1
|
Zhang B, Ma Y, Duan W, Fan Q, Sun J. Pinewood nematode induced changes in the assembly process of gallery microbiomes benefit its vector beetle's development. Microbiol Spectr 2024; 12:e0141224. [PMID: 39258937 PMCID: PMC11448173 DOI: 10.1128/spectrum.01412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024] Open
Abstract
Microbiomes play crucial roles in insect adaptation, especially under stress such as pathogen invasion. Yet, how beneficial microbiomes assemble remains unclear. The wood-boring beetle Monochamus alternatus, a major pest and vector of the pine wilt disease (PWD) nematode, offers a unique model. We conducted controlled experiments using amplicon sequencing (16S rRNA and ITS) within galleries where beetles and microbes interact. PWD significantly altered bacterial and fungal communities, suggesting distinct assembly processes. Deterministic factors like priority effects, host selection, and microbial interactions shaped microbiome composition, distinguishing healthy from PWN-infected galleries. Actinobacteria, Firmicutes, and Ophiostomataceae emerged as potentially beneficial, aiding beetle's development and pathogen resistance. This study unveils how nematode-induced changes in gallery microbiomes influence beetle's development, shedding light on microbiome assembly amid insect-pathogen interactions. Insights gleaned enhance understanding of PWD spread and suggest novel management strategies via microbiome manipulation.IMPORTANCEThis study explores the assembly process of gallery microbiomes associated with a wood-boring beetles, Monochamus alternatus, a vector of the pine wilt disease (PWD). By conducting controlled comparison experiments and employing amplicon approaches, the study reveals significant changes in taxonomic composition and functional adaptation of bacterial and fungal communities induced by PWD. It identifies deterministic processes, including priority effects, host selection, and microbial interactions, as major drivers in microbiome assembly. Additionally, the study highlights the presence of potentially beneficial microbes such as Actinobacteria, Firmicutes, and Ophiostomataceae, which could enhance beetle development and resistance to pathogens. These findings shed light on the intricate interplay among insects, microbiomes, and pathogens, contributing to a deeper understanding of PWD prevalence and suggesting innovative management strategies through microbiome manipulation.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yafei Ma
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenzhao Duan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Qi Fan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Kamaruzzaman M, Zheng L, Zhou S, Ye W, Yuan Y, Qi Q, Gao Y, Tan J, Wang Y, Chen B, Li Z, Liu S, Mi R, Zhang K, Zhao C, Ahmed W, Wang X. Evaluation of the novel endophytic fungus Chaetomium ascotrichoides 1-24-2 from Pinus massoniana as a biocontrol agent against pine wilt disease caused by Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2024; 80:4924-4940. [PMID: 38860543 DOI: 10.1002/ps.8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD), is an ever-increasing threat to Pinus forests worldwide. This study aimed to develop biological control of PWD by the application of endophytic fungi isolated from healthy pine trees. RESULTS We successfully isolated a novel endophytic fungal strain 1-24-2 from branches of healthy Pinus massoniana. The culture filtrates (CFs) of strain 1-24-2 exhibited strong nematicidal activity against Bursaphelenchus xylophilus, with a corrected mortality rate of 99.00%. Based on the morphological and molecular characteristics, the isolated strain 1-24-2 was identified as Chaetomium ascotrichoides. In the in-planta assay, pine seedlings (2-years-old) treated with 1-24-2 CFs + pine wood nematode (T2) showed a significant control effect of 80%. A total of 24 toxic compounds were first identified from 1-24-2 CFs through gas chromatography-mass spectrometry (GC-MS) analysis, from which O-methylisourea, 2-chlorobenzothiazole, and 4,5,6-trihydroxy-7-methylphthalide showed robust binding sites at Tyr119 against phosphoethanolamine methyltransferase (PMT) protein of Bursaphelenchus xylophilus by molecular docking approach and could be used as potential compounds for developing effective nematicides. Interestingly, strain 1-24-2 produces toxic volatile organic compounds (VOCs), which disturb the natural development process of B. xylophilus, whose total number decreased by up to 83.32% in the treatment group as compared to control and also reduced Botrytis cinerea growth by up to 71.01%. CONCLUSION Our results highlight the potential of C. ascotrichoides 1-24-2 as a promising biocontrol agent with solid nematicidal activity against B. xylophilus. This is the first report of C. ascotrichoides isolated from P. massoniana exhibiting strong biocontrol potential against B. xylophilus in the world. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Md Kamaruzzaman
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lijun Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wenhua Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yongqiang Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qiu Qi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Jiajin Tan
- College of Forestry and Grassland, Collaborative Innovation Center of Modern Forestry in South China, Nanjing Forestry University, Nanjing, China
| | - Yan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Bingjia Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhiguang Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Songsong Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Renjun Mi
- Forestry Bureau of Chenxi County, Huaihua, China
| | - Ke Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Gao J, Chen L, Wang J, Zhao W, Zhang J, Qin Z, Wang M, Chen X, Li M, Yang Q. Response of the Symbiotic Microbial Community of Dioscorea opposita Cultivar Tiegun to Root-Knot Nematode Infection. PLANT DISEASE 2024; 108:2472-2483. [PMID: 38549276 DOI: 10.1094/pdis-01-24-0169-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and how endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cultivar Tiegun. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16 to 40 cm than those at a depth of 0 to 15 and 41 to 70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial α-diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.
Collapse
Affiliation(s)
- Jin Gao
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Liting Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Jingjing Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Weichao Zhao
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Jiangli Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhao Qin
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Mingzhu Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Xia Chen
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93053, Germany
| | - Mingjun Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Meng WJ, Li YL, Qu ZL, Zhang YM, Liu B, Liu K, Gao ZW, Dong LN, Sun H. Fungal community structure shifts in litter degradation along forest succession induced by pine wilt disease. Microbiol Res 2024; 280:127588. [PMID: 38163390 DOI: 10.1016/j.micres.2023.127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Fungi play a crucial role in decomposing litter and facilitating the energy flow between aboveground plants and underground soil in forest ecosystems. However, our understanding how the fungal community involved in litter decomposition responds during forest succession, particularly in disease-driven succession, is still limited. This study investigated the activity of degrading enzyme, fungal community, and predicted function in litter after one year of decomposition in different types of forests during a forest succession gradient from coniferous to deciduous forest, induced by pine wilt disease. The results showed that the weight loss of needles/leaves and twigs did not change along the succession process, but twigs degraded faster than needles/leaves in both pure pine forest and mixed forest. In pure pine forest, peak activities of enzymes involved in carbon degradation (β-cellobiosidase, β-glucosidase, β-D-glucuronidase, β-xylosidase), nitrogen degradation (N-acetyl-glucosamidase), and organic phosphorus degradation (phosphatase) were observed in needles, which subsequently declined. The fungal diversity and evenness (Shannon's diversity and Shannon's evenness) dropped in twig from coniferous forest to mixed forest during the succession. The dominant phyla in needle/leaf and twig litters were Ascomycota (46.9%) and Basidiomycota (38.9%), with Lambertella pruni and Chalara hughesii identified as the most abundant indicator species. Gymnopus and Desmazierella showed positively correlations with most measured enzyme activities. Functionally, saprotrophs constituted the main trophic mode (47.65%), followed by Pathotroph-Saprotroph-Symbiotroph (30.95%) and Saprotroph-Symbiotroph (10.57%). The fungal community and predicted functional structures in both litter types shifted among different forest types along the succession. These findings indicate that the fungal community in litter decomposition responds differently to disease-induced succession, leading to significant shifts in both the fungal community structure and function.
Collapse
Affiliation(s)
- Wen-Jing Meng
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yi-Lin Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yue-Mei Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Kang Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-Wen Gao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Li-Na Dong
- Department of landscape management, Zhongshan Cemetery Administration Bureau, Nanjing 210037, China
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
5
|
Li D, Li Y, Wang X, Zhang W, Wen X, Liu Z, Feng Y, Zhang X. Engineered pine endophytic Bacillus toyonensis with nematocidal and colonization abilities for pine wilt disease control. Front Microbiol 2023; 14:1240984. [PMID: 38125565 PMCID: PMC10731049 DOI: 10.3389/fmicb.2023.1240984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The pinewood nematode (PWN) is responsible for causing pine wilt disease (PWD), which has led to the significant decline of conifer species in Eurasian forests and has become a globally invasive quarantine pest. Manipulating plant-associated microbes to control nematodes is an important strategy for sustainable pest management. However, it has proven difficult to find pine-associated bacteria that possess both nematocidal activity and the ability to colonize pine tissues. Methods The stress experiments with turpentine and pine tissue extract were carried out to screen for the desired target strain that could adapt to the internal environment of pine trees. This strain was used to construct an engineered nematocidal strain. Additionally, a fluorescent strain was constructed to determine its dispersal ability in Pinus massoniana seedlings through plate separation, PCR detection, and fluorescence microscopy observations. The engineered nematocidal strain was tested in the greenhouse experiment to assess its ability to effectively protect P. massoniana seedlings from nematode infection. Results This study isolated a Bacillus toyonensis strain Bxy19 from the healthy pine stem, which showed exceptional tolerance in stress experiments. An engineered nematocidal strain Bxy19P3C6 was constructed, which expressed the Cry6Aa crystal protein and exhibited nematocidal activity. The fluorescent strain Bxy19GFP was also constructed and used to test its dispersal ability. It was observed to enter the needles of the seedlings through the stomata and colonize the vascular bundle after being sprayed on the seedlings. The strain was observed to colonize and spread in the tracheid after being injected into the stems. The strain could colonize the seedlings and persist for at least 50 days. Furthermore, the greenhouse experiments indicated that both spraying and injecting the engineered strain Bxy19P3C6 had considerable efficacy against nematode infection. Discussion The evidence of the colonization ability and persistence of the strain in pine advances our understanding of the control and prediction of the colonization of exogenously delivered bacteria in pines. This study provides a promising approach for manipulating plant-associated bacteria and using Bt protein to control nematodes.
Collapse
Affiliation(s)
- Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Zhang L, Meng F, Ge W, Ren Y, Bao H, Tian C. Effects of Colletotrichum gloeosporioides and Poplar Secondary Metabolites on the Composition of Poplar Phyllosphere Microbial Communities. Microbiol Spectr 2023; 11:e0460322. [PMID: 37219434 PMCID: PMC10269685 DOI: 10.1128/spectrum.04603-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Poplar anthracnose caused by Colletotrichum gloeosporioides is a common disease affecting poplars globally that causes the destruction and alteration of poplar phyllosphere microbial communities; however, few studies have investigated these communities. Therefore, in this study, three species of poplar with different resistances were investigated to explore the effects of Colletotrichum gloeosporioides and poplar secondary metabolites on the composition of poplar phyllosphere microbial communities. Evaluation of the phyllosphere microbial communities before and after inoculation of the poplars with C. gloeosporioides revealed that both bacterial and fungal OTUs decreased after inoculation. Among bacteria, the most abundant genera were Bacillus, Plesiomonas, Pseudomonas, Rhizobium, Cetobacterium, Streptococcus, Massilia, and Shigella for all poplar species. Among fungi, the most abundant genera before inoculation were Cladosporium, Aspergillus, Fusarium, Mortierella, and Colletotrichum, while Colletotrichum was the main genus after inoculation. The inoculation of pathogens may regulate the phyllosphere microorganisms by affecting the secondary metabolites of plants. We investigated metabolite contents in the phyllosphere before and after the inoculation of the three poplar species, as well as the effects of flavonoids, organic acids, coumarins, and indoles on poplar phyllosphere microbial communities. We speculated that coumarin had the greatest recruitment effect on phyllosphere microorganisms, followed by organic acids through regression analysis. Overall, our results provide a foundation for subsequent screening of antagonistic bacteria and fungi against poplar anthracnose and investigations of the mechanism by which poplar phyllosphere microorganisms are recruited. IMPORTANCE Our findings revealed that the inoculation of Colletotrichum gloeosporioides has a greater effect on the fungal community than the bacterial community. In addition, coumarins, organic acids, and flavonoids may have recruitment effects on phyllosphere microorganisms, while indoles may have inhibitory effects on these organisms. These findings may provide the theoretical basis for the prevention and control of poplar anthracnose.
Collapse
Affiliation(s)
- Linxuan Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wei Ge
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yue Ren
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Hangbin Bao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Zhang W, Wang X, Li Y, Wei P, Sun N, Wen X, Liu Z, Li D, Feng Y, Zhang X. Differences Between Microbial Communities of Pinus Species Having Differing Level of Resistance to the Pine Wood Nematode. MICROBIAL ECOLOGY 2022; 84:1245-1255. [PMID: 34757460 DOI: 10.1007/s00248-021-01907-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a destructive invasive species that exerts devastating effects on most native pines in invaded regions, while many of the non-native pines have resistance to PWN. Recently, increasingly more research is focused on how microbial communities can improve host resistance against pathogens. However, the relationship between the microbial community structures and varying levels of pathogen resistance observed in different pine tree species remains unclear. Here, the bacterial and fungal communities of introduced resistant pines Pinus elliottii, P. caribaea, and P. taeda and native susceptible pines healthy and wilted P. massoniana infected by PWN were analyzed. The results showed that 6057 bacterial and 3931 fungal OTUs were annotated. The pine samples shared 944 bacterial OTUs primarily in the phyla Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi and 111 fungal OTUs primarily in phyla Ascomycota and Basidiomycota, though different pines had unique OTUs. There were significant differences in microbial community diversity between different pines, especially between the bacterial communities of resistant and susceptible pines, and fungal communities between healthy pines (resistant pines included) and the wilted P. massoniana. Resistant pines had a greater abundance of bacteria in the genera Acidothermus (class unidentified_Actinobacteria) and Prevotellaceae (class Alphaproteobacteria), but a lower abundance of Erwinia (class Gammaproteobacteria). Healthy pines had a higher fungal abundance of Cladosporium (class Dothideomycetes) and class Eurotiomycetes, but a lower abundance of Graphilbum, Sporothrix, Geosmithia (class Sordariomycetes), and Cryptoporus (classes Agaricomycetes and Saccharomycetes). These differences in microbial abundance between resistant and healthy pines might be associated with pathogen resistance of the pines, and the results of this study contribute to the studies exploring microbial-based control of PWN.
Collapse
Affiliation(s)
- Wei Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Pengfei Wei
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ningning Sun
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojian Wen
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenkai Liu
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongzhen Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
8
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. The Changes of Microbial Communities and Key Metabolites after Early Bursaphelenchus xylophilus Invasion of Pinus massoniana. PLANTS (BASEL, SWITZERLAND) 2022; 11:2849. [PMID: 36365304 PMCID: PMC9653782 DOI: 10.3390/plants11212849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a worldwide pest of pine trees, spreading at an alarming rate and with great ecological adaptability. In the process of causing disease, the nematode causes metabolic disorders and changes in the endophytic microbial community of the pine tree. However, the changes at the pine nidus during early nematode invasion have not been well studied, especially the differential metabolites, in Pinus massoniana, the main host of B. xylophilus in China. In this study, we analyzed the endophytic bacterial and fungal communities associated with healthy and B. xylophilus-caused wilted pine trees. The results show that 1333 bacterial OTUs and 502 fungal OTUs were annotated from P. massoniana stem samples. The abundance of bacterial communities in pine trees varies more following infection by B. xylophilus, but the abundance changes of fungal communities are less visible. There were significant differences in endophytic microbial diversity between wilted and healthy P. massoniana. In wilted pine trees, Actinobacteria and Bacteroidia were differential indicators of bacterial communities, whereas, in healthy pine trees, Rhizobiales in the Proteobacteria phylum were the major markers of bacterial communities. Meanwhile, the differential markers of fungal communities in healthy pines are Malasseziales, Tremellales, Sordariales, and Fusarium, whereas Pleosporaceae is the key marker of fungal communities in wilted pines. Our study examines the effect of changes in the endophytic microbial community on the health of pine trees that may be caused by B. xylophilus infection. In parallel, a non-targeted metabolomic study based on liquid mass spectrometry (LC-MS) technology was conducted on pine trees inoculated with pine nematodes and healthy pine trees with a view to identifying key compounds affecting early pine lesions. Ultimately, 307 distinctly different metabolites were identified. Among them, the riboflavin metabolic pathway in pine trees may play a key role in the early pathogenesis of pine wood nematode disease.
Collapse
Affiliation(s)
- Yibo An
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Wang R, Li Y, Li D, Zhang W, Wang X, Wen X, Liu Z, Feng Y, Zhang X. Identification of the Extracellular Nuclease Influencing Soaking RNA Interference Efficiency in Bursaphelenchus xylophilus. Int J Mol Sci 2022; 23:ijms232012278. [PMID: 36293134 PMCID: PMC9603779 DOI: 10.3390/ijms232012278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
RNA interference (RNAi) efficiency dramatically varies among different nematodes, which impacts research on their gene function and pest control. Bursaphelenchus xylophilus is a pine wood nematode in which RNAi-mediated gene silencing has unstable interference efficiency through soaking in dsRNA solutions, the factors of which remain unknown. Using agarose gel electrophoresis, we found that dsRNA can be degraded by nematode secretions in the soaking system which is responsible for the low RNAi efficiency. Based on the previously published genome and secretome data of B. xylophilus, 154 nucleases were screened including 11 extracellular nucleases which are potential factors reducing RNAi efficacy. To confirm the function of nucleases in RNAi efficiency, eight extracellular nuclease genes (BxyNuc1-8) were cloned in the genome. BxyNuc4, BxyNuc6 and BxyNuc7 can be upregulated in response to dsGFP, considered as the major nuclease performing dsRNA degradation. After soaking with the dsRNA of nucleases BxyNuc4/BxyNuc6/BxyNuc7 and Pat10 gene (ineffective in RNAi) simultaneously for 24 h, the expression of Pat10 gene decreased by 23.25%, 26.05% and 11.29%, respectively. With soaking for 36 h, the expression of Pat10 gene decreased by 43.25% and 33.25% in dsBxyNuc6+dsPat10 and dsBxyNuc7+dsPat10 groups, respectively. However, without dsPat10, dsBxyNuc7 alone could cause downregulation of Pat10 gene expression, while dsBxyNuc6 could not disturb this gene. In conclusion, the nuclease BxyNuc6 might be a major barrier to the RNAi efficiency in B. xylophilus.
Collapse
Affiliation(s)
- Ruijiong Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-010-62888578
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
GAO J, PAN T, CHEN X, Wei Q, Xu L. Proteomic analysis of Masson pine with high resistance to pine wood nematodes. PLoS One 2022; 17:e0273010. [PMID: 35960732 PMCID: PMC9374249 DOI: 10.1371/journal.pone.0273010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Pine wilt disease is a dangerous pine disease globally. We used Masson pine (Pinus massoniana) clones, selected through traditional breeding and testing for 20 years, to study the molecular mechanism of their high resistance to pine wood nematodes (PWN,Bursaphelenchus xylophilus). Nine strains of seedlings of genetically stable Masson pine screened from different families with high resistance to PWN were used. The same number of sensitive clones were used as susceptible controls. Total proteins were extracted for tandem mass tag (TMT) quantitative proteomic analysis. The key proteins were verified by parallel reaction monitoring (PRM). A threshold of upregulation greater than 1.3-fold or downregulation greater than 0.3-fold was considered significant in highly resistant strains versus sensitive strains. A total of 3491 proteins were identified from the seedling tissues, among which 2783 proteins contained quantitative information. A total of 42 proteins were upregulated and 96 proteins were downregulated in the resistant strains. Functional enrichment analysis found significant differences in the proteins with pectin esterase activity or peroxidase activity. The proteins participating in salicylic acid metabolism, antioxidant stress reaction, polysaccharide degradation, glucose acid ester sheath lipid biosynthesis, and the sugar glycosaminoglycan degradation pathway were also changed significantly. The PRM results showed that pectin acetyl esterase, carbonic anhydrase, peroxidase, and chitinase were significantly downregulated, while aspartic protease was significantly upregulated, which was consistent with the proteomic data. These results suggest that Masson pine can degrade nematode-related proteins by increasing protease to inhibit their infestation, and can enhance the resistance of Masson pine to PWN by downregulating carbon metabolism to limit the carbon available to PWN or for involvement in cell wall components or tissue softening. Most of the downregulated proteins are supposed to act as an alternative mechanism for latter enhancement after pathogen attacks. The highly resistant Masson pine, very likely, harbors multiple pathways, both passive and active, to defend against PWN infestation.
Collapse
Affiliation(s)
- Jingbin GAO
- Anhui Vocational & Technical College of Forestry, Hefei, China
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
| | - Ting PAN
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Xuelian CHEN
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Qiang Wei
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
| | - Liuyi Xu
- State Key Laboratory of the National Forestry and Grassland Administration for Pine Wood Nematode Disease Prevention and Control Technology, Hefei, China
- Anhui Academy of Forestry, Hefei, China
- * E-mail:
| |
Collapse
|
11
|
Zheng G, You M, Li X, Zhou Q, Wang Z, Wang H, Lu Q. Diversity of fungi associated with Monochamusalternatus larval habitats in Bursaphelenchusxylophilus-infected Pinusmassoniana and identification of two new ophiostomatalean species (Ascomycota, Ophiostomatales). MycoKeys 2022; 92:1-25. [PMID: 36761318 PMCID: PMC9849073 DOI: 10.3897/mycokeys.92.80682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Bursaphelenchusxylophilus, a pathogenic pine wood nematode (PWN), is responsible for pine wilt disease (PWD), which has caused significant economic and ecological damage worldwide, particularly in East Asia. Multiple biological factors, such as the beetle vector Monochamus, symbiotic bacteria and associated fungi, are involved in the disease infection cycle. This study isolated and identified the fungal communities of Monochamusalternatus larval galleries and pupal chambers from different instars through field investigation, morphological observation and multi-locus DNA sequence analyses in Zhejiang Province, China. A total of 255 and 454 fungal strains were isolated from M.alternatus galleries and pupal chambers infected with PWN, from the 2nd-3rd and 4th-5th instar larvae, respectively. A total of 18 species of fungi were identified, 14 species were isolated from the 2nd-3rd instar larval galleries and six species from the galleries and pupal chambers of the 4th-5th instar larvae. Amongst them were six species belonging to four genera of ophiostomatalean fungi, including two novel species, Graphilbumxianjuensis sp. nov. and Ophiostomataizhouense sp. nov. and four known species, Ceratocystiopsisweihaiensis, Ophiostomaips, Sporothrixzhejiangensis and S.macroconidia. The findings revealed that the fungal diversity and abundance of the 2nd-3rd instar larvae differed markedly from those of the 4th-5th instar larvae. This difference could be the result of fungal succession. This study provides a thorough understanding of the fungi associated with PWD and lays the groundwork for future research.
Collapse
Affiliation(s)
- Guiheng Zheng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Minqi You
- Agriculture and Rural Affairs Bureau of Huangyan District, Taizhou City 318020, ChinaAgriculture and Rural Affairs Bureau of Huangyan DistrictZhejiangChina
| | - Xuening Li
- Research Institute of Desertification, Chinese Academy of Forestry, Beijing 100091, ChinaResearch Institute of Desertification, Chinese Academy of ForestryBeijingChina
| | - Qinzheng Zhou
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Zheng Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Huimin Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Quan Lu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
12
|
Deng J, Yu D, Zhou W, Zhou L, Zhu W. Variations of Phyllosphere and Rhizosphere Microbial Communities of Pinus koraiensis Infected by Bursaphelenchus xylophilus. MICROBIAL ECOLOGY 2022; 84:285-301. [PMID: 34487211 DOI: 10.1007/s00248-021-01850-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, as one of the greatest threats to pine trees, is spreading all over the world. Plant microorganisms play an important role in the pathogenesis of nematodes. The phyllosphere and rhizosphere bacterial and fungal communities associated with healthy Pinus koraiensis (PKa) and P. koraiensis infected by B. xylophilus at the early (PKb) and last (PKc) stages were analyzed. Our results demonstrated that pine wood nematode (PWD) could increase the phyllosphere bacterial Pielou_e, Shannon, and Simpson index; phyllosphere fungal Chao 1 index, as well as rhizosphere bacterial Pielou_e, Shannon, and Simpson index; and rhizosphere fungal Pielou_e, Shannon, and Simpson index. What's more, slight shifts of the microbial diversity were observed at the early stage of infection, and the microbial diversity increased significantly as the symptoms of infection worsened. With the infection of B. xylophilus in P. koraiensis, Bradyrhizobium (rhizosphere bacteria), Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyllosphere fungi) were the major contributors to the differences in community compositions among different treatments. With the infection of PWD, most of the bacterial groups tended to be co-excluding rather than co-occurring. These changes would correlate with microbial ability to suppress plant pathogen, enhancing the understanding of disease development and providing guidelines to pave the way for its possible management.
Collapse
Affiliation(s)
- Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
13
|
Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiol Spectr 2022; 10:e0078322. [PMID: 35758726 PMCID: PMC9430308 DOI: 10.1128/spectrum.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our understanding of environmental acquisition of microbes and migration-related alteration of microbiota across habitats has rapidly increased. However, in complex life cycles, such as for many parasites, exactly how these microbes are transmitted across multiple environments, such as hosts and habitats, is unknown. Pinewood nematode, the causal agent of the globally devastating pine wilt disease, provides an ideal model to study the role of microbiota in multispecies interactions because its successful host invasion depends on the interactions among its vector insects, pine hosts, and associated microbes. Here, we studied the role of bacterial and fungal communities involved in the nematode’s life cycle across different micro- (pupal chamber, vector beetle, and dispersal nematodes) and macrohabitats (geographical locations). We identified the potential sources, selection processes, and keystone taxa involved in the host pine-nematode-vector beetle microbiota interactions. Nearly 50% of the microbiota in vector beetle tracheae and ~60% that of third-stage dispersal juveniles were derived from the host pine (pupal chambers), whereas 90% of bacteria of fourth-stage dispersal juveniles originated from vector beetle tracheae. Our results also suggest that vector beetles’ tracheae selectively acquire some key taxa from the microbial community of the pupal chambers. These taxa will be then enriched in the dispersal nematodes traveling in the tracheae and hence likely transported to new host trees. Taken together, our findings contribute to the critical information toward a better understanding of the role of microbiota in pine wilt disease, therefore aiding the knowledge for the development of future biological control agents. IMPORTANCE Our understanding of animal microbiota acquisition and dispersal-mediated variation has rapidly increased. In this study, using the model of host pine-pinewood nematode-vector beetle (Monochamus sp.) complex, we disentangled the routes of microbial community assembly and transmission mechanisms among these different participants responsible for highly destructive pine wilt disease. We provide evidence that the microhabitat is the driving force shaping the microbial community of these participants. The microbiota of third-stage dispersal juveniles (LIII) of the nematodes collected around pupal chambers and of vector beetles were mainly derived from the host pine (pupal chambers), whereas the vector-entering fourth-stage dispersal juveniles (LIV) of the nematodes had the simplest microbiota community, not influencing vector’s microbiota. These findings enhanced our understanding of the variation in the microbiota of plants and animals and shed light on microbiota acquisition in complex life cycles.
Collapse
|
14
|
Hao X, Liu X, Chen J, Wang B, Li Y, Ye Y, Ma W, Ma L. Effects on community composition and function Pinus massoniana infected by Bursaphelenchus xylophilus. BMC Microbiol 2022; 22:157. [PMID: 35690728 PMCID: PMC9188149 DOI: 10.1186/s12866-022-02569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Pine wilt disease (PWD) is a worldwide forest disease caused by pine wood nematode (PWN). In this article, we investigated the composition, organization, correlation, and function of the endophytic microbial community in Pinus massoniana field with and without PWN. Samples were taken from branches, upper, middle, and lower trunks, as well as soil, from both healthy and infected trees. The results showed that the fungal diversity of healthy pines is around 1.1 times that of infected pines, while the bacterial diversity is about 0.75 times that of infected pines at the OTUs level. An increase of the abundance of pathogenic fungus such as Saitozyma, Graphilbum, Diplodia, Candida, Pseudoxanthomonas, Dyella and Pantoea was witnessed in infected pines according to the result of LEfSe. Furthermore, Ophiostoma and saprophytic fungus such as Entomocorticium, ganoderma, tomentella, entomocorticium were exclusively prominent in infected pines, which were substantially and highly connected with other species (p < 0.05), indicating the trees' vulnerability and making the wood blue. In healthy pines, the top three functional guilds are parasites, plant pathogens, and saprotrophs. Parasites (36.52%) are primarily found in the branches, plant pathogens (29.12%) are primarily found in the lower trunk, and saprotrophs (67.88%) are primarily found in the upper trunk of disease trees. Pines' immunity is being eroded due to an increase in the quantity and types of diseases. PICRUSt2 research revealed that NADH or NADPH, as well as carbon-nitrogen bonds, were more abundant in healthy pines, but acid anhydrides and transferring phosphorus-containing groups were more abundant in infected pines. The shift in resin secretion lowers the tree's potential and encourages pine wilt and mortality. In total, PWN may have disrupted the microbiological ecology and worked with the community to hasten the demise of pines.
Collapse
Affiliation(s)
- Xin Hao
- Northeast Forestry University, Harbin, China
| | - Xuefeng Liu
- Northeast Forestry University, Harbin, China
| | - Jie Chen
- Northeast Forestry University, Harbin, China.,Wageningen University & Research, Wageningen, Netherlands
| | | | - Yang Li
- Northeast Forestry University, Harbin, China
| | - Yi Ye
- Northeast Forestry University, Harbin, China
| | - Wei Ma
- Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Ling Ma
- Northeast Forestry University, Harbin, China.
| |
Collapse
|
15
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
16
|
Vicente CSL, Soares M, Faria JMS, Ramos AP, Inácio ML. Insights into the Role of Fungi in Pine Wilt Disease. J Fungi (Basel) 2021; 7:jof7090780. [PMID: 34575818 PMCID: PMC8469835 DOI: 10.3390/jof7090780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
| | - Jorge M. S. Faria
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
- Linking Environment Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| |
Collapse
|
17
|
Liu Y, Qu ZL, Liu B, Ma Y, Xu J, Shen WX, Sun H. The Impact of Pine Wood Nematode Infection on the Host Fungal Community. Microorganisms 2021; 9:microorganisms9050896. [PMID: 33922224 PMCID: PMC8146488 DOI: 10.3390/microorganisms9050896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023] Open
Abstract
Pine wilt disease (PWD), caused by pinewood nematode (PWN) Bursaphelenchus xylophilus, is globally one of the most destructive diseases of pine forests, especially in China. However, little is known about the effect of PWD on the host microbiome. In this study, the fungal community and functional structures in the needles, roots, and soil of and around Pinus thunbergii naturally infected by PWN were investigated by using high-throughput sequencing coupled with the functional prediction (FUNGuild). The results showed that fungal richness, diversity, and evenness in the needles of diseased trees were significantly lower than those of healthy ones (p < 0.05), whereas no differences were found in the roots and soil. Principal coordinate analysis (PCoA) showed that the fungal community and functional structures significantly differed only in the needles of diseased and healthy trees, but not in the soil and roots. Functionally, the saprotrophs had a higher abundance in the needles of diseased trees, whereas symbiotrophs abundance was higher in the needles of healthy trees (linear discriminant analysis (LDA) > 2.0, p < 0.05). These results indicated that PWN infection primarily affected the fungal community and functional structures in the needles of P. thunbergii, but not the roots and soil.
Collapse
Affiliation(s)
- Yi Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Jie Xu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
| | - Wen-Xiao Shen
- School of Foreign Language, Nanjing University of Finance and Economics, Nanjing 210046, China;
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (Z.-L.Q.); (B.L.); (Y.M.); (J.X.)
- Correspondence: ; Tel.: +86-13-851-724-350
| |
Collapse
|