1
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Pagadala M, Sears TJ, Wu VH, Pérez-Guijarro E, Kim H, Castro A, Talwar JV, Gonzalez-Colin C, Cao S, Schmiedel BJ, Goudarzi S, Kirani D, Au J, Zhang T, Landi T, Salem RM, Morris GP, Harismendy O, Patel SP, Alexandrov LB, Mesirov JP, Zanetti M, Day CP, Fan CC, Thompson WK, Merlino G, Gutkind JS, Vijayanand P, Carter H. Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response. Nat Commun 2023; 14:2744. [PMID: 37173324 PMCID: PMC10182072 DOI: 10.1038/s41467-023-38271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.
Collapse
Affiliation(s)
- Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hyo Kim
- Undergraduate Bioengineering Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Castro
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James V Talwar
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Steven Cao
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Divya Kirani
- Undergraduate Biology and Bioinformatics Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Au
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivier Harismendy
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sandip Pravin Patel
- Center for Personalized Cancer Therapy, Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jill P Mesirov
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Medeiros FS, da Silva MC, da Silva NCH, Gomes TT, Gomes RG, Paiva LA, dos Santos Gomes FO, Peixoto CA, Rygaard MCV, Welkovic S, Menezes MLB, Donadi EA, Lucena-Silva N. The antigen processing-associated transporter gene polymorphism: Role on gene and protein expression in HPV-infected pre-cancerous cervical lesion. Front Cell Infect Microbiol 2022; 12:979800. [PMID: 36619767 PMCID: PMC9811671 DOI: 10.3389/fcimb.2022.979800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) is the major pathogen for cervical lesions. The evasion mechanism of the immune response and persistence of HPV infection can be influenced by polymorphisms (SNPs) in genes associated with transporter associated with antigen processing (TAP), which may change the peptide binding affinity or the TAP expression impacting the efficiency of peptide transport in the secretory pathway, and the presentation of peptides to cytotoxic T lymphocytes. This study aimed to evaluate the role of the TAP1 and TAP2 polymorphisms, TAP1, and TAP2 genes expressions, and protein levels in cervical cells presenting different degrees of pre-cancerous lesions in 296 immunocompetent women infected or not by HPV. TAP SNPs were genotyped by Sanger sequencing, and gene expression by real-time PCR. Aneuploidy was determined by DNA index using flow cytometry. TAP-1 and TAP-2 tissue expressions were evaluated by immunohistochemistry. The Asp697Gly SNP of TAP1 presented a risk for cellular aneuploidy (P=0.0244). HPV+ women had higher TAP-2 mRNA (P=0.0212) and protein (P<0.0001) levels. The TAP2D and TAP2E haplotypes were associated with the risk for aneuploidy and pre-cancerous lesions. In conclusion, nucleotide variability at the peptide binding region of peptide transporter genes, particularly of the TAP2 gene, may influence the HPV-peptide transportation from the cytosol to the endoplasmic reticulum, increasing the susceptibility to the development of high-grade cervical lesions.
Collapse
Affiliation(s)
- Fernanda Silva Medeiros
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Mauro César da Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | | | - Thailany Thays Gomes
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Renan Garcia Gomes
- Laboratory of Molecular Biology, Institute of Integral Medicine Professor Fernando Figueira (IMIP) Hospital, Pediatric Oncology Service, Recife, Brazil
| | | | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Department of Entomology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Maria Carolina Valença Rygaard
- Laboratory of Molecular Biology, Institute of Integral Medicine Professor Fernando Figueira (IMIP) Hospital, Pediatric Oncology Service, Recife, Brazil
| | - Stefan Welkovic
- Integrated Health Center Amaury de Medeiros (CISAM), University of Pernambuco, Recife, Brazil
| | | | - Eduardo Antônio Donadi
- Clinical Immunology Division, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil,Laboratory of Molecular Biology, Institute of Integral Medicine Professor Fernando Figueira (IMIP) Hospital, Pediatric Oncology Service, Recife, Brazil,*Correspondence: Norma Lucena-Silva, ;
| |
Collapse
|
4
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Hasan ME, Matin M, Haque ME, Aziz MA, Millat MS, Uddin MS, Moghal MMR, Islam MS. Polymorphic variants INSIG2 rs6726538, HLA-DRB1 rs9272143, and GCNT1P5 rs7780883 contribute to the susceptibility of cervical cancer in the Bangladeshi women. Cancer Med 2021; 10:1829-1838. [PMID: 33586351 PMCID: PMC7940232 DOI: 10.1002/cam4.3782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023] Open
Abstract
Objective Cervical cancer is a gynecological health problem, affecting nearly 500,000 women each year worldwide. Genome‐wide association studies have revealed multiple susceptible genes and their polymorphisms for cervical carcinoma risk. We have carried out this case‐control study to investigate the association of INSIG2 rs6726538 (A; T), HLA‐DRB1 rs9272143 (T; C), and GCNT1P5 rs7780883 (G; A) with cervical cancer. Methods The present study recruited 234 cervical cancer patients as cases and 212 healthy females as controls. We have applied the tetra‐primer amplification refractory mutation system polymerase chain reaction (T‐ARMS‐PCR) method for genotyping. Results The SNP rs6726538 was significantly associated with increased risk of cervical cancer in all genetic models (AT vs. AA: OR = 3.30, 95% CI = 2.19–4.97, p < 0.0001; TT vs. AA: OR = 8.72, 95% CI = 3.87–19.7, p < 0.0001; AT+TT vs. AA: OR = 3.87, 95% CI = 2.61–5.73, p < 0.0001; T vs. A: OR = 2.97, 95% CI = 2.20–4.01, p < 0.0001) except the recessive model which showed a significantly reduced risk (TT vs. AA+AT: OR = 0.20, 95% CI = 0.09–0.44, p = 0.0001). rs9272143 showed significantly reduced risk for the additive model 1, dominant model, and allelic model (TC vs. TT: OR = 0.46, 95% CI = 0.31–0.70, p = 0.0004; TC+CC vs. TT: OR = 0.47 95% CI = 0.32–0.70, p = 0.0002; C vs. T: OR = 0.56, 95% CI = 0.40–0.78, p = 0.0006, respectively). The third variant, rs7780883, was significantly associated with increased risk in additive model 2, dominant, and allelic models (AA vs. GG: OR = 5.08, 95% CI = 2.45–10.5, p < 0.0001; GA+AA vs. GG: OR = 1.54, 95% CI = 1.06–2.24, p = 0.0237; A vs. G: OR = 1.88, 95% CI = 1.34–2.52, p < 0.0001, consecutively), whereas recessive model reduced the risk of cervical cancer (AA vs. GG+GA: OR = 0.20, 95% CI = 0.09–0.41, p < 0.0001). Other models of these SNPs were not associated with cervical cancer. All significant associations for three SNPs withstand after Bonferroni correction except the additive model 2 of rs7780883. Conclusion Our study concludes that INSIG2 rs6726538, HLA‐DRB1 rs9272143, and GCNT1P5 rs7780883 polymorphisms may contribute to the development of cervical cancer in the Bangladeshi population.
Collapse
Affiliation(s)
- Md Emtiaz Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Maliha Matin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Enamul Haque
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shalahuddin Millat
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Sarowar Uddin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
6
|
Genetic polymorphisms of proteasome subunit genes of the MHC-I antigen-presenting system are associated with cervical cancer in a Chinese Han population. Hum Immunol 2020; 81:445-451. [PMID: 32684411 DOI: 10.1016/j.humimm.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/17/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Proteasome subunit beta types 8 and 9 (PSMB8, PSMB9) play critical roles in the human leukocyte antigen class I (HLA I)-presenting system. Studies have suggested that polymorphisms in the PSMB8 and PSMB9 genes may influence the immune functions of PSMB8 and PSMB9, and thus be associated with various human cancers. We investigated associations involving single nucleotide polymorphisms (SNPs) rs2071543 in PSMB8, rs1351383, rs17587 and rs2127675 in PSMB9 and risk of cervical intraepithelial neoplasia (CIN) and cervical cancer in a Chinese Han population. A total of 543 patients with CIN, 1008 patients with cervical cancer, and 1120 healthy individuals were enrolled. Agena MassArray was used for SNP genotyping of PSMB8 and PSMB9. Associations involving these SNPs and risk of CIN and cervical cancer were analysed. Our results showed that the PSMB8 T/T and T/G genotypes of rs2071543 may be associated with a higher risk of CIN (P = 0.011, OR = 1.35,95% CI: 1.07-1.70) and cervical cancer (P = 0.006, OR = 1.31, 95% CI: 1.08-1.59). For rs17587, the A allele (P = 0.001, OR = 1.303, 95% CI: 1.115-1.522), and the A/A and A/G genotypes (P = 0.001, OR = 1.36, 95% CI: 1.13-1.63) may be risk factors for cervical cancer. These results indicated that PSMB8 rs2071543 might influence susceptibility to CIN and cervical cancer, and PSMB9 rs17587 might influence cervical cancer susceptibility in a Chinese Han population.
Collapse
|
7
|
Li C, Li Y, Yan Z, Dai S, Liu S, Wang X, Wang J, Zhang X, Shi L, Yao Y. Polymorphisms in endoplasmic reticulum aminopeptidase genes are associated with cervical cancer risk in a Chinese Han population. BMC Cancer 2020; 20:341. [PMID: 32321463 PMCID: PMC7178719 DOI: 10.1186/s12885-020-06832-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Antigen-processing machinery molecules play crucial roles in infectious diseases and cancers. Studies have shown that polymorphisms in endoplasmic reticulum aminopeptidase (ERAP) genes can influence the enzymatic activity of ERAP proteins and are associated with the risk of diseases. In the current study, we evaluated the influence of ERAP gene (ERAP1 and ERAP2) polymorphisms on susceptibility to cervical intraepithelial neoplasia (CIN) and cervical cancer. Methods Six single nucleotide polymorphisms (SNPs) in ERAP1 and 5 SNPs in ERAP2 were selected and genotyped in 556 CIN patients, 1072 cervical cancer patients, and 1262 healthy control individuals. Candidate SNPs were genotyped using SNaPshot assay. And the association of these SNPs with CIN and cervical cancer was analysed. Results The results showed that allelic and genotypic frequencies of rs26653 in ERAP1 were significantly different between cervical cancer and control groups (P = 0.001 and 0.004). The allelic frequencies of rs27044 in ERAP1 and rs2287988 in ERAP2 were significantly different between control and cervical cancer groups (P = 0.003 and 0.004). Inheritance model analysis showed that genotypes of rs27044, rs26618, rs26653 and rs2287988 SNPs may be associated with the risk of cervical cancer (P = 0.003, 0.004, 0.001 and 0.002). Additionally, haplotype analysis results showed that the ERAP1 haplotype, rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C, was associated with a lower risk of cervical cancer (P = 0.001). The ERAP2 haplotypes rs2549782G- rs2548538A-rs2248374A-rs2287988G-rs1056893T (P = 0.009 and 0.006) and rs2549782T-rs2548538T-rs2248374G-rs2287988A-rs1056893T (P = 0.003 and 0.009) might be associated with cervical cancer and the development from CIN to cervical cancer. Conclusion Our results indicated that rs27044, rs26618 and rs26653 in ERAP1 and rs2287988 in ERAP2 influenced susceptibility to cervical cancer.
Collapse
Affiliation(s)
- Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yaheng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Shuying Dai
- School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xia Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jun Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
8
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
9
|
Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, Hemmatzadeh M, Azizi G, Jadidi-Niaragh F, Mohammadi H. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121:7-19. [PMID: 32135401 DOI: 10.1016/j.molimm.2020.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Autoimmunity and cancer affect millions worldwide and both, in principal, result from dysregulated immune responses. There are many well-known molecules involved in immunological process playing as a double-edged sword, by which associating autoimmune diseases and cancer. In this regard, Endoplasmic reticulum aminopeptidases (ERAP) 1, which belongs to the M1 family of aminopeptidases, plays a central role as a "molecular ruler", proteolyzing of N-terminal of the antigenic peptides before their loading onto HLA-I molecules for antigen presentation in the Endoplasmic Reticulum (ER). Several genome-wide association studies (GWAS) highlighted the significance of ERAP1 and ERAP2 in autoimmune diseases, including Ankylosing spondylitis, Psoriasis, Bechet's disease, and Birdshot chorioretinopathy, as well as in cancers. The expression of ERAP1/2 is mostly altered in different cancers compared to normal cells, but how this affects anti-cancer immune responses and cancer growth has been little explored. Recent studies on the immunological outcomes and the catalytic functions of ERAP1 and ERAP2 have provided a better understanding of their potential pathogenetic role in autoimmunity and cancer. In this review, we summarize the role of ERAP1 and ERAP2 in the autoimmune diseases and cancer immunity based on the recent advances in GWAS studies.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrazeh
- Department of Biology, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Salimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
D’Alicandro V, Romania P, Melaiu O, Fruci D. Role of genetic variations on MHC class I antigen-processing genes in human cancer and viral-mediated diseases. Mol Immunol 2019; 113:11-15. [DOI: 10.1016/j.molimm.2018.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
|
11
|
Liu R, Ma Y, Chen X. Quantitative assessment of the association between TAP2 rs241447 polymorphism and cancer risk. J Cell Biochem 2019; 120:15867-15873. [PMID: 31074096 DOI: 10.1002/jcb.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
The findings regarding the relation of transporter associated with antigen processing (TAP) to cancer risk have been inconsistent. The aim of this study was to comprehensively evaluate the association between TAP2 rs241447 polymorphism and cancer susceptibility. A meta-analysis of nine investigations with 2800 cases and 1620 controls was conducted to gain a better understanding of the effect of TAP2 rs241447 polymorphism on cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the correlation between TAP2 gene polymorphism and cancer susceptibility. The pooled results from TAP2 rs241447 polymorphism showed a decreased risk of cancer in two dominant genetic models (GG + AG vs AA: OR = 0.86, 95% CI, 0.75-0.99; AG vs AA: OR = 0.85, 95% CI, 0.73-0.99). From the subgroup analysis, decreased cancer susceptibility was found in Caucasians (GG + AG vs AA: OR = 0.82, 95% CI, 0.68-0.99), especially among the subgroup of cervical carcinoma (GG + AG vs AA: OR = 0.82, 95% CI, 0.69-0.96; AG vs AA: OR = 0.83, 95% CI, 0.70-0.99). Overall, the results suggest that TAP2 rs241447 polymorphism contributes to decreased cancer susceptibility.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yan Ma
- Network Information Center, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Xiafei Chen
- Network Information Center, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Kuguyo O, Tsikai N, Thomford NE, Magwali T, Madziyire MG, Nhachi CFB, Matimba A, Dandara C. Genetic Susceptibility for Cervical Cancer in African Populations: What Are the Host Genetic Drivers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:468-483. [PMID: 30004844 DOI: 10.1089/omi.2018.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human papillomavirus (HPV) is an essential but not a sufficient cervical cancer etiological factor. Cancer promoters, such as host genetic mutations, significantly modulate therapeutic responses and susceptibility. In cervical cancer, of interest have been viral clearing genes and HPV oncoprotein targets, for which conflicting data have been reported among different populations. This expert analysis evaluates cervical cancer genetic susceptibility biomarkers studied in African populations. Notably, the past decade has seen Africa as a hotbed of biomarker and precision medicine innovations, thus potentially informing worldwide biomarker development strategies. We conducted a critical literature search in PubMed/MEDLINE, Google Scholar, and Scopus databases for case-control studies reporting on cervical cancer genetic polymorphisms among Africans. We found that seven African countries conducted cervical cancer molecular epidemiology studies in one of Casp8, p53, CCR2, FASL, HLA, IL10, TGF-beta, and TNF-alpha genes. This analysis reveals a remarkable gap in cervical cancer molecular epidemiology among Africans, whereas cervical cancer continues to disproportionately have an impact on African populations. Genome-wide association, whole exome- and whole-genome sequencing studies confirmed the contribution of candidate genes in cervical cancer. With such advances and omics technologies, the role of genetic susceptibility biomarkers can be exploited to develop novel interventions to improve current screening, diagnostic and prognostic methods worldwide. Exploring these genetic variations is crucial because African populations are genetically diverse and some variants or their combined effects are yet to be discovered and translated into tangible clinical applications. Thus, translational medicine and flourishing system sciences in Africa warrant further emphasis in the coming decade.
Collapse
Affiliation(s)
- Oppah Kuguyo
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Nomsa Tsikai
- 2 Chemotherapy and Radiotherapy Center, Parirenyatwa Group of Hospitals , Harare, Zimbabwe
| | - Nicholas E Thomford
- 3 Pharmacogenetics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Thulani Magwali
- 4 Department of Obstetrics and Gynecology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Mugove G Madziyire
- 4 Department of Obstetrics and Gynecology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Charles F B Nhachi
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Alice Matimba
- 1 Department of Clinical Pharmacology, College of Health Sciences, University of Zimbabwe , Harare, Zimbabwe
| | - Collet Dandara
- 3 Pharmacogenetics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
13
|
Compagnone M, Cifaldi L, Fruci D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunol 2019; 80:318-324. [PMID: 30825518 DOI: 10.1016/j.humimm.2019.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 are two multifunctional enzymes playing an important role in the biological processes requiring trimming of substrates, including the generation of major histocompatibility complex (MHC) class I binding peptides. In the absence of ERAP enzymes, the cells exhibit a different pool of peptides on their surface which can promote both NK and CD8+ T cell-mediated immune responses. The expression of ERAP1 and ERAP2 is frequently altered in tumors, as compared to their normal counterparts, but how this affects tumor growth and anti-tumor immune responses has been little investigated. This review will provide an overview of current knowledge on transcriptional and post-transcriptional regulations of ERAP enzymes, and will discuss the contribution of recent studies to our understanding of ERAP1 and ERAP2 role in cancer immunity.
Collapse
Affiliation(s)
- Mirco Compagnone
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
14
|
Yao Y, Liu N, Zhou Z, Shi L. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations. Hum Immunol 2019; 80:325-334. [PMID: 30797823 DOI: 10.1016/j.humimm.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum aminopeptidases (ERAPs), ERAP1 and ERAP2, makes a role in shaping the HLA class I peptidome by trimming peptides to the optimal size in MHC-class I-mediated antigen presentation and educating the immune system to differentiate between self-derived and foreign antigens. Association studies have shown that genetic variations in ERAP1 and ERAP2 genes increase susceptibility to autoimmune diseases, infectious diseases, and cancers. Both ERAP1 and ERAP2 genes exhibit diverse polymorphisms in different populations, which may influence their susceptibly to the aforementioned diseases. In this article, we review the distribution of ERAP1 and ERAP2 gene polymorphisms in various populations; discuss the risk or protective influence of these gene polymorphisms in autoimmune diseases, infectious diseases, and cancers; and highlight how ERAP genetic variations can influence disease associations.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Nannan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
15
|
Meng J, Li W, Zhang M, Hao Z, Fan S, Zhang L, Liang C. An update meta-analysis and systematic review of TAP polymorphisms as potential biomarkers for judging cancer risk. Pathol Res Pract 2018; 214:1556-1563. [PMID: 30082158 DOI: 10.1016/j.prp.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Transporter associated with antigen processing protein (TAP) is a heterodimer protein consist of TAP1 and TAP2, act a pivotal part in the immune surveillance. In recent days, controversial relationships were reported between TAP polymorphisms and cancer risk, thus, a systematic meta-analysis was performed to resolve this discrepancy. METHODS We searched the PubMed, EMbase, Web of Science, CNKI and Wanfang databases, the cited references were also manually searched again, covering all the papers published until March 25, 2018. Quality assessment was conducted using the Newcastle-Ottawa Scale. All the meta-analysis was conducted with Stata version 12.0 software to assess the strength of the association. RESULTS 4719 cases and 4215 controls from 24 case-control studies related to TAP polymorphisms were enrolled. There was no significant association between TAP1-rs1135216, TAP1-rs4148873, TAP2-rs2228396, TAP2-rs241447 and TAP2-rs4148873 and cancer sensibility. Interestingly, a significant positive association was observed between TAP2 rs4148876 C/T polymorphism and increase cancer risk in homozygote and recessive models. Further in-silico results indicated the expression of TAP2 in cancer tissue is higher than that in normal tissue (cervical cancer, TPM = 70.2 vs. 24.0 respectively, P < 0.01; acute myeloid leukemia, TPM = 52.5 vs. 8.8 respectively, P < 0.01), and influence the survival time of acute myeloid leukemia patients (Log-rank P < 0.05). CONCLUSIONS Our finding suggested that TAP1-rs1135216, TAP1-rs4148873, TAP2-rs2228396, TAP2-rs241447 and TAP2-rs4148873 might not be involved in cancer risk, but the T allele of TAP2-rs4148876 might be a potential biomarker for judging cancer risk, and larger-scale studies are required to confirm our findings.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China; Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Wanzhen Li
- Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China; Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Mandal RK, Dar SA, Jawed A, Wahid M, Lohani M, Panda AK, Mishra BN, Akhter N, Areeshi MY, Haque S. Impact of LMP7 (rs2071543) gene polymorphism in increasing cancer risk: evidence from a meta-analysis and trial sequential analysis. Oncotarget 2017; 9:6572-6585. [PMID: 29464093 PMCID: PMC5814233 DOI: 10.18632/oncotarget.23547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023] Open
Abstract
Genetic variant LMP7 (low molecular weight polypeptide 7) –145 C > A may influence the function of immune surveillance of an individual and lead to cancer development. Various studies have investigated the relevance of LMP7 –145 C > A gene polymorphism with cancer risk; but, their results are conflicting and inconsistent. To obtain a comprehensive conclusion, a meta-analysis was performed by including eight eligible published studies retrieved from PubMed (Medline), EMBASE and Google Scholar web search until December 2016. Individuals with AA genotype (AA vs CC: p = 0.001; OR = 2.602, 95% CI = 1.780 to 3.803) of LMP7 -145 C > A were found to have 2 folds higher risk of cancer than those with CC genotype. The recessive genetic model (AA vs AC + CC) also indicated that individuals with AA genotype have 2 folds higher cancer risk than AC and CC genotypes (p = 0.001; OR = 2.216, 95% CI = 1.525 to 3.221). Also, significant increased cancer risk was observed in Asians but not in Caucasians. No publication bias was observed during the analysis. Trial sequential analysis also strengthened our current findings. These results suggest that genetic variant LMP7–145 C > A has significant role in increasing cancer risk in overall and Asian population, and could be useful as a prognostic marker for early cancer predisposition.
Collapse
Affiliation(s)
- Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.,The University College of Medical Sciences and GTB Hospital University of Delhi, Delhi 110095, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia A Central University, New Delhi 110025, India
| | - Mohtashim Lohani
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Aditya K Panda
- Centre for Life Sciences, Central University of Jharkhand, Ranchi, Jharkhand 835205, India
| | - Bhartendu N Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh 226021, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65431, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
17
|
Association between LMP2/LMP7 genetic variability and cancer susceptibility, especially among Asians: evidence from a meta-analysis. Oncotarget 2017; 8:62445-62453. [PMID: 28977958 PMCID: PMC5617518 DOI: 10.18632/oncotarget.18752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/08/2017] [Indexed: 01/30/2023] Open
Abstract
Low molecular mass protein (LMP) gene performs a critical role in the foreign antigen processing machine via the major histocompatibility complex-I (MHC-I) complex CD8+ cytotoxic T lymphocytes (CTL) pathway. Recent studies have reported the association of LMP2-60 G>A (rs17587) and LMP7-145 C>A (rs2071543) polymorphisms with various types of cancers, but the outcomes remained inconsistent. To obtain a reliable conclusion, we summarized available data and conducted a meta-analysis involving a total of 19 published studies. Evidences were obtained from the PubMed, Google Scholar, Web of Science and Chinese National Knowledge Infrastructure (CNKI) databases. The results demonstrated that the rs17587 and rs2071543 polymorphisms were associated with an increased cancer risk in the recessive and homozygote models. Stratified analyses by ethnicity indicated a significant association only in Asian population. Furthermore, rs17587 showed a greater susceptibility to gynecological cancers, while rs2071543 increased the risk of gastrointestinal and gynecological cancers. Our results indicate that the LMP2 rs17587 and LMP7 rs2071543 polymorphisms may act as risk factors for cancer, especially for Asian populations. Additional larger-scale multicenter studies should be performed to validate our results.
Collapse
|
18
|
Reeves E, James E. Tumour and placenta establishment: The importance of antigen processing and presentation. Placenta 2017; 56:34-39. [PMID: 28274545 DOI: 10.1016/j.placenta.2017.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Classical and non-classical MHC class I (MHC I) molecules displayed at the cell surface are essential for the induction of innate and adaptive immune responses. Classical MHC I present endogenously derived peptides to CD8+ T cells for immunosurveillance of infected or malignant cells. By contrast, non-classical MHC I, in particular HLA-G, also display peptides, but primarily act as immunomodulatory ligands for the innate immune response and are an important component for extravillous trophoblast invasion to form the placenta in pregnancy. Endoplasmic Reticulum AminoPeptidase 1 (ERAP1), which trims peptides in the ER to generate ligands for MHC I loading, is a key regulator of the peptide repertoire and has a significant impact on the formation of stable MHC I at the cell surface. ERAP1 also plays a role in angiogenesis, cell cycle progression and migration, events that are shared between tumour cells and placenta formation. Here we discuss the similarities between tumour and extravillous trophoblast cells in their immune modulatory, invasion, migration and proliferation properties in the context of ERAP1 and its role in establishment of solid tumours and placenta formation.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Somers Cancer Research Building, Mailpoint 824, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Edward James
- Cancer Sciences Unit, Somers Cancer Research Building, Mailpoint 824, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
19
|
Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review. J Immunol Res 2017; 2017:8913860. [PMID: 28280748 PMCID: PMC5322437 DOI: 10.1155/2017/8913860] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022] Open
Abstract
The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.
Collapse
|
20
|
Reeves E, James E. Antigen processing and immune regulation in the response to tumours. Immunology 2016; 150:16-24. [PMID: 27658710 DOI: 10.1111/imm.12675] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022] Open
Abstract
The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8+ cytotoxic and CD4+ helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8+ cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4+ T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8+ cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Southampton General Hospital, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Edward James
- Cancer Sciences Unit, Southampton General Hospital, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
Eggleton P, Michalak M, Bremer E. Editorial: Endoplasmic Reticulum and Its Role in Tumor Immunity. Front Oncol 2015; 5:252. [PMID: 26636034 PMCID: PMC4646977 DOI: 10.3389/fonc.2015.00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/30/2015] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Marek Michalak
- University of Exeter Medical School , Exeter , UK ; Department of Biochemistry, University of Alberta , Edmonton, AB , Canada
| | - Edwin Bremer
- University of Exeter Medical School , Exeter , UK ; Laboratory for Translational Surgical Oncology, Department of Surgery, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
22
|
Emma R, Edward J. The Role of Endoplasmic Reticulum Aminopeptidase 1 Biology in Immune Evasion by Tumours. ACTA ACUST UNITED AC 2015. [DOI: 10.17352/jvi.000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Molecular backgrounds of ERAP1 downregulation in cervical carcinoma. Anal Cell Pathol (Amst) 2015; 2015:367837. [PMID: 26146606 PMCID: PMC4471254 DOI: 10.1155/2015/367837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023] Open
Abstract
The antigen processing machinery (APM) plays an important role in immune recognition of virally infected and transformed cells. Defective expression of the APM component ERAP1 is associated with progression and poor clinical outcome in cervical carcinoma. However, the underlying mechanisms of ERAP1 protein downregulation remain to be established. We investigated ERAP1 mRNA expression levels in 14 patients with established ERAP1 protein downregulation. To further examine the possible pretranscriptional mechanisms of ERAP1 downregulation, ERAP1 DNA mutation status was analyzed alongside existing data on various single nucleotide polymorphisms. Moreover, loss of heterozygosity at various loci in the ERAP1 gene was investigated. In cases with ERAP1 protein downregulation, ERAP1 mRNA quantities were found to be significantly lower than in a cohort with normal ERAP1 protein expression (P = 0.001). Loss of heterozygosity was demonstrated to occur in up to 50% of tumors with ERAP1 downregulation. Our data indicate that ERAP1 downregulation is associated with loss of heterozygosity. These data provide the first insight into in vivo mechanisms of ERAP1 downregulation in cervical carcinoma.
Collapse
|