storage at the household. The complex microbiota detected in different sampling sites in this study brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage, and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk. Findings of this research provide important and baseline information to understand the microbial profiles of drinking water along source water and distribution systems. Moreover, knowing the microbial profile will help to design proper water quality assurance approaches.
Collapse
Affiliation(s)
- Bayable Atnafu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Adey Desta
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fasil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Chen WT, Chien CC, Ho WS, Ou JH, Chen SC, Kao CM. Effects of treatment processes on AOC removal and changes of bacterial diversity in a water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114853. [PMID: 35276566 DOI: 10.1016/j.jenvman.2022.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of different treatment processes on assimilable organic carbon (AOC) removal and bacterial diversity variations was evaluated in a water treatment plant. The van der Kooij technique was applied for AOC analysis and responses of bacterial communities were characterized by the metagenomics assay. Results show that the AOC concentrations were about 93, 148, 43, 51, 37, and 38 μg acetate-C/L in effluents of raw water basin, preozonation, rapid sand filtration (RSF), ozonation, biofiltration [biological activated carbon (BAC) filtration], and chlorination (clear water), respectively. Increased AOC concentrations were observed after preozonation, ozonation, and chlorination units due to the production of biodegradable organic matters after the oxidation processes. Results indicate that the oxidation processes were the main causes of AOC formation, which resulted in significant increases in AOC concentrations (18-59% increment). The AOC removal efficiencies were 47, 28, and 60% in the RSF, biofiltration, and the whole system, respectively. RSF and biofiltration were responsible for the AOC treatment and both processes played key roles in AOC removal. Thus, both RSF and biofiltration processes would contribute to AOC treatment after oxidation. Sediments from the raw water basin and filter samples from RSF and BAC units were collected and analyzed for bacterial communities. Results from scanning electron microscope analysis indicate that bacterial colonization was observed in filter materials. This indicates that the surfaces of the filter materials were beneficial to bacterial growth and AOC removal via the adsorption and biodegradation mechanisms. Next generation sequencing analyses demonstrate that water treatment processes resulted in the changes of bacterial diversity and community profiles in filters of RSF and BAC. According to the findings of bacterial composition and interactions, the dominant bacterial phyla were Proteobacteria (41% in RSF and 56% in BAC) followed by Planctomycetes and Acidobacteria in RSF and BAC systems, which might affect the AOC biodegradation efficiency. Results would be useful in developing AOC treatment and management processes in water treatment plants.
Collapse
Affiliation(s)
- W T Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - W S Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J H Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Xia B, Yang Y, Wu Y, Li X, Li F, Liu T. Impacts of Redox Conditions on Arsenic and Antimony Transformation in Paddy Soil: Kinetics and Functional Bacteria. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1121-1127. [PMID: 33904944 DOI: 10.1007/s00128-021-03242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) and antimony (Sb) are known carcinogens and are present as contaminants in paddy soils. However, the complicated dynamics of the mobility of these metalloids have not been well understood due to changing redox conditions in paddy soils. Herein, the kinetics of dissolved As and Sb, and functional bacteria/genes were examined in a paddy soil cultured under aerobic and anaerobic conditions. Under aerobic condition, dissolved As(V) and Sb(V) increased constantly due to sulfide oxidation by O2 and bound As and Sb were released. Under anaerobic condition, the reduction of As(V) and Sb(V) occurred, and the mobility of As and Sb were affected by soil redox processes. The bacteria with functional genes aioA and arrA were responsible for the direct As/Sb transformation, while Fe- and N-related bacteria had an indirect effect on the fate of As/Sb via coupling with the redox processes of Fe and N. These findings improve understanding of the mobility of As and Sb in paddy soil systems under different redox conditions.
Collapse
Affiliation(s)
- Bingqing Xia
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Yang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yundang Wu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Xiaomin Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
7
|
Zhou W, Li W, Chen J, Zhou Y, Wei Z, Gong L. Microbial diversity in full-scale water supply systems through sequencing technology: a review. RSC Adv 2021; 11:25484-25496. [PMID: 35478887 PMCID: PMC9037190 DOI: 10.1039/d1ra03680g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023] Open
Abstract
The prevalence of microorganisms in full-scale water supply systems raises concerns about their pathogenicity and threats to public health. Clean tap water is essential for public health safety. The conditions of the water treatment process from the source water to tap water, including source water quality, water treatment processes, the drinking water distribution system (DWDS), and building water supply systems (BWSSs) in buildings, greatly influence the bacterial community in tap water. Given the importance of drinking water biosafety, the study of microbial diversity from source water to tap water is essential. With the development of molecular biology methods and bioinformatics in recent years, sequencing technology has been applied to study bacterial communities in full-scale water supply systems. In this paper, changes in the bacterial community and the influence of each treatment stage on microbial diversity in full-scale water supply systems are classified and analyzed. Microbial traceability analysis and control are discussed, and suggestions for future drinking water biosafety research and its prospects are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University Shanghai 200092 China
| | - Jiping Chen
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Yu Zhou
- College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Zhongqing Wei
- Fuzhou Water Affairs Investment Development Co., Ltd. Fuzhou 350000 Fujian China
| | | |
Collapse
|
8
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
9
|
Ting ASY, Zoqratt MZHM, Tan HS, Hermawan AA, Talei A, Khu ST. Bacterial and eukaryotic microbial communities in urban water systems profiled via Illumina MiSeq platform. 3 Biotech 2021; 11:40. [PMID: 33479595 PMCID: PMC7794265 DOI: 10.1007/s13205-020-02617-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023] Open
Abstract
Microbial communities from a lake and river flowing through a highly dense urbanized township in Malaysia were profiled by sequencing amplicons of the 16S V3-V4 and 18S V9 hypervariable rRNA gene regions via Illumina MiSeq. Results revealed that Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant prokaryotic phyla; whereas, eukaryotic communities were predominantly of the SAR clade and Opisthokonta. The abundance of Pseudomonas and Flavobacterium in all sites suggested the possible presence of pathogens in the urban water systems, supported by the most probable number (MPN) values of more than 1600 per 100 mL. Urbanization could have impacted the microbial communities as transient communities (clinical, water-borne and opportunistic pathogens) coexisted with common indigenous aquatic communities (Cyanobacteria). It was concluded that in urban water systems, microbial communities vary in their abundance of microbial phyla detected along the water systems. The influences of urban land use and anthropogenic activities influenced the physicochemical properties and the microbial dynamics in the water systems. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02617-3.
Collapse
Affiliation(s)
- Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan Malaysia
| | - Muhammad Zarul Hanifah Md Zoqratt
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Selangor Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Andreas Aditya Hermawan
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Amin Talei
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Soon Thiam Khu
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
10
|
Brumfield KD, Hasan NA, Leddy MB, Cotruvo JA, Rashed SM, Colwell RR, Huq A. A comparative analysis of drinking water employing metagenomics. PLoS One 2020; 15:e0231210. [PMID: 32271799 PMCID: PMC7145143 DOI: 10.1371/journal.pone.0231210] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiological content of drinking water traditionally is determined by employing culture-dependent methods that are unable to detect all microorganisms, especially those that are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution systems can now be determined more accurately and analyzed in significantly greater detail, providing comprehensive understanding of the microbial community of drinking water applicable to public health. In this study, shotgun metagenomic analysis was performed to determine the microbiological content of drinking water and to provide a preliminary assessment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water. Predominant bacterial species detected were members of the phyla Actinobacteria and Proteobacteria, notably the genera Alishewanella, Salmonella, and Propionibacterium in non-carbonated non-mineral bottled water, Methyloversatilis and Methylibium in sparkling natural mineral water, and Mycobacterium and Afipia in tap and drinking fountain water. Fecal indicator bacteria, i.e., Escherichia coli or enterococci, were not detected in any samples examined in this study. Bacteriophages and DNA encoding a few virulence-associated factors were detected but determined to be present only at low abundance. Antibiotic resistance markers were detected only at abundance values below our threshold of confidence. DNA of opportunistic plant and animal pathogens was identified in some samples and these included bacteria (Mycobacterium spp.), protozoa (Acanthamoeba mauritaniensis and Acanthamoeba palestinensis), and fungi (Melampsora pinitorqua and Chryosporium queenslandicum). Archaeal DNA (Candidatus Nitrosoarchaeum) was detected only in sparkling natural mineral water. This preliminary study reports the complete microbiome (bacteria, viruses, fungi, and protists) of selected types of drinking water employing whole-genome high-throughput sequencing and bioinformatics. Investigation into activity and function of the organisms detected is in progress.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, CA, United States of America
| | - Joseph A. Cotruvo
- Joseph Cotruvo and Associates LLC, Washington, DC, United States of America
| | - Shah M. Rashed
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America
| |
Collapse
|
11
|
Valeriani F, Gianfranceschi G, Romano Spica V. The microbiota as a candidate biomarker for SPA pools and SPA thermal spring stability after seismic events. ENVIRONMENT INTERNATIONAL 2020; 137:105595. [PMID: 32106051 DOI: 10.1016/j.envint.2020.105595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 05/04/2023]
Abstract
Worldwide, the location of thermal springs overlaps seismic areas, and the higher occurrence of earthquakes may impact on water stability and safety. The hydrogeological perturbations pose environmental and public health risks that can be monitored by well-established chemical, physical and biological parameters. Specific health concerns involve the exposure of the population to the medical or wellness uses of SPA thermal waters, e.g. in respiratory or hydropinic treatments as well as during rehabilitative or recreational activities in pools. Since SPA waters are characterized by their own microbiota, we analysed by 16S amplicon sequencing the dynamics of water microbial communities after the August 2017 Ischia island earthquake. For the first time, we report the impact of a seismic event on a thermal spring water, whose microbiota was deeply characterized before and immediately after the natural disaster. The biodiversity stability of the water underwent a dramatic disturbance following the earthquake, as summarized by a Shannon index moving from 1.300 during May 2016-July 2017, up to 1.600 during the first 20-70 h after the event and slightly slowing down to 1.500 after 30 days and to 1.400 after 6 months. Microbiota analysis showed a sudden reduction of the relative abundance of autochthone thermophilic species within the first 20 h and a parallel increase of other thermophilic species as well as of ectopic bacteria from soil, sediments, sea, freshwater and wastewaters. Cultivable mesophilic bacteria were observed only in the first 20 h sample (7 × 103/L), even if the presence of faecal contamination traces was detected by Real Time PCR also up to 70 h after the disaster. OTUs analysis of putative metabolic functions showed several changes between pre and post event, such as in the distribution of Sulphur metabolizing and Carbon fixation species. The restoration of the original pattern followed a slow trend, requiring over six months. The observed results confirm the impact of the earthquake on the microbiota structure of the underground thermal spring water, suggesting further perspectives for monitoring water stability and safety issues by a metagenomic approach.
Collapse
Affiliation(s)
- Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gianluca Gianfranceschi
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
12
|
Bonadonna L, Briancesco R, La Rosa G. Innovative analytical methods for monitoring microbiological and virological water quality. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kori JA, Mahar RB, Vistro MR, Tariq H, Khan IA, Goel R. Metagenomic analysis of drinking water samples collected from treatment plants of Hyderabad City and Mehran University Employees Cooperative Housing Society. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29052-29064. [PMID: 31392612 DOI: 10.1007/s11356-019-05859-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The quality assessment of water, supplied to the end user, is an essential part to assess the physical, chemical, and biological status of water, which impacts on human health. For the quality assessment of drinking water treatment plants and distribution systems of Hyderabad City and Mehran University of Engineering and Technology, Jamshoro, Pakistan, 13 surface drinking water samples were collected from three treatment plants, two of Hyderabad City, including WASA treatment plant and its distribution system (n = 5), Hala Nakka treatment plant and its distribution system (n = 6), and Mehran University Employees Cooperative Housing Society (MUECHS) treatment plant and its distribution system (n = 2). Physicochemical parameters of all drinking water samples were in the range compared to EPA and WHO guidelines, except in L-12 sample. Notably, no free-chlorine was detected in all samples. In metagenomics analysis, targeting V3-V4 hypervariable region of 16S rRNA gene, in QIIME2 environment, high bacterial prevalence was observed in all samples. On average, 348 OTUs were observed per sample. Among all samples, treated water sample from the Hala Nakka Treatment Plant (HNTR) was the most diverse sample in bacterial composition (Shannon 7.51 and Simpsons reciprocal indices 0.98). Overall, Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Actinobacteria were the five most abundant phyla (relative abundances of 43.6, 37.9, 8.5, 2.5, and 2.4 percent, respectively). Notably, Cyanobacteria are well-known toxin producers which effect the human, and animal health. At genus level, Flavobacterium (4.86%) and Aquirestis (3.77%) were the most abundant genera. Functional predictions, based on 16S rRNA gene by PICRUSt, predicted 6909 KEGG orthologies, relating to 245 KEGG pathways. Among the predicted pathways of KEGG orthologies, pathways to human infections were also found. In conclusion, this study gave a deep insight into bacterial contamination in drinking water samples of Hyderabad City and MUECHS treatment plants and water quality status in Hyderabad and Mehran University of Engineering and Technology.
Collapse
Affiliation(s)
- Junaid Ahmed Kori
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rasool Bux Mahar
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan.
| | - Muhammad Raffae Vistro
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Huma Tariq
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, 84112-0561, USA
| |
Collapse
|
14
|
Saleem F, Azim MK, Mustafa A, Kori JA, Hussain MS. Metagenomic profiling of fresh water lakes at different altitudes in Pakistan. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Roy MA, Arnaud JM, Jasmin PM, Hamner S, Hasan NA, Colwell RR, Ford TE. A Metagenomic Approach to Evaluating Surface Water Quality in Haiti. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102211. [PMID: 30309013 PMCID: PMC6209974 DOI: 10.3390/ijerph15102211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
The cholera epidemic that occurred in Haiti post-earthquake in 2010 has resulted in over 9000 deaths during the past eight years. Currently, morbidity and mortality rates for cholera have declined, but cholera cases still occur on a daily basis. One continuing issue is an inability to accurately predict and identify when cholera outbreaks might occur. To explore this surveillance gap, a metagenomic approach employing environmental samples was taken. In this study, surface water samples were collected at two time points from several sites near the original epicenter of the cholera outbreak in the Central Plateau of Haiti. These samples underwent whole genome sequencing and subsequent metagenomic analysis to characterize the microbial community of bacteria, fungi, protists, and viruses, and to identify antibiotic resistance and virulence associated genes. Replicates from sites were analyzed by principle components analysis, and distinct genomic profiles were obtained for each site. Cholera toxin converting phage was detected at one site, and Shiga toxin converting phages at several sites. Members of the Acinetobacter family were frequently detected in samples, including members implicated in waterborne diseases. These results indicate a metagenomic approach to evaluating water samples can be useful for source tracking and the surveillance of pathogens such as Vibrio cholerae over time, as well as for monitoring virulence factors such as cholera toxin.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jean M Arnaud
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Paul M Jasmin
- Equipes mobiles d'intervention rapide (EMIRA) du Ministère de la Santé Publique et de la Population (MSPP), Hinche HT 5111, Haiti.
| | - Steve Hamner
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Nur A Hasan
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Rita R Colwell
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | - Timothy E Ford
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|