1
|
Passarini MRZ, Robayo MIG, Ottoni JR, Duarte AWF, Rosa LH. Biotechnological potential in agriculture of soil Antarctic microorganisms revealed by omics approach. World J Microbiol Biotechnol 2024; 40:345. [PMID: 39394504 DOI: 10.1007/s11274-024-04114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 10/13/2024]
Abstract
The biotechnological potential for agricultural applications in the soil in the thawing process on Whalers Bay, Deception Island, Antarctica was evaluated using a metagenomic approach through high-throughput sequencing. Approximately 22.70% of the sequences were affiliated to the phyla of the Bacteria dominion, followed by 0.26% to the Eukarya. Proteobacteria (Bacteria) and Ascomycota (Fungi) were the most abundant phyla. Thirty-two and thirty-six bacterial and fungal genera associated with agricultural biotechnological applications were observed. Streptomyces and Pythium were the most abundant genera related to the Bacteria and Oomycota, respectively. The main agricultural application associated with bacteria was nitrogen affixation; in contrast for fungi, was associated with phytopathogenic capabilities. The present study showed the need to use metagenomic technology to understand the dynamics and possible metabolic pathways associated with the microbial communities present in the soil sample in the process of thawing recovered from the Antarctic continent, which presented potential application in processes of agro-industrial interest.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil.
| | - Marahia Isabel Guevara Robayo
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil
| | - Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Yoshinaga TT, Giovanella P, de Farias GS, Dos Santos JA, Pellizzer EP, Sette LD. Fungi from Antarctic marine sediment: characterization and assessment for textile dye decolorization and detoxification. Braz J Microbiol 2024:10.1007/s42770-024-01485-w. [PMID: 39259479 DOI: 10.1007/s42770-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/25/2024] [Indexed: 09/13/2024] Open
Abstract
Cold-adapted microorganisms can produce enzymes with activity at low and mild temperatures, which can be applied to environmental biotechnology. This study aimed to characterize 20 Antarctic fungi to identify their genus (ITS rDNA marker) and growth temperatures and evaluate their ability to decolorize and detoxify the textile dye indigo carmine (IC). An individual screening was performed to assess the decolorization and detoxification of IC by the isolates, as well as in consortia with other fungi. The isolates were affiliated with seven ascomycete genera: Aspergillus (n = 4), Cosmospora (n = 2), Leuconeurospora (n = 2), Penicillium (n = 3), Pseudogymnoascus (n = 6), Thelebolus (n = 2), and Trichoderma (n = 1). The two isolates from the genus Leuconeurospora were characterized as psychrophilic, while the others were psychrotolerant. The Penicillium isolates were able to decolorize between 60 and 82% of IC. The isolates identified as Pseudogymnoascus showed the best detoxification capacity, with results varying from 49 to 74%. The consortium using only Antarctic ascomycetes (C1) showed 45% of decolorization, while the consortia with the addition of basidiomycetes (C1 + Peniophora and C1 + Pholiota) showed 40% and 50%, respectively. The consortia C1 with the addition of the basidiomycetes presented a lower toxicity after the treatments. In addition, a higher fungal biomass was produced in the presence of dye when compared with the experiment without the dye, which can be indicative of dye metabolization. The results highlight the potential of marine-derived Antarctic fungi in the process of textile dye degradation. The findings encourage further studies to elucidate the degradation and detoxification pathways of the dye IC by these fungal isolates.
Collapse
Affiliation(s)
- Thaís Tiemi Yoshinaga
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Patrícia Giovanella
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, CEP 13506-900, SP, Brazil
| | - Gabriele Santana de Farias
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Juliana Aparecida Dos Santos
- Universidade do Vale do Sapucaí (Univás), Av. Prefeito Tuany Toledo, 470 - Fatima, Pouso Alegre, 37550-000, MG, Brazil
| | - Elisa Pais Pellizzer
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Lara Durães Sette
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil.
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, CEP 13506-900, SP, Brazil.
| |
Collapse
|
3
|
Ferrarezi JH, Marin VR, Vieira G, Ferreira H, Sette LD, Sass DC. Bisdechlorogeodin from antarctic Pseudogymnoascus sp. LAMAI 2784 for citrus canker control. J Appl Microbiol 2024; 135:lxae093. [PMID: 38599631 DOI: 10.1093/jambio/lxae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
AIMS Citrus canker caused by Xanthomonas citri subsp. citri (X. citri) is a disease of economic importance. Control of this disease includes the use of metallic copper, which is harmful to the environment and human health. Previous studies showed that the crude extract from the fungus Pseudogymnoascus sp. LAMAI 2784 isolated from Antarctic soil had in vitro antibacterial action against X. citri. The aim of the present study was to expand the applications of this extract. METHODS AND RESULTS In greenhouse assays, the crude extract was able to reduce bacterial infection on citrus leaves from 1.55 lesions/cm2 (untreated plants) to 0.04 lesions/cm2. Bisdechlorogeodin was identified as the main compound of the bioactive fraction produced by Pseudogymnoascus sp. LAMAI 2784, which inhibited bacterial growth in vitro (IC90 ≈ 156 µg ml-1) and permeated 80% of X. citri cells, indicating that the membrane is the primary target. CONCLUSION The present results showed that the bioactive fraction of the extract is mainly composed of the compound bisdechlorogeodin, which is likely responsible for the biological activity against X. citri, and the main mechanism of action is the targeting of the cell membrane. This study indicates that bisdechlorogeodin has valuable potential for the control of X. citri.
Collapse
Affiliation(s)
- Juliano H Ferrarezi
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Vítor R Marin
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Gabrielle Vieira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Henrique Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Lara D Sette
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Daiane C Sass
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| |
Collapse
|
4
|
da Silva MK, Barreto DLC, Vieira R, Neto AA, de Oliveira FS, Convey P, Rosa CA, Duarte AWF, Rosa LH. Diversity and enzymatic, biosurfactant and phytotoxic activities of culturable Ascomycota fungi present in marine sediments obtained near the South Shetland Islands, maritime Antarctica. Extremophiles 2024; 28:20. [PMID: 38493412 DOI: 10.1007/s00792-024-01336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
We studied the culturable fungal community recovered from deep marine sediments in the maritime Antarctic, and assessed their capabilities to produce exoenzymes, emulsifiers and metabolites with phytotoxic activity. Sixty-eight Ascomycota fungal isolates were recovered and identified. The most abundant taxon recovered was the yeast Meyerozyma guilliermondii, followed by the filamentous fungi Penicillium chrysogenum, P. cf. palitans, Pseudeurotium cf. bakeri, Thelebolus balaustiformis, Antarctomyces psychrotrophicus and Cladosporium sp. Diversity indices displayed low values overall, with the highest values obtained at shallow depth, decreasing to the deepest location sampled. Only M. guilliermondii and P. cf. palitans were detected in the sediments at all depths sampled, and were the most abundant taxa at all sample sites. The most abundant enzymes detected were proteases, followed by invertases, cellulases, lipases, carrageenases, agarases, pectinases and esterases. Four isolates showed good biosurfactant activity, particularly the endemic species A. psychrotrophicus. Twenty-four isolates of P. cf. palitans displayed strong phytotoxic activities against the models Lactuca sativa and Allium schoenoprasum. The cultivable fungi recovered demonstrated good biosynthetic activity in the production of hydrolytic exoenzymes, biosurfactant molecules and metabolites with phytotoxic activity, reinforcing the importance of documenting the taxonomic, ecological and biotechnological properties of fungi present in deep oceanic sediments of the Southern Ocean.
Collapse
Affiliation(s)
- Mayanne Karla da Silva
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Débora Luiza Costa Barreto
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
5
|
de Melo Carlos L, Camacho KF, Duarte AW, de Oliveira VM, Boroski M, Rosa LH, Vieira R, Neto AA, Ottoni JR, Passarini MRZ. Bioprospecting the potential of the microbial community associated to Antarctic marine sediments for hydrocarbon bioremediation. Braz J Microbiol 2024; 55:471-485. [PMID: 38052770 PMCID: PMC10920520 DOI: 10.1007/s42770-023-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Microorganisms that inhabit the cold Antarctic environment can produce ligninolytic enzymes potentially useful in bioremediation. Our study focused on characterizing Antarctic bacteria and fungi from marine sediment samples of King George and Deception Islands, maritime Antarctica, potentially affected by hydrocarbon influence, able to produce enzymes for use in bioremediation processes in environments impacted with petroleum derivatives. A total of 168 microorganism isolates were obtained: 56 from sediments of King George Island and 112 from Deception Island. Among them, five bacterial isolates were tolerant to cell growth in the presence of diesel oil and gasoline and seven fungal were able to discolor RBBR dye. In addition, 16 isolates (15 bacterial and one fungal) displayed enzymatic emulsifying activities. Two isolates were characterized taxonomically by showing better biotechnological results. Psychrobacter sp. BAD17 and Cladosporium sp. FAR18 showed pyrene tolerance (cell growth of 0.03 g mL-1 and 0.2 g mL-1) and laccase enzymatic activity (0.006 UL-1 and 0.10 UL-1), respectively. Our results indicate that bacteria and fungi living in sediments under potential effect of hydrocarbon pollution may represent a promising alternative to bioremediate cold environments contaminated with polluting compounds derived from petroleum such as polycyclic aromatic hydrocarbons and dyes.
Collapse
Affiliation(s)
- Layssa de Melo Carlos
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Karine Fernandes Camacho
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | | | | | - Marcela Boroski
- Programa de Pós-Graduação Em Energia & Sustentabilidade, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Arthur A Neto
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil.
| |
Collapse
|
6
|
Dolashki A, Abrashev R, Kaynarov D, Krumova E, Velkova L, Eneva R, Engibarov S, Gocheva Y, Miteva-Staleva J, Dishliyska V, Spasova B, Angelova M, Dolashka P. Structural and functional characterization of cold-active sialidase isolated from Antarctic fungus Penicillium griseofulvum P29. Biochem Biophys Rep 2024; 37:101610. [PMID: 38155944 PMCID: PMC10753047 DOI: 10.1016/j.bbrep.2023.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 → 3) sialyl linkages than those containing α(2 → 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.
Collapse
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Stefan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Jeny Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Boryana Spasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Maria Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| |
Collapse
|
7
|
Khan A, Ball BA. Soil microbial responses to simulated climate change across polar ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168556. [PMID: 37979872 DOI: 10.1016/j.scitotenv.2023.168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The polar regions are among the most biologically constrained in the world, characterized by cold temperatures and reduced liquid water. These limitations make them among the most climate-sensitive regions on Earth. Despite the overwhelming constraints from low temperatures and resource availability, many polar ecosystems, including polar deserts and tundras across the Arctic and Antarctic host uniquely diverse microbial communities. Polar regions have warmed more rapidly than the global average, with continued warming predicted for the future, which will reduce constraints on soil microbial activity. This could alter polar carbon (C) cycles, increasing CO2 emissions into the atmosphere. The objective of this study was to determine how increased temperature and moisture availability impacts microbial respiration in polar regions, by focusing on a diversity of ecosystem types (polar desert vs. tundra) that are geographically distant across Antarctica and the Arctic. We found that polar desert soil microbes were co-limited by temperature and moisture, though C and nitrogen (N) mineralization were only stimulated at the coldest and driest of the two polar deserts. Only bacterial biomass was impacted at the less harsh of the polar deserts, suggesting microbial activity is limited by factors other than temperature and moisture. Of the tundra sites, only the Antarctic tundra was climate-sensitive, where increased temperature decreased C and N mineralization while water availability stimulated it. The greater availability of soil resources and vegetative biomass at the Arctic tundra site might lead to its lack of climate-sensitivity. Notably, while C and N dynamics were climate-sensitive at some of our polar sites, P availability was not impacted at any of them. Our results demonstrate that soil microbial processes in some polar ecosystems are more sensitive to changes in temperature and moisture than others, with implications for soil C and N storage that are not uniformly predictable across polar regions.
Collapse
Affiliation(s)
- Ana Khan
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA
| | - Becky A Ball
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA.
| |
Collapse
|
8
|
Nardo VG, Otero IVR, Giovanella P, Santos JAD, Pellizzer EP, Dovigo DR, Paes ECP, Sette LD. Biobank of fungi from marine and terrestrial Antarctic environments. AN ACAD BRAS CIENC 2023; 95:e20230603. [PMID: 38126380 DOI: 10.1590/0001-3765202320230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Harsh and extreme environments, such as Antarctica, offer unique opportunities to explore new microbial taxa and biomolecules. Given the limited knowledge on microbial diversity, this study aimed to compile, analyze and compare a subset of the biobank of Antarctic fungi maintained at the UNESP's Central of Microbial Resources (CRM-UNESP). A total of 711 isolates (240 yeasts and 471 filamentous fungi) from marine and terrestrial samples collected at King George Island (South Shetland Islands, Antarctica) were used with the primary objective of investigating their presence in both marine and terrestrial environments. Among the yeasts, 13 genera were found, predominantly belonging to the phylum Basidiomycota. Among the filamentous fungi, 34 genera were represented, predominantly from the phylum Ascomycota. The most abundant genera in the marine samples were Metschnikowia, Mrakia, and Pseudogymnoascus, while in the terrestrial samples, they were Pseudogymnoascus, Leucosporidium, and Mortierella. Most of the genera and species of the CRM-UNESP biobank of Antarctic fungi are being reported as an important target for biotechnological applications. This study showed the relevance of the CRM-UNESP biobank, highlighting the importance of applying standard methods for the preservation of the biological material and associated data (BMaD), as recommended in national and international standards.
Collapse
Affiliation(s)
- Victor G Nardo
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Igor V R Otero
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
- Universidade Estadual Paulista (UNESP), Centro de Estudos Ambientais, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Juliana Aparecida Dos Santos
- Universidade do Vale do Sapucaí (Univás), Av. Prefeito Tuany Toledo, 470, Fatima, 37550-000 Pouso Alegre, MG, Brazil
| | - Elisa P Pellizzer
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Daniel R Dovigo
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Eduardo C P Paes
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Lara D Sette
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
- Universidade Estadual Paulista (UNESP), Centro de Estudos Ambientais, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
9
|
Vieira ÍS, Oliveira FSDE, Michel RFM. Spatial and Scientometric study of the Brazilian scientific production on Antarctic soils and permafrost. AN ACAD BRAS CIENC 2023; 95:e20230823. [PMID: 38126387 DOI: 10.1590/0001-3765202320230823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023] Open
Abstract
This article carried out the first scientometric and spatial analysis of Brazilian scientific production on Antarctic soils and permafrost, based on all publications available from the Scopus and Web of Science databases. Information on co-authorship, citation, research topics, and sampling sites was used to understand the social and theoretical structure as well as the spatial dynamics of this research field in Brazil over the last 25 years. We highlight that Brazil is presently, the main country to study the soils and permafrost of Maritime Antarctica, in addition to having an international robust and prolific production, with high impact on the literature, and widely distributed throughout the studied region. It was also possible to identify potential future international partners, new research locations and strategic research themes.
Collapse
Affiliation(s)
- Ícaro S Vieira
- Federal University of Minas Gerais, Institute of Geosciences, Av. Antônio Carlos, 6.627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Fábio S DE Oliveira
- Federal University of Minas Gerais, Institute of Geosciences, Av. Antônio Carlos, 6.627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Roberto F M Michel
- Santa Cruz State University, Department of Agrarian and Environmental Sciences, Rod. Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| |
Collapse
|
10
|
Vieira G, Sette LD, de Angelis DA, Sass DC. Antifungal activity of cyclopaldic acid from Antarctic Penicillium against phytopathogenic fungi. 3 Biotech 2023; 13:374. [PMID: 37860288 PMCID: PMC10581961 DOI: 10.1007/s13205-023-03792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Plant pathogens cause great economic losses in agriculture. To reduce damage, chemical pesticides have been frequently used, but these compounds in addition to causing risks to the environment and health, its continuous use has given rise to resistant phytopathogens, threatening the efficiency of control methods. One alternative for such a problem is the use of natural products with high antifungal activity and low toxicity. Here, we present the production, isolation, and identification of cyclopaldic acid, a bioactive compound produced by Penicillium sp. CRM 1540, a fungal strain isolated from Antarctic marine sediment. The crude extract was fractionated by reversed-phase chromatography and yielded 40 fractions, from which fraction F17 was selected. We used 1D and 2D Nuclear Magnetic Resonance analysis in DMSO-d6 and CDCl3, together with mass spectrometry, to identify the compound as cyclopaldic acid C11H10O6 (238 Da). The pure compound was evaluated for antimicrobial activity against phytopathogenic fungi of global agricultural importance, namely: Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. The antifungal assay revealed the potential of cyclopaldic acid, produced by Penicillium sp. CRM 1540, as a leading molecule against M. phaseolina and R. solani, with more than 90% of growth inhibition after 96h of contact with the fungal cells using 100 µg mL-1, and more than 70% using 50 µg mL-1. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03792-9.
Collapse
Affiliation(s)
- Gabrielle Vieira
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| | - Derlene Attili de Angelis
- Division of Microbial Resources, CPQBA, University of Campinas, Cidade Universitária “Zeferino Vaz”, Campinas, São Paulo 13083-970 Brazil
| | - Daiane Cristina Sass
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Campus Rio Claro, Av. 24-A, 1515, Rio Claro, São Paulo 13506-900 Brazil
| |
Collapse
|
11
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Impact of environmental factors on diversity of fungi in sediments from the Shenzhen River Estuary. Arch Microbiol 2023; 205:96. [PMID: 36820941 PMCID: PMC9950236 DOI: 10.1007/s00203-023-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In this study, to explore the relationship between environmental factors and fungal diversity in the Shenzhen River ecosystem, multiple methods including chemical analysis, culture isolation, qPCR analysis of fungal ITS region and ITS-based Illumina next-generation-sequencing were integrated. A total of 115 isolates were finally isolated and could be classified into 23 genera. Top three abundant genera isolated were Meyerozyma (18 strains), Aspergillus (17 strains) and Penicillium (14 strains). Based on the Illumina sequencing approach, 829 OTUs were affiliated to seven phyla, 17 known classes, and 162 genera, indicating the Shenzhen estuary sediments are rich in fungal diversity. The major fungal genera were Meyerozyma, Trichoderma and Talaromyces. Environmental factors showed a gradient change in Shenzhen estuary, and fungal abundance was only significantly correlated with NH4+. Shannon index was significantly correlated with pH and IC (P < 0.05). Principal coordinate analysis based on OTU level grouped into three clusters among sampling sites along with the IC and pH gradient. Functional guilds analysis suggests most of the fungi in this studying area were almost all saprotrophs, suggesting a large number of saprophytic fungi may play a significant role in the organic matter decomposition and nutrient cycling process. In summary, this study will deepen our understanding of fungi community in Shenzhen River ecosystem and their distribution and potential function shaped by environmental factors.
Collapse
|
13
|
Arrieche D, Cabrera-Pardo JR, San-Martin A, Carrasco H, Taborga L. Natural Products from Chilean and Antarctic Marine Fungi and Their Biomedical Relevance. Mar Drugs 2023; 21:md21020098. [PMID: 36827139 PMCID: PMC9962798 DOI: 10.3390/md21020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Fungi are a prolific source of bioactive molecules. During the past few decades, many bioactive natural products have been isolated from marine fungi. Chile is a country with 6435 Km of coastline along the Pacific Ocean and houses a unique fungal biodiversity. This review summarizes the field of fungal natural products isolated from Antarctic and Chilean marine environments and their biological activities.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bio-Bio, Avenida Collao 1202, Concepción 4030000, Chile
| | - Aurelio San-Martin
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas 6200112, Chile
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Químicas y Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago 8900000, Chile
- Correspondence: (H.C.); (L.T.)
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Correspondence: (H.C.); (L.T.)
| |
Collapse
|
14
|
Wu K, Liu Y, Liao X, Yang X, Chen Z, Mo L, Zhong S, Zhang X. Fungal Diversity and Its Relationship with Environmental Factors in Coastal Sediments from Guangdong, China. J Fungi (Basel) 2023; 9:jof9010101. [PMID: 36675922 PMCID: PMC9866456 DOI: 10.3390/jof9010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
As one core of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), Guangdong is facing some serious coastal environmental problems. Fungi are more vulnerable to changes in coastal environments than bacteria and archaea. This study investigated the fungal diversity and composition by high-throughput sequencing and detected basic parameters of seven environmental factors (temperature, dissolved oxygen, pH, salinity, total organic carbon, total nitrogen, and total phosphorus) at 11 sites. A total of 2056 fungal operational taxonomic units (OTUs) belonging to 147 genera in 6 phyla were recovered; Archaeorhizomyces (17.5%) and Aspergillus (14.19%) were the most dominant genera. Interestingly, a total of 14 genera represented the first reports of coastal fungi in this study. Furthermore, there were nine genera of fungi that were significantly correlated with environmental factors. FUNGuild analysis indicated that saprotrophs and pathogens were the two trophic types with the highest proportions. Saprotrophs were significantly correlated with total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), while pathogens were significantly correlated with pH. This study provides new scientific data for the study of the diversity and composition of fungal communities in coastal ecosystems.
Collapse
Affiliation(s)
- Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence: (S.Z.); (X.Z.)
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (S.Z.); (X.Z.)
| |
Collapse
|
15
|
da Silva MK, de Souza LMD, Vieira R, Neto AA, Lopes FAC, de Oliveira FS, Convey P, Carvalho-Silva M, Duarte AWF, Câmara PEAS, Rosa LH. Fungal and fungal-like diversity in marine sediments from the maritime Antarctic assessed using DNA metabarcoding. Sci Rep 2022; 12:21044. [PMID: 36473886 PMCID: PMC9726857 DOI: 10.1038/s41598-022-25310-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila. Thelebolus balaustiformis, Pseudogymnoascus sp., Fungi sp. 1, Ciliophora sp., Agaricomycetes sp. and Chaetoceros sp. were the dominant assigned taxa. Thirty-eight fungal ASVs could only be assigned to higher taxonomic levels, and may represent taxa not currently included in the available databases or represent new taxa and/or new records for Antarctica. The total fungal community displayed high indices of diversity, richness and moderate to low dominance. However, diversity and taxa distribution varied across the three sampling sites. In Walker Bay, unidentified fungi were dominant in the sequence assemblage. Whalers Bay sediment was dominated by Antarctic endemic and cold-adapted taxa. Sediment from English Strait was dominated by Ciliophora sp. and Chaetoceros sp. These fungal assemblages were dominated by saprotrophic, plant and animal pathogenic and symbiotic taxa. The detection of an apparently rich and diverse fungal community in these marine sediments reinforces the need for further studies to characterize their richness, functional ecology and potential biotechnological applications.
Collapse
Affiliation(s)
- Mayanne Karla da Silva
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Láuren Machado Drumond de Souza
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal Do Tocantins, Porto Nacional, Brazil
| | - Fábio S de Oliveira
- Departamento de Geografia, Universidade Federal de Minas, Gerais, Minas Gerais, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
| | | | | | | | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
16
|
Perazzolli M, Vicelli B, Antonielli L, Longa CMO, Bozza E, Bertini L, Caruso C, Pertot I. Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures. Sci Rep 2022; 12:18839. [PMID: 36336707 PMCID: PMC9637742 DOI: 10.1038/s41598-022-23582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
Antarctica is one of the most stressful environments for plant life and the Antarctic pearlwort (Colobanthus quitensis) is adapted to the hostile conditions. Plant-associated microorganisms can contribute to plant survival in cold environments, but scarce information is available on the taxonomic structure and functional roles of C. quitensis-associated microbial communities. This study aimed at evaluating the possible impacts of climate warming on the taxonomic structure of C. quitensis endophytes and at investigating the contribution of culturable bacterial endophytes to plant growth at low temperatures. The culture-independent analysis revealed changes in the taxonomic structure of bacterial and fungal communities according to plant growth conditions, such as the collection site and the presence of open-top chambers (OTCs), which can simulate global warming. Plants grown inside OTCs showed lower microbial richness and higher relative abundances of biomarker bacterial genera (Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Aeromicrobium, Aureimonas, Hymenobacter, Novosphingobium, Pedobacter, Pseudomonas and Sphingomonas) and fungal genera (Alternaria, Cistella, and Vishniacozyma) compared to plants collected from open areas (OA), as a possible response to global warming simulated by OTCs. Culturable psychrotolerant bacteria of C. quitensis were able to endophytically colonize tomato seedlings and promote shoot growth at low temperatures, suggesting their potential contribution to plant tolerance to cold conditions.
Collapse
Affiliation(s)
- Michele Perazzolli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Bianca Vicelli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Livio Antonielli
- grid.4332.60000 0000 9799 7097Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Claudia M. O. Longa
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Elisa Bozza
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Laura Bertini
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Carla Caruso
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Ilaria Pertot
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| |
Collapse
|
17
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
18
|
FARIAS GABRIELES, SANTOS JULIANAA, GIOVANELLA PATRICIA, SETTE LARAD. Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions. AN ACAD BRAS CIENC 2022; 94:e20210592. [DOI: 10.1590/0001-3765202220210592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - JULIANA A. SANTOS
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - PATRICIA GIOVANELLA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
19
|
LIMA IGORG, BISPO JAMESR, AGOSTINHO ADSONY, QUEIROZ ALINECDE, MOREIRA MAGNASUZANAA, PASSARINI MICHELRODRIGOZ, OLIVEIRA VALÉRIAMDE, SETTE LARAD, ROSA LUIZHENRIQUE, DUARTE ALYSSONWAGNERF. Antarctic environments as a source of bacterial and fungal therapeutic enzymes. AN ACAD BRAS CIENC 2022; 94:e20210452. [DOI: 10.1590/0001-3765202220210452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | | |
Collapse
|
20
|
DA SILVA MAYANNEKARLA, DA SILVA AVERLANEV, FERNANDEZ PAULAM, MONTONE ROSALINDAC, ALVES RODRIGOP, DE QUEIROZ ALINEC, DE OLIVEIRA VALÉRIAM, DOS SANTOS VIVIANEP, PUTZKE JAIR, ROSA LUIZHENRIQUE, DUARTE ALYSSONW. Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. AN ACAD BRAS CIENC 2022; 94:e20210540. [DOI: 10.1590/0001-3765202220210540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
|
21
|
Talhi I, Dehimat L, Jaouani A, Cherfia R, Berkani M, Almomani F, Vasseghian Y, Chaouche NK. Optimization of thermostable proteases production under agro-wastes solid-state fermentation by a new thermophilic Mycothermus thermophilus isolated from a hydrothermal spring Hammam Debagh, Algeria. CHEMOSPHERE 2022; 286:131479. [PMID: 34315081 DOI: 10.1016/j.chemosphere.2021.131479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The present work investigates for the first time the presence and isolation of the thermophilic fungi from hydrothermal spring situated at the locality of Guelma, in the Northeast of Algeria. The production of the thermostable proteases and the optimization of culture conditions under agro-wastes solid-state fermentation to achieve optimal production capacity were explored. A statistical experimental approach consisting of two designs was used to determine the optimum culture conditions and to attain the greatest enzyme production. Besides, different agricultural wastes were initially evaluated as a substrate, whereby wheat bran was selected for enzyme production by the isolate under solid-state conditions. The isolate thermophilic fungi were identified as Mycothermus thermophilus by sequencing the ITS region of the rDNA (NCBI Accession No: MK770356.1). Among the various screened variables: the temperature, the inoculum size, and the moisture were proved to have the most significant effects on protease activity. Employing two-level fractional Plackett-Burman and a Box-Behnken designs statistical approach helped in identifying optimum values of screened factors and their interactions. The analysis showed up 6.17-fold improvement in the production of proteases (~1187.03 U/mL) was achieved under the optimal conditions of moisture content 47%, inoculum 5 × 105 spores/g, and temperature at 42 °C. These significant findings highlight the importance of the statistical design in isolation of Mycothermus thermophilus species from a specific location as well as identifying the optimal culture conditions for maximum yield.
Collapse
Affiliation(s)
- Imen Talhi
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| | - Laid Dehimat
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| | - Atef Jaouani
- Laboratoire de Microorganismes et Biomolécules Actives (LMBA) Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire 2092 El Manar, Tunisie
| | - Radia Cherfia
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66, 25100 Constantine, Algeria.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box, Doha, 2713, Qatar.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine 1, BP, 325 Route de Aïn El Bey, Constantine 25017, Algeria
| |
Collapse
|
22
|
KITA DANIELAM, GIOVANELLA PATRICIA, YOSHINAGA THAÍST, PELLIZZER ELISAP, SETTE LARAD. Antarctic fungi applied to textile dye bioremediation. AN ACAD BRAS CIENC 2022; 94:e20210234. [DOI: 10.1590/0001-3765202220210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- DANIELA M. KITA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - PATRICIA GIOVANELLA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | | | | | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
23
|
Vieira G, Khalil ZG, Capon RJ, Sette LD, Ferreira H, Sass DC. Isolation and agricultural potential of penicillic acid against citrus canker. J Appl Microbiol 2021; 132:3081-3088. [PMID: 34927315 DOI: 10.1111/jam.15413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
AIMS The control of Xanthomonas citri subsp. citri (X. citri), causal agent of citrus canker, relies heavily in integrated agricultural practices involving the use of copper-based chemicals. Considering the need for alternatives to control this disease and the potential of fungi from extreme regions as producers of bioactive metabolites, we isolated and identified a bioactive compound from Penicillium sp. CRM 1540 isolated from Antarctica marine sediment. METHODS AND RESULTS The compound potential as an antibacterial agent against X. citri was assessed through in vitro and greenhouse experiments. Molecular taxonomy indicates this fungus is a possible new species of Penicillium. The results revealed 90% inhibition at 25 µg mL-1 in vitro and a decrease in symptoms emergency for the in vivo experiment in Citrus sinensis (L.) Osbeck leaves. The number of lesions per cm² for the treatment with the isolated compound was 75.31% smaller and significantly different (p <0.05) from the untreated control. The structure of the active agent was identified as penicillic acid based on detailed spectroscopic analysis. CONCLUSION Penicillic acid can be an alternative against citrus canker. SIGNIFICANCE AND IMPACT OF STUDY Research on extremophile microorganisms can lead to molecules with biotechnological potential and alternatives to current agriculture practices.
Collapse
Affiliation(s)
- Gabrielle Vieira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Zeinab G Khalil
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, Australia
| | - Robert J Capon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, Australia
| | - Lara Durães Sette
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Henrique Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Daiane Cristina Sass
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| |
Collapse
|
24
|
Villanueva P, Vásquez G, Gil-Durán C, Oliva V, Díaz A, Henríquez M, Álvarez E, Laich F, Chávez R, Vaca I. Description of the First Four Species of the Genus Pseudogymnoascus From Antarctica. Front Microbiol 2021; 12:713189. [PMID: 34867840 PMCID: PMC8640180 DOI: 10.3389/fmicb.2021.713189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The genus Pseudogymnoascus represents a diverse group of fungi widely distributed in different cold regions on Earth. Our current knowledge of the species of Pseudogymnoascus is still very limited. Currently, there are only 15 accepted species of Pseudogymnoascus that have been isolated from different environments in the Northern Hemisphere. In contrast, species of Pseudogymnoascus from the Southern Hemisphere have not yet been described. In this work, we characterized four fungal strains obtained from Antarctic marine sponges. Based on multilocus phylogenetic analyses and morphological characterizations we determined that these strains are new species, for which the names Pseudogymnoascus antarcticus sp. nov., Pseudogymnoascus australis sp. nov., Pseudogymnoascus griseus sp. nov., and Pseudogymnoascus lanuginosus sp. nov. are proposed. Phylogenetic analyses indicate that the new species form distinct lineages separated from other species of Pseudogymnoascus with strong support. The new species do not form sexual structures and differ from the currently known species mainly in the shape and size of their conidia, the presence of chains of arthroconidia, and the appearance of their colonies. This is the first report of new species of Pseudogymnoascus not only from Antarctica but also from the Southern Hemisphere.
Collapse
Affiliation(s)
- Pablo Villanueva
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ghislaine Vásquez
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Carlos Gil-Durán
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Vicente Oliva
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Anaí Díaz
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Marlene Henríquez
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Eduardo Álvarez
- Institute of Biomedical Sciences (ICBM), Mycology Unit, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Federico Laich
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, Santa Cruz de Tenerife, Islas Canarias, Spain
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Inmaculada Vaca
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
25
|
Ameen F, AlNAdhari S, Yassin MA, Al-Sabri A, Almansob A, Alqahtani N, Stephenson SL. Desert soil fungi isolated from Saudi Arabia: cultivable fungal community and biochemical production. Saudi J Biol Sci 2021; 29:2409-2420. [PMID: 35531195 PMCID: PMC9072920 DOI: 10.1016/j.sjbs.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/20/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Desert soils harbor fungi that have survived under highly stressed conditions of high temperature and little available moisture. This study was designed to survey the communities of cultivable fungi in the desert soils of the Arabian Peninsula and to screen the fungi for the potentially valuable antioxidants (flavonoids, phenols, saponins, steroids, tannins, terpenoids, and alkaloids) and enzymes (cellulase, laccase, lipase, protease, amylase, and chitinase). Desert soil was sampled at 30 localities representing different areas of Saudi Arabia and studied for physico-chemical soil properties. Five types of soil texture (sand, loamy sand, sandy loam, silty loam, and sandy clay loam) were observed. A total of 25 saprotrophic species was identified molecularly from 68 isolates. Our survey revealed 13 culturable fungal species that have not been reported previously from Arabian desert soils and six more species not reported from Saudi Arabian desert soils. The most commonly recorded genera were Aspergillus (isolated from 20 localities) and Penicillium (6 localities). The measurements of biochemicals revealed that antioxidants were produced by 49 and enzymes by 52 isolates; only six isolates did not produce any biochemicals. The highest biochemical activity was observed for the isolates Fusarium brachygibbosum and A. phoenicis. Other active isolates were A. proliferans and P. chrysogenum. The same species, for instance, A. niger had isolates of both high and low biochemical activities. Principal component analysis gave a tentative indication of a relationship between the biochemical activity of fungi isolated from soil and soil texture variables namely the content of silt, clay and sand. However, any generalizable relation between soil properties and fungal biochemical activities cannot be suggested. Each fungal isolate is probable to produce several antioxidants and enzymes, as shown by the correlation within the compound groups. Desert soil warrants further research as a promising source of biochemicals.
Collapse
|
26
|
Tanney JB, Quijada L. Comments on the occurrence of yeast-like morphologies in Leotiomycetes. Int J Syst Evol Microbiol 2021; 71. [PMID: 34818146 DOI: 10.1099/ijsem.0.005141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Joey B Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road, Victoria, British Columbia, V8Z 1M5, Canada
| | - Luis Quijada
- Department of Organismic and Evolutionary Biology & The Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 20 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Edoamodu CE, Nwodo UU. Marine sediment derived bacteria Enterobacter asburiae ES1 and Enterobacter sp. Kamsi produce laccase with high dephenolisation potentials. Prep Biochem Biotechnol 2021; 52:748-761. [PMID: 34689726 DOI: 10.1080/10826068.2021.1992781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Purified laccases from bacterial species isolated from marine sediment were applied to degrade Bisphenol A (BPA). The Bacterial species were isolated from marine water sediments sampled from Cove Rock and Bonza Bay beach of the Eastern Cape Province, South Africa was tested for laccase activity on varied phenolic plates. The two most promising strains, Enterobacter asburiae ES1 and Enterobacter sp. Kamsi was subjected to extracellular laccase production and were identified using molecular methods. Both extracted bacterial laccases showed an affinity for ABTS and PFC substrates and were purified to homogeneity by ammonium sulfate precipitation, anion exchange, and size exclusion chromatography. A specific laccase activity of 231.67 and 218.15 U/mg of protein and a molecular weight of 50 and 55 kDa was obtained from the purified ES1 and Kamsi laccases. Laccase activity was optimum at pH8 and 5 and at 80 °C and 60 °C for ES1 and Kamsi laccases, and they manifested 71.7% and 65.8% BPA decolorizing effects. The optimized treatment condition applied showed maximum BPA removal effects of 85% and 86% at pH7 and 6, while 78% and 79% was degraded at 70 °C and 80 °C while at 250 µL enzyme volume, BPA was actively degraded to 85%, and 75% removal effect showed by ES1 and Kamsi laccases. The molecular identification of the pure colonies using 16S rRNA showed the isolate belonged to the class of gammaproteobacterial. Their nucleotide sequence has been deposited in NCBI with the accession number MN686602 and MN686603. Conclusively, marine habitat serves as a reservoir for active bacterial laccase producers suitable for bioprocess application.
Collapse
Affiliation(s)
- Chiedu E Edoamodu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
28
|
Vicente J, de Celis M, Alonso A, Marquina D, Santos A. Microbial Communities Present in Hydrothermal Sediments from Deception Island, Antarctica. Microorganisms 2021; 9:microorganisms9081631. [PMID: 34442712 PMCID: PMC8399207 DOI: 10.3390/microorganisms9081631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Deception Island is a geothermal location in Antarctica that presents active fumaroles, which confers unique characteristics to this habitat. Several studies about microbial communities in Antarctica have been carried out, nevertheless, Antarctic microbiota is still partially unknown. Here we present a multidisciplinary study about sediments obtained by deposition during 4 years in which several approaches have been considered for their characterization. First, a physicochemical characterization, using ionic chromatography and mass spectrometry for the determination of most abundant ions (chloride and sulphate) and elements (mainly silicon), was conducted. In addition, the total microbial community was studied using a metataxonomical approach, revealing a bacterial community dominated by Proteobacteria and Thaumarchaeota as the main archaeal genera and a fungal community mainly composed by Aspergillaceae. Culture-dependent studies showed low microbial diversity, only achieving the isolation of Bacillus-related species, some of them thermophilic, and the isolation of common fungi of Aspergillus or Penicillium spp. Furthermore, diatoms were detected in the sediment and characterized attending to their morphological characteristics using scanning electron microscopy. The study reveals a high influence of the physicochemical conditions in the microbial populations and their distribution, offering valuable data on the interaction between the island and water microbiota.
Collapse
|
29
|
Fungal diversity in the coastal waters of King George Island (maritime Antarctica). World J Microbiol Biotechnol 2021; 37:142. [PMID: 34322842 DOI: 10.1007/s11274-021-03112-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Fungi have been reported as common inhabitants of the maritime waters in Antarctica by studies based on culture-dependent methods. More recently, results obtained using DNA sequencing technologies, revealed that fungal diversity worldwide has been underestimated by culture methods. The present study provides the first characterization of fungal communities in the coastal waters of King George Island (maritime Antarctica) using both culture-dependent and high-throughput sequencing (HTS) methods. HTS demostrated a higher level of fungal diversity than the obtained by culture methods. A high prevalence of basidiomycetous yeasts and ascomycetous filamentous fungi was confirmed by both methods, however, Chythriomycota, Rozellomycota, lichenized fungi and Malassezia spp. were detected only by HTS. Correspondingly, members of some genera, such as Metschnikowia, were only found by culture-dependent methods. Our results confirm that culturing and HTS, should be seen as complementary approaches that enable one to obtain a more comprehensive picture of the composition of microbial communities.
Collapse
|
30
|
Ogaki MB, Pinto OHB, Vieira R, Neto AA, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS, Rosa LH. Fungi Present in Antarctic Deep-Sea Sediments Assessed Using DNA Metabarcoding. MICROBIAL ECOLOGY 2021; 82:157-164. [PMID: 33404819 DOI: 10.1007/s00248-020-01658-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
We assessed fungal diversity in deep-sea sediments obtained from different depths in the Southern Ocean using the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA by metabarcoding through high-throughput sequencing (HTS). We detected 655,991 DNA reads representing 263 fungal amplicon sequence variants (ASVs), dominated by Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Chytridiomycota and Rozellomycota, confirming that deep-sea sediments can represent a hotspot of fungal diversity in Antarctica. The community diversity detected included 17 dominant fungal ASVs, 62 intermediate and 213 rare. The dominant fungi included taxa of Mortierella, Penicillium, Cladosporium, Pseudogymnoascus, Phaeosphaeria and Torula. Despite the extreme conditions of the Southern Ocean benthos, the total fungal community detected in these marine sediments displayed high indices of diversity and richness, and moderate dominance, which varied between the different depths sampled. The highest diversity indices were obtained in sediments from 550 m and 250 m depths. Only 49 ASVs (18.63%) were detected at all the depths sampled, while 16 ASVs were detected only in the deepest sediment sampled at 1463 m. Based on sequence identities, the fungal community included some globally distributed taxa, primarily recorded otherwise from terrestrial environments, suggesting transport from these to deep marine sediments. The assigned taxa included symbionts, decomposers and plant-, animal- and human-pathogenic fungi, suggesting that deep-sea sediments host a complex fungal diversity, although metabarcoding does not itself confirm that living or viable organisms are present.
Collapse
Affiliation(s)
| | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Arthur Ayres Neto
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Carlos Augusto Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Horizonte, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Horizonte, Brazil.
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
31
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
32
|
Marchese P, Garzoli L, Young R, Allcock L, Barry F, Tuohy M, Murphy M. Fungi populate deep-sea coral gardens as well as marine sediments in the Irish Atlantic Ocean. Environ Microbiol 2021; 23:4168-4184. [PMID: 33939869 DOI: 10.1111/1462-2920.15560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/06/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Fungi populate deep Oceans in extreme habitats characterized by high hydrostatic pressure, low temperature and absence of sunlight. Marine fungi are potential major contributors to biogeochemical events, critical for marine communities and food web equilibrium under climate change conditions and a valuable source of novel extremozymes and small molecules. Despite their ecophysiological and biotechnological relevance, fungal deep-sea biodiversity has not yet been thoroughly characterized. In this study, we describe the culturable mycobiota associated with the deepest margin of the European Western Continental Shelf: sediments sampled at the Porcupine Bank and deep-water corals and sponges sampled in the Whittard Canyon. Eighty-seven strains were isolated, belonging to 43 taxa and mainly Ascomycota. Ten species and four genera were detected for the first time in the marine environment and a possible new species of Arachnomyces was isolated from sediments. The genera Cladosporium and Penicillium were the most frequent and detected on both substrates, followed by Candida and Emericellopsis. Our results showed two different fungal communities: sediment-associated taxa which were predominantly saprotrophic and animal-associated taxa which were predominantly symbiotic. This survey supports selective fungal biodiversity in the deep North Atlantic, encouraging further mycological studies on cold water coral gardens, often overexploited marine habitats.
Collapse
Affiliation(s)
- Pietro Marchese
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Laura Garzoli
- MEG-Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, 28922, Italy
| | - Ryan Young
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Louise Allcock
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Maria Tuohy
- Molecular Glycobiotechnology, School of Natural Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, H91TK33, Ireland
| |
Collapse
|
33
|
Freire RKB, Mendonça CMN, Ferraro RB, Moguel IS, Tonso A, Lourenço FR, Santos JHPM, Sette LD, Pessoa Junior A. Glutaminase-free L-asparaginase production by Leucosporidium muscorum isolated from Antarctic marine-sediment. Prep Biochem Biotechnol 2020; 51:277-288. [PMID: 32921254 DOI: 10.1080/10826068.2020.1815053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
L-asparaginase (ASNase) is an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Commercial bacterial ASNases increase patient survival, but the consequent immunological reactions remain a challenge. Yeasts ASNase is closer to human congeners and could lead to lower side effects. Among 134 yeast strains isolated from marine-sediments in King George Island, Antarctica, nine were L-asparaginase producing yeasts and glutaminase-free. Leucosporidium muscorum CRM 1648 yielded the highest ASNase activity (490.41 U.L-1) and volumetric productivity (5.12 U.L-1 h-1). Sucrose, yeast extract and proline were the best carbon and nitrogen sources to support growth and ASNase production. A full factorial design analysis pointed the optimum media condition for yeast growth and ASNase yield: 20 g L-1 sucrose, 15 g L-1 yeast extract and 20 g L-1 proline, which resulted in 4582.5 U L-1 and 63.64 U L-1 h-1 of ASNase and volumetric productivity, respectively. Analysis of temperature, pH, inoculum and addition of seawater indicated the best condition for ASNase production by this yeast: 12-15 °C, pH 5.5-6.5 and seawater >25% (v/v). Inoculum concentration seems not to interfere. This work is pioneer on the production of ASNase by cold-adapted yeasts, highlighting the potential of these microbial resources as a source of glutaminase-free L-asparaginase for commercial purposes.
Collapse
Affiliation(s)
- Rominne Karla Barros Freire
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos Miguel Nóbrega Mendonça
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Bertelli Ferraro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ignacio Sánchez Moguel
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aldo Tonso
- Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo, Brazil
| | - Felipe Rebello Lourenço
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, State University Julio de Mesquita Filho (UNESP), Rio Claro, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
34
|
Zucconi L, Canini F, Temporiti ME, Tosi S. Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186459. [PMID: 32899827 PMCID: PMC7558612 DOI: 10.3390/ijerph17186459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Antarctica, one of the harshest environments in the world, has been successfully colonized by extremophilic, psychrophilic, and psychrotolerant microorganisms, facing a range of extreme conditions. Fungi are the most diverse taxon in the Antarctic ecosystems, including soils. Genetic adaptation to this environment results in the synthesis of a range of metabolites, with different functional roles in relation to the biotic and abiotic environmental factors, some of which with new biological properties of potential biotechnological interest. An overview on the production of cold-adapted enzymes and other bioactive secondary metabolites from filamentous fungi and yeasts isolated from Antarctic soils is here provided and considerations on their ecological significance are reported. A great number of researches have been carried out to date, based on cultural approaches. More recently, metagenomics approaches are expected to increase our knowledge on metabolic potential of these organisms, leading to the characterization of unculturable taxa. The search on fungi in Antarctica deserves to be improved, since it may represent a useful strategy for finding new metabolic pathways and, consequently, new bioactive compounds.
Collapse
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Correspondence: (L.Z.); (F.C.); Tel.: +39-328-2741247 (L.Z.); +39-347-9288247 (F.C.)
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Correspondence: (L.Z.); (F.C.); Tel.: +39-328-2741247 (L.Z.); +39-347-9288247 (F.C.)
| | - Marta Elisabetta Temporiti
- Department of Earth and Environmental Sciences, University of Pavia, via S. Epifanio 14, 27100 Pavia, Italy; (M.E.T.); (S.T.)
| | - Solveig Tosi
- Department of Earth and Environmental Sciences, University of Pavia, via S. Epifanio 14, 27100 Pavia, Italy; (M.E.T.); (S.T.)
| |
Collapse
|
35
|
Porto BA, da Silva TH, Machado MR, de Oliveira FS, Rosa CA, Rosa LH. Diversity and distribution of cultivable fungi present in acid sulphate soils in chronosequence under para-periglacial conditions in King George Island, Antarctica. Extremophiles 2020; 24:797-807. [PMID: 32789694 DOI: 10.1007/s00792-020-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 12/01/2022]
Abstract
We recovered 85 fungal isolates from the acid sulphate soils in chronosequence under para-periglacial conditions in King George Island, Antarctica. Thirty-two taxa belonging to the phylum Ascomycota, Basidiomycota and Mortierellomycota were identified. Mortierella amoeboidea, Mortierella sp. 2, Mortierella sp. 3, Penicillium sp. 2 and Penicillium sp. 3 dominated the sulphite soils. Despite the multi-extreme physic-chemical conditions of the sulphate soils (low pH, variable content of macro and micronutrients and organic matter), the fungal assemblages exhibited moderate diversity indices, which ranged according to the degree of soil development. Soils with more weathered and, consequently, with highest values of organic carbon shelter the most diverse fungal assemblages, which can be associated with the occurrence of sulphurisation and sulphide oxidation. Different taxa of Mortierella and Penicillium displayed broad pH (3-9) and temperature (5-35 °C) plasticity. The multi-extreme sulphite soils of Antarctica revealed the presence of moderate fungal diversity comprising cold cosmopolitan and psychrophilic endemic taxa. Among these, Mortierella and Penicillium, known to survive in extreme conditions such as low temperature and available organic matter, low pH and high concentrations of metals, might represent interesting techniques to be used in biotechnological processes such as bioleaching in metallurgy and phosphate solubilisation in agriculture.
Collapse
Affiliation(s)
- Bárbara Alves Porto
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP, 31270-901, Brazil
| | - Thamar Holanda da Silva
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP, 31270-901, Brazil
| | | | | | - Carlos Augusto Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP, 31270-901, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP, 31270-901, Brazil.
| |
Collapse
|
36
|
Fungal Community in Antarctic Soil Along the Retreating Collins Glacier (Fildes Peninsula, King George Island). Microorganisms 2020; 8:microorganisms8081145. [PMID: 32751125 PMCID: PMC7465374 DOI: 10.3390/microorganisms8081145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023] Open
Abstract
Glacial retreat is one of the most conspicuous signs of warming in Antarctic regions. Glacier soils harbor an active microbial community of decomposers, and under the continuous retraction of glaciers, the soil starts to present a gradient of physical, chemical, and biological factors reflecting regional changes over time. Little is known about the biological nature of fungi in Antarctic glacier soils. In this sense, this work aimed at studying the behavior of fungal community structure from samples of glacier soil collected after glacial retreat (Collins Glacier). A total of 309 fungi distributed in 19 genera were obtained from eleven soil samples. Representatives of the genera Pseudogymnoascus (Ascomycota) and Mortierella (Mortierellomycota) were the most abundant isolates in all samples. The data revealed the presence of filamentous fungi belonging to the phylum Basidiomycota, rarely found in Antarctica. Analysis of the generalized linear models revealed that the distance from the glacier as well as phosphorus and clay were able to modify the distribution of fungal species. Environmental variations proved to have influenced the genera Pseudogymnoascus and Pseudeutorium.
Collapse
|
37
|
da Silva TH, Silva DAS, de Oliveira FS, Schaefer CEGR, Rosa CA, Rosa LH. Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 2020; 24:565-576. [PMID: 32405812 DOI: 10.1007/s00792-020-01176-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
We evaluated the diversity and distribution of viable fungi present in permafrost and active layers obtained from three islands of Maritime Antarctica. A total of 213 fungal isolates were recovered from the permafrost, and 351 from the active layer, which were identified in 58 taxa; 27 from permafrost and 31 from the active layer. Oidiodendron, Penicillium, and Pseudogymnoascus taxa were the most abundant in permafrost. Bionectriaceae, Helotiales, Mortierellaceae, and Pseudeurotium were the most abundant in the active layer. Only five shared both substrates. The yeast Mrakia blollopis represented is the first reported on Antarctic permafrost. The fungal diversity detected was moderate to high, and composed of cosmopolitan, cold-adapted, and endemic taxa, reported as saprobic, mutualistic, and parasitic species. Our results demonstrate that permafrost shelters viable fungi across the Maritime Antarctica, and that they are contrasting to the overlying active layer. We detected important fungal taxa represented by potential new species, particularly, those genetically close to Pseudogymnoascus destructans, which can cause extinction of bats in North America and Eurasia. The detection of viable fungi trapped in permafrost deserves further studies on the extension of its fungal diversity and its capability to expand from permafrost to other habitats in Antarctica, and elsewhere.
Collapse
Affiliation(s)
- Thamar Holanda da Silva
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fábio Soares de Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
38
|
Ogaki MB, Teixeira DR, Vieira R, Lírio JM, Felizardo JPS, Abuchacra RC, Cardoso RP, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Ceravolo IP, Pereira PO, Rosa CA, Rosa LH. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 2020; 124:601-611. [PMID: 32448451 DOI: 10.1016/j.funbio.2020.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
We recovered 195 fungal isolates from the sediments of different lakes in the Antarctic Peninsula, which were screened to detect bioactive compounds. Forty-two taxa belonging to the phyla Ascomycota, Basidiomycota, and Mortierellomycota were identified. Thelebolus globosus, Antarctomyces psychrotrophicus, Pseudogymnoascus verrucosus, Vishniacozyma victoriae, and Phenoliferia sp. were found to be the most prevalent. The fungal assemblages showed high diversity and richness, but low dominance values. However, the diversity indices and fungal distribution ranged according to the different lake sediments. Sixty fungal extracts displayed at least one biological activity against the evaluated targets. Among them, Pseudogymnoascus destructans showed selective trypanocidal activity, Cladosporium sp. 1 and Trichoderma polysporum showed antifungal activity, and Pseudogymnoascus appendiculatus and Helotiales sp. showed high herbicidal activity. We detected a rich and diverse fungal community composed of cold cosmopolitan and psychrophilic endemic taxa recognized as decomposers, symbiotics, pathogens, and potential new species, in the sediments of Antarctic lakes. The dynamics and balance of this fungal community represents an interesting aquatic web model for further ecological and evolutionary studies under extreme conditions and potential climate changes in the regions. In addition, we detected fungal taxa and isolates able to produce bioactive compounds that may represent the source of prototype molecules for applications in medicine and agriculture.
Collapse
Affiliation(s)
- Mayara B Ogaki
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, MG, Brazil
| | - Daniela R Teixeira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, MG, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, RJ, Brazil
| | - Juan M Lírio
- Instituto Antártico Argentino, Buenos Aires, Argentina
| | | | - Rodrigo C Abuchacra
- Departamento de Geografia, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Renan P Cardoso
- Instituto de Física, Universidade Federal Fluminense, RJ, Brazil
| | | | | | | | | | | | | | | | | | - Carlos A Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, MG, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, MG, Brazil.
| |
Collapse
|
39
|
Giraldo A, Hernández-Restrepo M, Crous PW. New plectosphaerellaceous species from Dutch garden soil. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01511-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
During 2017, the Westerdijk Fungal Biodiversity Institute (WI) and the Utrecht University Museum launched a Citizen Science project. Dutch school children collected soil samples from gardens at different localities in the Netherlands, and submitted them to the WI where they were analysed in order to find new fungal species. Around 3000 fungal isolates, including filamentous fungi and yeasts, were cultured, preserved and submitted for DNA sequencing. Through analysis of the ITS and LSU sequences from the obtained isolates, several plectosphaerellaceous fungi were identified for further study. Based on morphological characters and the combined analysis of the ITS and TEF1-α sequences, some isolates were found to represent new species in the genera Phialoparvum, i.e. Ph. maaspleinense and Ph. rietveltiae, and Plectosphaerella, i.e. Pl. hanneae and Pl. verschoorii, which are described and illustrated here.
Collapse
|