1
|
Rietdijk S, Keszei M, Castro W, Terhorst C, Abadía-Molina AC. Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice. Int J Mol Sci 2023; 24:5024. [PMID: 36902453 PMCID: PMC10003074 DOI: 10.3390/ijms24055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid towards expression and function of Ly108 since multiple isoforms were identified, i.e., Ly108-1, Ly108-2, Ly108-3, and Ly108-H1, some of which are differentially expressed in several mouse strains. Surprisingly, Ly108-H1 appeared to protect against disease in a congenic mouse model of Lupus. Here, we use cell lines to further define Ly108-H1 function in comparison with other isoforms. We show that Ly108-H1 inhibits IL-2 production while having little effect upon cell death. With a refined method, we could detect phosphorylation of Ly108-H1 and show that SAP binding is retained. We propose that Ly108-H1 may regulate signaling at two levels by retaining the capability to bind its extracellular as well as intracellular ligands, possibly inhibiting downstream pathways. In addition, we detected Ly108-3 in primary cells and show that this isoform is also differentially expressed between mouse strains. The presence of additional binding motifs and a non-synonymous SNP in Ly108-3 further extends the diversity between murine strains. This work highlights the importance of isoform awareness, as inherent homology can present a challenge when interpreting mRNA and protein expression data, especially as alternatively splicing potentially affects function.
Collapse
Affiliation(s)
- Svend Rietdijk
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, 18016 Granada, Spain
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Gastroenterology and Hepatology, OLVG Hospital, 1091 AC Amsterdam, The Netherlands
| | - Marton Keszei
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wilson Castro
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ana C. Abadía-Molina
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, 18016 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Chen S, Li D, Wang Y, Li Q, Dong Z. Regulation of MHC class I-independent NK cell education by SLAM family receptors. Adv Immunol 2019; 145:159-185. [PMID: 32081197 DOI: 10.1016/bs.ai.2019.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Seven members of signaling lymphocytic activation molecule (SLAM) family receptors (SFRs) are ubiquitously expressed on hematopoietic cells and they play critical roles in immune cell differentiation and activation. The engagement of these receptors transmits intracellular signaling mainly by recruiting SLAM-associated protein (SAP) and its related adaptors, EWS-FLI1-activated transcript-2 (EAT-2) and EAT-2-related transducer (ERT). The critical roles of SFRs and SAP-family adaptors are highlighted by the discovery that SAP is mutated in human X-linked lymphoproliferative (XLP1) disease in which the contact between T and B cells in germinal center and cytotoxic lymphocytes (NK cells and CD8+ T cells) function are severely compromised. These immune defects are closely associated with the defective antibody production and the high incidence of lymphoma in the patients with XLP1. In addition to these well-known functions, SLAM-SAP family is involved in NK cell education, a process describing NK cell functional competence. In this chapter, we will mainly discuss these unappreciated roles of SAP-dependent and SAP-independent SFR signaling in regulating MHC-I-independent NK cell education.
Collapse
Affiliation(s)
- Shasha Chen
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
| | - Dan Li
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuande Wang
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qiaozhen Li
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Dragovich MA, Adam K, Strazza M, Tocheva AS, Peled M, Mor A. SLAMF6 clustering is required to augment T cell activation. PLoS One 2019; 14:e0218109. [PMID: 31199820 PMCID: PMC6568412 DOI: 10.1371/journal.pone.0218109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors that are expressed exclusively on hematopoietic cells. Most of these transmembrane receptors are homotypic by nature and downstream signaling occurs when cells that express the same SLAM receptor interact. Previous studies have determined that anti-SLAMF6 antibodies can have a therapeutic effect in autoimmunity and cancer. However, little is known about the role of SLAMF6 in the adaptive immune responses and in order to utilize SLAMF6 interventional approaches, a better understanding of the biology of this receptor in T cell is warranted. Accordingly, the objective of our study was to investigate both functionally and structurally the role of SLAMF6 in T cell receptor (TCR) mediated responses. Biochemical and genetic experiments revealed that SLAMF6 was required for productive TCR downstream signaling. Interestingly, SLAMF6 ectodomain was required for its function, but not for its recruitment to the immunological synapse. Flow-cytometry analysis demonstrated that tyrosine 308 of the tail of SLAMF6 was crucial for its ability to enhance T cell function. Imaging studies revealed that SLAMF6 clustering, specifically with the TCR, resulted in dramatic increase in downstream signaling. Mechanistically, we showed that SLAMF6 enhanced T cell function by increasing T cell adhesiveness through activation of the small GTPase Rap1. Taken together SLAMF6 is an important regulator of T cell activation where both its ectodomain and its endodomain contribute differentially to T cell functions. Additional studies are underway to better evaluate the role of anti-SLAMF6 approaches in specific human diseases.
Collapse
Affiliation(s)
- Matthew A. Dragovich
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Marianne Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Anna S. Tocheva
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
| | - Michael Peled
- Division of Pulmonary Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Rheumatology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Dragovich MA, Mor A. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun Rev 2018; 17:674-682. [PMID: 29729453 DOI: 10.1016/j.autrev.2018.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors (SLAMF1 through SLAMF9) that are expressed on hematopoietic cells. All of these receptors, with the exception of SLAMF4, are homotypic by nature as downstream signaling occurs when hematopoietic cells that express the same SLAM receptor interact. The SLAM family receptor function is largely controlled via SLAM associated protein (SAP) family adaptors. The SAP family adaptors consist of SAP, Ewing sarcoma associated transcript (EAT)-2, and EAT-2-related transducer (ERT). These adaptors associate with the cytoplasmic domain of the SLAM family receptors through phosphorylated tyrosines. Defects in SLAM family members and SAP adaptors have been implicated in causing immune deficiencies. This is exemplified in patients with X-linked lymphoproliferative (XLP) disease, where SAP undergoes a loss of function mutation. Furthermore, evidence has been accumulating that SLAM family members are potential targets for inflammatory and autoimmune diseases. This review will discuss the structure and function of the SLAM family receptors and SAP family adaptors, their role in immune regulation, and potential approaches to target this family of receptors therapeutically.
Collapse
Affiliation(s)
- Matthew A Dragovich
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Elotuzumab for the Treatment of Relapsed or Refractory Multiple Myeloma, with Special Reference to its Modes of Action and SLAMF7 Signaling. Mediterr J Hematol Infect Dis 2018. [PMID: 29531651 PMCID: PMC5841936 DOI: 10.4084/mjhid.2018.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Elotuzumab, targeting signaling lymphocytic activation molecule family 7 (SLAMF7), has been approved in combination with lenalidomide and dexamethasone (ELd) for relapsed/refractory multiple myeloma (MM) based on the findings of the phase III randomized trial ELOQUENT-2 (NCT01239797). Four-year follow-up analyses of ELOQUENT-2 have demonstrated that progression-free survival was 21% in ELd versus 14% in Ld. Elotuzumab binds a unique epitope on the membrane IgC2 domain of SLAMF7, exhibiting a dual mechanism of action: natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and enhancement of NK cell activity. The ADCC is mediated through engagement between Fc portion of elotuzumab and FcgRIIIa/CD16 on NK cells. Enhanced NK cell cytotoxicity results from phosphorylation of the immunoreceptor tyrosine-based switch motif (ITSM) that is induced via elotuzumab binding and recruits the SLAM-associated adaptor protein EAT-2. The coupling of EAT-2 to the phospholipase Cg enzymes SH2 domain leads to enhanced Ca2+ influx and MAPK/Erk pathway activation, resulting in granule polarization and enhanced exocytosis in NK cells. Elotuzumab does not stimulate the proliferation of MM cells due to a lack of EAT-2. The inhibitory effects of elotuzumab on MM cell growth are not induced by the lack of CD45, even though SHP-2, SHP-1, SHIP-1, and Csk may be recruited to phosphorylated ITSM of SLAMF7. ELd improves PFS in patients with high-risk cytogenetics, i.e. t(4;14), del(17p), and 1q21 gain/amplification. Since the immune state is paralytic in advanced MM, the efficacy of ELd with minimal toxicity may bring forward for consideration of its use in the early stages of the disease.
Collapse
|
6
|
Chaudhary A, Leite M, Kulasekara BR, Altura MA, Ogahara C, Weiss E, Fu W, Blanc MP, O'Keeffe M, Terhorst C, Akey JM, Miller SI. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy. Curr Biol 2016; 26:1791-801. [PMID: 27345162 DOI: 10.1016/j.cub.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 02/01/2023]
Abstract
Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.
Collapse
Affiliation(s)
- Anu Chaudhary
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Mara Leite
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | - Melissa A Altura
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogahara
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Eli Weiss
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marie-Pierre Blanc
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Michael O'Keeffe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
8
|
Talaei N, Yu T, Manion K, Bremner R, Wither JE. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:4623-31. [PMID: 26432891 DOI: 10.4049/jimmunol.1500552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ∼ 70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus.
Collapse
Affiliation(s)
- Nafiseh Talaei
- Arthritis Centre of Excellence, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Kieran Manion
- Arthritis Centre of Excellence, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario M5S 1A1, Canada; and
| | - Joan E Wither
- Arthritis Centre of Excellence, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
9
|
Pérez-Quintero LA, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization. ACTA ACUST UNITED AC 2014; 211:727-42. [PMID: 24687958 PMCID: PMC3978279 DOI: 10.1084/jem.20132038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.
Collapse
|
10
|
Wilson TJ, Garner LI, Metcalfe C, King E, Margraf S, Brown MH. Fine specificity and molecular competition in SLAM family receptor signalling. PLoS One 2014; 9:e92184. [PMID: 24642916 PMCID: PMC3958483 DOI: 10.1371/journal.pone.0092184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/20/2014] [Indexed: 01/24/2023] Open
Abstract
SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive dominance of SAP and EAT-2.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- Binding, Competitive
- Cell Line
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Immunoreceptor Tyrosine-Based Activation Motif
- Immunoreceptor Tyrosine-Based Inhibition Motif
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Molecular Sequence Data
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signaling Lymphocytic Activation Molecule Family
- Signaling Lymphocytic Activation Molecule Family Member 1
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Timothy J. Wilson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lee I. Garner
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Clive Metcalfe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elliott King
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Stefanie Margraf
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marion H. Brown
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Aldhamen YA, Seregin SS, Aylsworth CF, Godbehere S, Amalfitano A. Manipulation of EAT-2 expression promotes induction of multiple beneficial regulatory and effector functions of the human innate immune system as a novel immunomodulatory strategy. Int Immunol 2013; 26:291-303. [PMID: 24374770 DOI: 10.1093/intimm/dxt061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) receptor-associated adaptor Ewing's sarcoma-associated transcript-2 (EAT-2) is primarily expressed in innate immune cells including dendritic cells (DCs), macrophages and NK cells. A recent human HIV vaccine study confirmed that EAT-2 expression was associated with the enhanced immunogenicity induced by the MRKAd5/HIV vaccine. We previously harnessed the capability of EAT-2 to modulate signaling mediated by SLAM receptors and demonstrated that by incorporating EAT-2 expression into vaccines, one could enhance innate and adaptive immune responses in mice, even in the face of pre-existing immunity to the vaccine vectors. Herein, we investigated the innate immune responses of human cells exposed to EAT-2-over-expressing vaccines. Our results demonstrate that EAT-2 over-expression can significantly alter the kinetics of critical pro-inflammatory cytokine and chemokine responses elaborated by human PBMCs. In addition, enhanced DC maturation and increased monocyte phagocytosis were observed in EAT-2-transduced human cells. We also found that EAT-2 over-expression improved antigen presentation by human cells. Moreover, EAT-2 over-expression increased the anti-tumor activity of human NK cells against K562 tumor cell targets. Many of these responses were extinguished with use of an EAT-2 variant carrying a mutant SH2 domain (R31Q), suggesting a critical role for the interaction between EAT-2 and SLAM receptors in mediating these responses. In conclusion, these results provide evidence that EAT-2 interacts with key components of multiple arms of the human innate immune system, and that this role highlights the potential for targeting EAT-2 functions so as to improve a number of human immunotherapeutic approaches, including vaccine development.
Collapse
Affiliation(s)
- Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
12
|
Binsky-Ehrenreich I, Marom A, Sobotta MC, Shvidel L, Berrebi A, Hazan-Halevy I, Kay S, Aloshin A, Sagi I, Goldenberg DM, Leng L, Bucala R, Herishanu Y, Haran M, Shachar I. CD84 is a survival receptor for CLL cells. Oncogene 2013; 33:1006-16. [PMID: 23435417 DOI: 10.1038/onc.2013.31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/02/2013] [Accepted: 01/02/2013] [Indexed: 12/29/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5+ B lymphocytes in peripheral blood, lymphoid organs and bone marrow. The main feature of the disease is accumulation of the malignant cells due to decreased apoptosis. CD84 belongs to the signaling lymphocyte activating molecule family of immunoreceptors, and has an unknown function in CLL cells. Here, we show that the expression of CD84 is significantly elevated from the early stages of the disease, and is regulated by macrophage migration inhibitory factor and its receptor, CD74. Activation of cell surface CD84 initiates a signaling cascade that enhances CLL cell survival. Both downmodulation of CD84 expression and its immune-mediated blockade induce cell death in vitro and in vivo. In addition, analysis of samples derived from an on-going clinical trial, in which human subjects were treated with humanized anti-CD74 (milatuzumab), shows a decrease in CD84 messenger RNA and protein levels in milatuzumab-treated cells. This downregulation was correlated with reduction of Bcl-2 and Mcl-1 expression. Thus, our data show that overexpression of CD84 in CLL is an important survival mechanism that appears to be an early event in the pathogenesis of the disease. These findings suggest novel therapeutic strategies based on the blockade of this CD84-dependent survival pathway.
Collapse
Affiliation(s)
| | - A Marom
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - M C Sobotta
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - L Shvidel
- Hematology Institute, Kaplan Medical Center, Rehovot, Israel
| | - A Berrebi
- Hematology Institute, Kaplan Medical Center, Rehovot, Israel
| | - I Hazan-Halevy
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - S Kay
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - A Aloshin
- Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - I Sagi
- Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - D M Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA
| | - L Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - R Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Y Herishanu
- Department of Hematology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - M Haran
- Hematology Institute, Kaplan Medical Center, Rehovot, Israel
| | - I Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
14
|
Cheung YH, Landolt-Marticorena C, Lajoie G, Wither JE. The lupus phenotype in B6.NZBc1 congenic mice reflects interactions between multiple susceptibility loci and a suppressor locus. Genes Immun 2011; 12:251-62. [DOI: 10.1038/gene.2010.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol 2010; 2:a002469. [PMID: 20300214 DOI: 10.1101/cshperspect.a002469] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a "switch-of-function," thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Veillette A, Dong Z, Pérez-Quintero LA, Zhong MC, Cruz-Munoz ME. Importance and mechanism of 'switch' function of SAP family adapters. Immunol Rev 2010; 232:229-39. [PMID: 19909367 DOI: 10.1111/j.1600-065x.2009.00824.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) family of adapters includes SAP, Ewing's sarcoma-associated transcript-2 (EAT-2), and EAT-2-related transducer (ERT). These Src homology-2 (SH2) domain-only molecules play critical roles in immune regulation. The prototype of the SAP family, SAP, is mutated in X-linked lymphoproliferative disease in humans. Moreover, genetically engineered mice lacking one or more SAP family members have defects in multiple immune cell types including T cells, natural killer (NK) cells, NKT cells, and B cells. Accumulating data show that SAP family adapters regulate immunity by influencing the functions of SLAM family receptors, through two distinct but cooperative mechanisms. First, SAP family adapters couple SLAM family receptors to active biochemical signals, which promote immune cell functions. Second, SAP family adapters interfere with the intrinsic ability of SLAM family receptors to trigger inhibitory signals, which could be mediated via molecules such as SH2 domain-containing 5'-inositol phosphatase-1. The latter effect of SAP family adapters does not seem to be because of direct blocking of inhibitory effector binding to SLAM family receptors. Rather, it appears to implicate alternative mechanisms such as functional competition, trans-regulation, or steric hindrance. In the absence of SAP family adapters, the inhibitory signals mediated by SLAM family receptors suppress critical activating receptors, explaining in part the pronounced phenotypes seen in SAP family adapter-deficient humans and mice. Thus, SAP family adapters are molecular switches that regulate immunity as a result of their capacity to control the type of signals and functions emanating from SLAM family receptors.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
17
|
Murine lupus susceptibility locus Sle1a requires the expression of two sub-loci to induce inflammatory T cells. Genes Immun 2010; 11:542-53. [PMID: 20445563 PMCID: PMC2958247 DOI: 10.1038/gene.2010.23] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The NZM2410-derived Sle1a lupus susceptibility locus induces activated autoreactive CD4+ T cells and reduces the number and function of Foxp3+ regulatory T cells. In this study, we first showed that Sle1a contributes to autoimmunity by increasing anti-nuclear antibody production when expressed on either NZB or NZW heterozygous genomes, and by enhancing the chronic graft vs. host disease response indicating an expansion of the autoreactive B cell pool. Screening two non-overlapping recombinants, the Sle1a.1 and Sle1a.2 intervals that cover the entire Sle1a locus, revealed that both Sle1a.1 and Sle1a.2 were necessary for the full Sle1a phenotype. Sle1a.1, and to a lesser extent Sle1a.2, significantly affected CD4+ T cell activation as well as Treg differentiation and function. Sle1a.2 also increased the production of autoreactive B cells. Since the Sle1a.1 and Sle1a.2 intervals contain only one and 15 known genes, respectively, this study considerably reduces the number of candidate genes responsible for the production of autoreactive T cells. These results also demonstrate that the Sle1 locus is an excellent model for the genetic architecture of lupus, in which a major obligate phenotype results from the co-expression of multiple genetic variants with individual weak effects.
Collapse
|
18
|
X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses. Immunol Res 2009; 42:145-59. [PMID: 18815745 DOI: 10.1007/s12026-008-8048-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A major focus of our research is to understand the molecular and cellular basis of X-linked lymphoproliferative disease (XLP), a rare and often fatal immunodeficiency caused by mutations in the SH2D1A gene, which encodes the adaptor molecule SAP. Recently, we observed that SAP is essential for the development of natural killer T (NKT) cells, a lymphocyte population that participates in protection against certain tumors, infections, and autoimmune states. In this review, we describe the approaches that we are taking to understand the role of SAP in immune cells, including NKT cells. By using SAP as the focal point of our studies, we hope to identify novel signaling pathways that could be targeted to improve the treatment for patients with XLP as well as more common disorders, such as autoimmunity and cancer.
Collapse
|
19
|
Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, Terhorst C. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol 2008; 97:177-250. [PMID: 18501771 DOI: 10.1016/s0065-2776(08)00004-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B. These adapters in turn bind to the tyrosine kinase Fyn and/or other protein tyrosine kinases connecting the receptors to signal transduction networks. Individuals deficient in the SAP gene, SH2D1A, develop an immunodeficiency syndrome: X-linked lympho-proliferative disease. In addition to operating in the immune synapse, SLAM receptors initiate or partake in multiple effector functions of hematopoietic cells, for example, neutrophil and macrophage killing and platelet aggregation. Here we discuss the current understanding of the structure and function of these recently discovered receptors and adapter molecules in the regulation of adaptive and innate immune responses.
Collapse
Affiliation(s)
- Silvia Calpe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhong MC, Veillette A. Control of T Lymphocyte Signaling by Ly108, a Signaling Lymphocytic Activation Molecule Family Receptor Implicated in Autoimmunity. J Biol Chem 2008; 283:19255-64. [DOI: 10.1074/jbc.m800209200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Abstract
Natural killer (NK) cells circulate through the blood, lymphatics and tissues, on patrol for the presence of transformed or pathogen-infected cells. As almost all NK cell receptors bind to host-encoded ligands, signals are constantly being transmitted into NK cells, whether they interact with normal or abnormal cells. The sophisticated repertoire of activating and inhibitory receptors that has evolved to regulate NK cell activity ensures that NK cells protect hosts against pathogens, yet prevents deleterious NK cell-driven autoimmune responses. Here I highlight recent advances in our understanding of the structural properties and signaling pathways of the inhibitory and activating NK cell receptors, with a particular focus on the ITAM-dependent activating receptors, the NKG2D-DAP10 receptor complexes and the CD244 receptor system.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, California 94143-0414, USA.
| |
Collapse
|
22
|
Lee JK, Mathew SO, Vaidya SV, Kumaresan PR, Mathew PA. CS1 (CRACC, CD319) induces proliferation and autocrine cytokine expression on human B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:4672-8. [PMID: 17878365 DOI: 10.4049/jimmunol.179.7.4672] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CS1 (CRACC, CD319), a member of the CD2 family of cell surface receptors, is implicated in the activation of NK cell-mediated cytotoxicity. Previous studies showed that CS1 is also expressed on activated B cells. However, the functional role of CS1 in human B-lymphocytes is not known. Two isoforms of CS1, CS1-L and CS1-S, are expressed in human NK cells that differentially regulate NK cell function. CS1-L contains immunoreceptor tyrosine-based switch motifs in its cytoplasmic domain whereas CS1-S lacks immunoreceptor tyrosine-based switch motifs. In this study, we show that human B lymphocytes express only the CS1-L isoform, and its expression is up-regulated upon B cell activation with various stimulators. Moreover, anti-CS1 mAb strongly enhanced proliferation of both freshly isolated as well as activated B cells. The enhanced proliferation effects of CS1 were most prominent on B cells activated by anti-CD40 mAbs and/or hrIL-4. The effects of CS1 on B cell proliferation were shown on both naive and memory B cells. Human cytokine microarray and quantitative real-time PCR results indicated that CS1 activation enhanced mRNA transcripts of flt3 ligand, lymphotoxin A, TNF, and IL-14. Neutralizing Abs against lymphotoxin A, TNF-alpha, and/or flt3 ligand abolished the ability of CS1 on the B cell proliferation. These results suggest that activation of B lymphocytes, through surface CS1, may be mediated through secretion of autocrine cytokines and CS1 may play a role in the regulation of B lymphocyte proliferation during immune responses.
Collapse
Affiliation(s)
- Jae Kyung Lee
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
23
|
Clarkson NG, Simmonds SJ, Puklavec MJ, Brown MH. Direct and indirect interactions of the cytoplasmic region of CD244 (2B4) in mice and humans with FYN kinase. J Biol Chem 2007; 282:25385-94. [PMID: 17599905 DOI: 10.1074/jbc.m704483200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the receptor CD244 (2B4) by its ligand CD48 has inhibitory and activating potential, and this differs depending on experimental systems in mouse and human. We show that, in both mouse and human upon engagement of its ligand CD48, CD244 can give a negative signal to natural killer cells, implying conservation of function between the two species. The signaling mechanisms used by CD244 in both human and mouse are conserved as shown by quantitative analyses of the direct molecular interactions of the SH2 domains of the adaptors SLAM-associated protein (SAP) and EAT-2 and of FYN kinase with CD244 together with the indirect interactions of the FYN SH2 domain with EAT-2. Functional experiments support the biochemical hierarchy of interactions and show that EAT-2 is not inhibitory per se. The data are consistent with a model in which the mechanism of signal transduction by CD244 is to regulate FYN kinase recruitment and/or activity and the outcome of CD48/CD244 interactions is determined by which other receptors are engaged.
Collapse
Affiliation(s)
- Nicholas G Clarkson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
24
|
Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007; 25:337-79. [PMID: 17201683 DOI: 10.1146/annurev.immunol.25.022106.141651] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SAP (SLAM-associated protein) was identified in 1998 as an adaptor molecule involved in the intracellular signaling pathways elicited through the cell surface receptor SLAM and as the protein defective in the human immunodeficiency X-linked lymphoproliferative disease (XLP). During the past eight years, it has been established that the SLAM family of cell surface receptors (SLAM, 2B4, NTB-A, Ly9, CD84) and the SAP family of adaptors (SAP, EAT-2, ERT) play critical roles in lymphocyte development, differentiation, and acquisition of effector functions. Studies of these proteins have shown unexpected roles in cytokine production by T cells and myeloid cells, T cell-dependent humoral immune responses, NK cell-mediated cytotoxicity, and NKT cell development. This review highlights recent findings that have improved our understanding of the roles of the SLAM and SAP families of molecules in immune regulation and discusses how perturbations in the signaling pathways involving these proteins can result in different disease states.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, 2010, New South Wales, Australia.
| | | | | |
Collapse
|
25
|
Abstract
Signaling lymphocytic activating molecule (SLAM) family receptors and SLAM-associated protein (SAP)-related adapters play several important roles in the immune system. Natural killer (NK) cells express at least three members of the SLAM family. They are 2B4, NK, T- and B-cell antigen (NTB-A), and CD2-like receptor-activating cytotoxic cells (CRACC), which recognize their respective ligands CD48, NTB-A, and CRACC on target cells and possibly on other NK cells. In mature human NK cells, SLAM family receptors appear to have activating functions. In mature mouse NK cells, however, the only available information is for 2B4, which reportedly has the capacity to either stimulate or inhibit NK cell activation. The ability of SLAM family receptors to regulate NK cell functions seems to be largely dependent on their capacity to associate, by way of their cytoplasmic domain, with members of the SAP family of adapters, including SAP, Ewing's sarcoma-activated transcript-2 (EAT-2), and EAT-2-related transducer (ERT). By binding to SAP, SLAM family receptors are coupled to the Src kinase FynT, thereby evoking protein tyrosine phosphorylation signals. In human NK cells, SAP is likely to be crucial for the activating function of 2B4 and NTB-A but not of CRACC and also crucial for the activating function of 2B4 in mouse NK cells. EAT-2. SAP is ERT link SLAM family receptors to distinct, albeit poorly understood, signals. These two SAP-related adapters may be implicated in the inhibitory function of 2B4 observed in mouse NK cells. While much work remains to be carried out to fully understand the roles and mechanisms of action of the SLAM and SAP families in human and mouse NK cells, the published findings clearly establish that these molecules have important functions in NK cell biology.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montreal, Montréal, Québec, Canada.
| |
Collapse
|