1
|
Tichy J, Waldherr M, Ortbauer M, Graf A, Sipek B, Jembrih-Simbuerger D, Sterflinger K, Piñar G. Pretty in pink? Complementary strategies for analysing pink biofilms on historical buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166737. [PMID: 37659529 DOI: 10.1016/j.scitotenv.2023.166737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Salt-weathering is a deterioration mechanism affecting building materials that results from repetitive cycles of salt crystallisation-dissolution in the porous mineral network under changing environmental conditions, causing damage to surfaces. However, an additional biodeterioration phenomenon frequently associated with salt efflorescence is the appearance of coloured biofilms, comprising halotolerant/halophilic microorganisms, containing carotenoid pigments that cause pinkish patinas. In this work, two Austrian historical salt-weathered buildings showing pink biofilms, the St. Virgil's Chapel and the Charterhouse Mauerbach, were investigated. Substrate chemistry (salt concentration/composition) was analysed by ion chromatography and X-ray diffraction to correlate these parameters with the associated microorganisms. Microbiomes were analysed by sequencing full-length 16S rRNA amplicons using Nanopore technology. Data demonstrates that microbiomes are not only influenced by salt concentration, but also by its chemical composition. The chapel showed a high overall halite (NaCl) concentration, but the factor influencing the microbiome was the presence/absence of K+. The K+ areas showed a dominance of Aliifodinibius and Salinisphaera species, capable of tolerating high salt concentrations through the "salt-in" strategy by transporting K+ into cells. Conversely, areas without K+ showed a community shift towards Halomonas species, which favour the synthesis of compatible solutes for salt tolerance. In the charterhouse, the main salts were sulphates. In areas with low concentrations, Rubrobacter species dominated, while in areas with high concentrations, Haloechinothrix species did. Among archaea, Haloccoccus species were dominant in all samples, except at high sulphate concentrations, where Halalkalicoccus prevailed. Finally, the biological pigments visible in both buildings were analysed by Raman spectroscopy, showing the same spectra in all areas investigated, regardless of the building and the microbiomes, demonstrating the presence of carotenoids in the pink biofilms. Comprehensive information on the factors affecting the microbiome associated with salt-weathered buildings should provide the basis for selecting the most appropriate desalination treatment to remove both salt efflorescence and associated biofilms.
Collapse
Affiliation(s)
- Johannes Tichy
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria.
| | - Monika Waldherr
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Martin Ortbauer
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Alexandra Graf
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Beate Sipek
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Dubravka Jembrih-Simbuerger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Guadalupe Piñar
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| |
Collapse
|
2
|
Mitzscherling J, Genderjahn S, Schleicher AM, Bartholomäus A, Kallmeyer J, Wagner D. Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation. Microbiologyopen 2023; 12:e1370. [PMID: 37642485 PMCID: PMC10333725 DOI: 10.1002/mbo3.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.
Collapse
Affiliation(s)
- Julia Mitzscherling
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Inorganic and Isotope GeochemistryPotsdamGermany
| | | | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
- Institute of GeosciencesUniversity of PotsdamPotsdamGermany
| |
Collapse
|
3
|
Yao S, Jin T, Zhang L, Zhang Y, Chen R, Wang Q, Lv M, Hu C, Ma T, Xia W. N/S element transformation modulating lithospheric microbial communities by single-species manipulation. MICROBIOME 2023; 11:107. [PMID: 37194043 DOI: 10.1186/s40168-023-01553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The lithospheric microbiome plays a vital role in global biogeochemical cycling, yet their mutual modulation mechanisms remain largely uncharted. Petroleum reservoirs are important lithosphere ecosystems that provide desirable resources for understanding microbial roles in element cycling. However, the strategy and mechanism of modulating indigenous microbial communities for the optimization of community structures and functions are underexplored, despite its significance in energy recovery and environmental remediation. RESULTS Here we proposed a novel selective stimulation of indigenous functional microbes by driving nitrogen and sulfur cycling in petroleum reservoirs using injections of an exogenous heterocycle-degrading strain of Pseudomonas. We defined such bacteria capable of removing and releasing organically bound sulfur and nitrogen from heterocycles as "bioredox triggers". High-throughput 16S rRNA amplicon sequencing, metagenomic, and gene transcription-level analyses of extensive production water and sandstone core samples spanning the whole oil production process clarified the microbiome dynamics following the intervention. These efforts demonstrated the feasibility of in situ N/S element release and electron acceptor generation during heterocycle degradation, shifting microbiome structures and functions and increasing phylogenetic diversity and genera engaged in sulfur and nitrogen cycling, such as Desulfovibrio, Shewanella, and Sulfurospirillum. The metabolic potentials of sulfur- and nitrogen-cycling processes, particularly dissimilatory sulfate reduction and dissimilatory nitrate reduction, were elevated in reservoir microbiomes. The relative expression of genes involved in sulfate reduction (dsrA, dsrB) and nitrate reduction (napA) was upregulated by 85, 28, and 22 folds, respectively. Field trials showed significant improvements in oil properties, with a decline in asphaltenes and aromatics, hetero-element contents, and viscosity, hence facilitating the effective exploitation of heavy oil. CONCLUSIONS The interactions between microbiomes and element cycling elucidated in this study will contribute to a better understanding of microbial metabolic involvement in, and response to, biogeochemical processes in the lithosphere. The presented findings demonstrated the immense potential of our microbial modulation strategy for green and enhanced heavy oil recovery. Video Abstract.
Collapse
Affiliation(s)
- Shun Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tianzhi Jin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Mingjie Lv
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Chuxiao Hu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
4
|
Bacterial community composition of the sediment in Sayram Lake, an alpine lake in the arid northwest of China. BMC Microbiol 2023; 23:47. [PMID: 36823577 PMCID: PMC9948317 DOI: 10.1186/s12866-023-02793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in alpine lake ecosystems. However, little is known about the sediment microbial communities in these lakes. In this study, the bacterial community composition (BCC) and their relationships with environmental factors of the sediment in Sayram Lake, the largest alpine and cold-water inland lake, China was analyzed using Illumina MiSeq sequencing. In total, we obtained 618,271 high quality sequences. The results showed that the bacterial communities with 30 phyla and 546 genera, were spread out among the 5 furface sediment samples, respectively. The communities were dominated by Proteobacteria, Acidobacteria, Planctomycetes, Gemmatimonadetes, Chloroflexi, Actinobacteria, Verrucomicrobia and Bacteroidetes, accounting for 48.15 ± 8.10%, 11.23 ± 3.10%, 8.42 ± 2.15%, 8.37 ± 2.26%, 7.40 ± 3.05%, 5.62 ± 1.25%, 4.18 ± 2.12% and 2.24 ± 1.10% of the total reads, respectively. At the genus level, the communities were dominated by Aquabacterium, Pseudomonas, Woeseia, MND1, Ignavibacterium and Truepera, accounting for 7.89% ± 8.24%, 2.32% ± 1.05%, 2.14% ± 0.94%, 2% ± 1.22%, 0.94% ± 0.14% and 0.80% ± 0.14% of the total reads, respectively. Statistical analyses showed the similarity of the sediment bacterial communities at our field sites was considerably low, far below 35%, and total organic carbon (TOC) was the dominant environmental factor affecting the spatial changes of BCC in the sediment. Thus, this study greatly improving our understanding of the microbial ecology of alpine lake in the arid and semi-arid ecosystems today so seriously threatened.
Collapse
|
5
|
Saadouli I, Marasco R, Mejri L, Hamden H, Guerfali MM, Stathopoulou P, Daffonchio D, Cherif A, Ouzari HI, Tsiamis G, Mosbah A. Diversity and adaptation properties of actinobacteria associated with Tunisian stone ruins. Front Microbiol 2022; 13:997832. [PMID: 36583041 PMCID: PMC9793712 DOI: 10.3389/fmicb.2022.997832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Stone surface is a unique biological niche that may host a rich microbial diversity. The exploration of the biodiversity of the stone microbiome represents a major challenge and an opportunity to characterize new strains equipped with valuable biological activity. Here, we explored the diversity and adaptation strategies of total bacterial communities associated with Roman stone ruins in Tunisia by considering the effects of geo-climatic regions and stone geochemistry. Environmental 16S rRNA gene amplicon was performed on DNA extracted from stones samples collected in three different sampling sites in Tunisia, along an almost 400km aridity transect, encompassing Mediterranean, semiarid and arid climates. The library was sequenced on an Illumina MiSeq sequencing platform. The cultivable Actinobacteria were isolated from stones samples using the dilution plate technique. A total of 71 strains were isolated and identified based on 16S rRNA gene sequences. Cultivable actinobacteria were further investigated to evaluate the adaptative strategies adopted to survive in/on stones. Amplicon sequencing showed that stone ruins bacterial communities were consistently dominated by Cyanobacteria, followed by Proteobacteria and Actinobacteria along the aridity gradient. However, the relative abundance of the bacterial community components changed according to the geo-climatic origin. Stone geochemistry, particularly the availability of magnesium, chromium, and copper, also influenced the bacterial communities' diversity. Cultivable actinobacteria were further investigated to evaluate the adaptative strategies adopted to survive in/on stones. All the cultivated bacteria belonged to the Actinobacteria class, and the most abundant genera were Streptomyces, Kocuria and Arthrobacter. They were able to tolerate high temperatures (up to 45°C) and salt accumulation, and they produced enzymes involved in nutrients' solubilization, such as phosphatase, amylase, protease, chitinase, and cellulase. Actinobacteria members also had an important role in the co-occurrence interactions among bacteria, favoring the community interactome and stabilization. Our findings provide new insights into actinobacteria's diversity, adaptation, and role within the microbiome associated with stone ruins.
Collapse
Affiliation(s)
- Ilhem Saadouli
- Laboratory of Microorganisms and Active Biomolecules, LMBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lassaad Mejri
- Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, Sidi Thabet, Tunisia
| | - Haytham Hamden
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN02, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Meriem M’saad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN02, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology Sidi Thabet, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, LMBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Amor Mosbah
- BVBGR-LR11ES31, Higher Institute of Biotechnology Sidi Thabet, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
6
|
High-Quality Genome Sequences of Six Actinobacterial Strains Isolated from Granite, Granodiorite, and Tourmaline Rock Surfaces Sampled from Tamil Nadu, India, and New England, United States. Microbiol Resour Announc 2022; 11:e0094622. [PMID: 36287000 PMCID: PMC9670885 DOI: 10.1128/mra.00946-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Here, we announce four contiguous and two high-quality draft genome sequences of six actinobacterial strains (Blastococcus, Georgenia, Nocardioides, Allobranchiibius, Yimella, and Williamsia) that were isolated from rock samples obtained from Indian historical ruins and colonial building stones in New England, United States. These new sequences expand the genome datasets recovered from stone-dwelling microbes and will allow the prediction of their potential role in the stone microbiome.
Collapse
|
7
|
Ennis NJ, Dharumadurai D, Sevigny JL, Wilmot R, Alnaimat SM, Bryce JG, Thomas WK, Tisa LS. Draft Genomes Sequences of 11 Geodermatophilaceae Strains Isolated from Building Stones from New England and Indian Stone Ruins found at historic sites in Tamil Nadu, India. J Genomics 2022; 10:69-77. [PMID: 36176899 PMCID: PMC9516006 DOI: 10.7150/jgen.76121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metagenomic analysis of stone microbiome from samples collected in New England, USA and Tamil Nadu, India identified numerous Actinobacteria including Geodermatphilaceae. A culture-dependent approach was performed as a companion study with this culture-independent metagenomic analysis of these stone samples and resulted in the isolation of eleven Geodermatphilaceae strains (2 Geodermatophilus and 9 Blastococcus strains). The genomes of the 11 Geodermatphilaceae strains were sequenced and analyzed. The genomes for the two Geodermatophilus isolates, DF1-2 and TF2-6, were 4.45 and 4.75 Mb, respectively, while the Blastococcus genomes ranged in size from 3.98 to 5.48 Mb. Phylogenetic analysis, digital DNA:DNA hybridization (dDDH), and comparisons of the average nucleotide identities (ANI) suggest the isolates represent novel Geodermatophilus and Blastococcus species. Functional analysis of the Geodermatphilaceae genomes provides insight on the stone microbiome niche.
Collapse
Affiliation(s)
- Nathaniel J. Ennis
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Present address: Seres Therapeutics, Cambridge, MA, USA
| | - Dhanasekaran Dharumadurai
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Departments of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Joseph L. Sevigny
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Ryan Wilmot
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Sulaiman M. Alnaimat
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Present address: Department of Medical Analysis, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Julia G. Bryce
- Department of Earth Sciences, University of New Hampshire, Durham, NH, USA
| | - W. Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
8
|
Wu F, Zhang Y, Gu JD, He D, Zhang G, Liu X, Guo Q, Cui H, Zhao J, Feng H. Community assembly, potential functions and interactions between fungi and microalgae associated with biodeterioration of sandstone at the Beishiku Temple in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155372. [PMID: 35489512 DOI: 10.1016/j.scitotenv.2022.155372] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Fungi, cyanobacteria and algae are specific microbial groups associated with the deterioration and safety of stone monuments. In this study, high-throughput sequencing analysis was used to investigate the diversity, distributions, ecological functions, and interaction patterns of both the fungal and microalgal (including cyanobacteria and algae) communities on sandstone in the Beishiku Temple, located on the ancient Silk Road. The results showed that the core phyla of fungi were affiliated with unclassified Lecanoromycetes, Engyodontium, Knufia, Epicoccum, Endocarpon, and Cladosporium of Ascomycota whereas the phyla of microalgae were dominated by prokaryotic Cyanobacteria and eukaryotic Chlorophyta. The environmental factors of temperature, relative humidity, and light intensity were monitored simultaneously. The structure of the microbial communities was much more strongly shaped by soluble Cl-, Na+, NO3- ions than by the light intensity, moisture content or temperature, especially for the weathered sandstone located outside the caves. The co-occurrence network analysis suggested that a more stable community structure was evident outside the caves than inside. The stronger positive connections and coexistence patterns that were detected indicate a strong adaptability of fungi and microalgae to the distinct oligotrophic microhabitats on sandstone. The metacommunity co-occurrence network exhibited the ecological predominance of fungi, and most of the functional fungi in the biofilms outside the caves belonged to the Lichenized group, based on the FUNGuild prediction. These findings highlight the ecology and functions of stone-inhabiting microorganisms to further advance the current understanding and knowledge of sandstone biodeterioration for protection and management.
Collapse
Affiliation(s)
- Fasi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Center of Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, PR China
| | - Yong Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Center of Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China
| | - Dongpeng He
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, PR China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Xiaobo Liu
- Environmental Science and Engineering Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, PR China
| | - Qinglin Guo
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, PR China
| | - Huiping Cui
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu 736200, PR China
| | - Jianhua Zhao
- Shanghai Majorbio Bio-pharm Technology Co., Ltd., Shanghai 200120, PR China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Center of Grassland Microbiome, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
9
|
Skipper PJA, Skipper LK, Dixon RA. A metagenomic analysis of the bacterial microbiome of limestone, and the role of associated biofilms in the biodeterioration of heritage stone surfaces. Sci Rep 2022; 12:4877. [PMID: 35318388 PMCID: PMC8940931 DOI: 10.1038/s41598-022-08851-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
There is growing concern surrounding the aesthetic and physical effects of microbial biofilms on heritage buildings and monuments. Carboniferous stones, such as limestone and marble, are soluble in weak acid solutions and therefore particularly vulnerable to biocorrosion. This paper aims to determine the differences and commonalities between the microbiome of physically damaged and undamaged Lincolnshire limestone, an area of research which has not been previously studied. A lack of information about the core microbiome has resulted in conflicting claims in the literature regarding the biodeteriorative potential of many microorganisms. To address this, we used metagenomics alongside traditional microbiological techniques to produce an in-depth analysis of differences between the bacterial microbiomes found on deteriorated and undamaged external limestone surfaces. We demonstrate there is a core microbiome on Lincolnshire limestone present on both damaged and undamaged surfaces. In addition to the core microbiome, significant differences were found between species isolated from undamaged compared to damaged surfaces. Isolated species were characterised for biofilm formation and biodeteriorative processes, resulting in the association of species with biodeterioration that had not been previously described. Additionally, we have identified a previously undescribed method of biofilm-associated biomechanical damage. This research adds significant new understanding to the field, aiding decision making in conservation of stone surfaces.
Collapse
Affiliation(s)
| | - Lynda K Skipper
- School of History and Heritage, University of Lincoln, Lincoln, UK
| | - Ronald A Dixon
- School of Life Sciences, University of Lincoln, Lincoln, UK
| |
Collapse
|
10
|
Draft Genome Sequences of 6 Actinobacterial Strains Isolated from Rock Surfaces Obtained from Indian Stone Ruins in Tamil Nadu, India, and Rocks from New England, United States. Microbiol Resour Announc 2022; 11:e0002422. [PMID: 35200039 PMCID: PMC8928780 DOI: 10.1128/mra.00024-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequences obtained for 6 actinobacterial strains isolated from stone surfaces acquired from New England and Indian ruins. These strains were sequenced to determine their potential functional roles in the stone microbiome. The strains belong to the genera Allobranchiibius, Agrococcus, Dermococcus, Leifsonia, and Mycobacterium.
Collapse
|
11
|
Ding X, Lan W, Yan A, Li Y, Katayama Y, Gu JD. Microbiome characteristics and the key biochemical reactions identified on stone world cultural heritage under different climate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114041. [PMID: 34741944 DOI: 10.1016/j.jenvman.2021.114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The surfaces of historical stone monuments are visibly covered with a layer of colonizing microorganisms and their degradation products. In this study, a metadata analysis was conducted using the microbial sequencing data available from NCBI database to determine the diversity, biodeterioration potential and functionality of the stone microbiome on important world cultural heritage sites under four different climatic conditions. The retrieved stone microbial community composition in these metagenomes shows a clear association between climate types of the historical monuments and the diversity and taxonomic composition of the stone microbiomes. Shannon diversity values showed that microbial communities on stone monuments exposed to dry climate were more diverse than those under humid ones. In particular, functions associated with photosynthesis and UV resistance were identified from geographical locations under different climate types. The distribution of key microbial determinants responsible for stone deterioration was linked to survival under extreme environmental conditions and biochemical capabilities and reactions. Among them, biochemical reactions of the microbial nitrogen and sulfur cycles were most predominant. These stone-dwelling microbiomes on historical stone monuments were highly diverse and self-sustaining driven by energy metabolism and biomass accumulation. And metabolic products of the internal geomicrobiological nitrogen cycling on these ancient monuments play a unique role in the biodeterioration of stone monuments. These results highlight the significance of identifying the essential microbial biochemical reactions to advance the understanding of stone biodeterioration for protection management.
Collapse
Affiliation(s)
- Xinghua Ding
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine, Food Inspection and Quarantine Center of Shenzhen Custom, 1011 Fuqiang Road, Shenzhen, 518045, People's Republic of China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yoko Katayama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan; Tokyo National Research Institute for Cultural Properties, 13-43 Ueno Park, Taito-ku, Tokyo, 110-8713, Japan
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, People's Republic of China.
| |
Collapse
|
12
|
Darma A, Yang J, Bloem E, Możdżen K, Zandi P. Arsenic biotransformation and mobilization: the role of bacterial strains and other environmental variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1763-1787. [PMID: 34713399 DOI: 10.1007/s11356-021-17117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Over several decades, arsenic (As) toxicity in the biosphere has affected different flora, fauna, and other environmental components. The majority of these problems are linked with As mobilization due to bacterial dissolution of As-bearing minerals and its transformation in other reservoirs such as soil, sediments, and ground water. Understanding the process, mechanism, and various bacterial species involved in these processes under the influence of some ecological variables greatly contributes to a better understanding of the fate and implications of As mobilization into the environments. This article summarizes the process, role, and various types of bacterial species involved in the transformation and mobilization of As. Furthermore, insight into how Fe(II) oxidation and resistance mechanisms such as methylation and detoxification against the toxic effect of As(III) was highlighted as a potential immobilization and remediation strategy in As-contaminated sites. Furthermore, the significance and comparative advantages of some useful analytical tools used in the evaluation, speciation, and analysis of As are discussed and how their in situ and ex situ applications support assessing As contamination in both laboratory and field settings. Nevertheless, additional research involving advanced molecular techniques is required to elaborate on the contribution of these bacterial consortia as a potential agronomic tool for reducing As availability, particularly in natural circumstances. Graphical abstract. Courtesy of conceptual model: Aminu Darma.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Elke Bloem
- Institute for Crop and Soil Science Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Bundesallee 69, 38116, Braunschweig, Germany
| | - Katarzyna Możdżen
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St, 30-084, Kraków, Poland
| | - Peiman Zandi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, People's Republic of China
| |
Collapse
|
13
|
Tong X, Leung MHY, Shen Z, Lee JYY, Mason CE, Lee PKH. Metagenomic insights into the microbial communities of inert and oligotrophic outdoor pier surfaces of a coastal city. MICROBIOME 2021; 9:213. [PMID: 34724986 PMCID: PMC8562002 DOI: 10.1186/s40168-021-01166-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Studies of the microbiomes on surfaces in built environment have largely focused on indoor spaces, while outdoor spaces have received far less attention. Piers are engineered infrastructures commonly found in coastal areas, and due to their unique locations at the interface between terrestrial and aquatic ecosystems, pier surfaces are likely to harbor interesting microbiology. In this study, the microbiomes on the metal and concrete surfaces at nine piers located along the coastline of Hong Kong were investigated by metagenomic sequencing. The roles played by different physical attributes and environmental factors in shaping the taxonomic composition and functional traits of the pier surface microbiomes were determined. Metagenome-assembled genomes were reconstructed and their putative biosynthetic gene clusters were characterized in detail. RESULTS Surface material was found to be the strongest factor in structuring the taxonomic and functional compositions of the pier surface microbiomes. Corrosion-related bacteria were significantly enriched on metal surfaces, consistent with the pitting corrosion observed. The differential enrichment of taxa mediating biodegradation suggests differences between the metal and concrete surfaces in terms of specific xenobiotics being potentially degraded. Genome-centric analysis detected the presence of many novel species, with the majority of them belonging to the phylum Proteobacteria. Genomic characterization showed that the potential metabolic functions and secondary biosynthetic capacity were largely correlated with taxonomy, rather than surface attributes and geography. CONCLUSIONS Pier surfaces are a rich reservoir of abundant novel bacterial species. Members of the surface microbial communities use different mechanisms to counter the stresses under oligotrophic conditions. A better understanding of the outdoor surface microbiomes located in different environments should enhance the ability to maintain outdoor surfaces of infrastructures. Video Abstract.
Collapse
Affiliation(s)
- Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|