1
|
Meunier L, Costa R, Keller-Costa T, Cannella D, Dechamps E, George IF. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr 2024; 12:e0088624. [PMID: 39315806 PMCID: PMC11537107 DOI: 10.1128/spectrum.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chitin degradation is a keystone process in the oceans, mediated by marine microorganisms with the help of several enzymes, mostly chitinases. Sediment, seawater, and filter-feeding marine invertebrates, such as sponges, are known to harbor chitin-degrading bacteria and are presumably hotspots for chitin turnover. Here, we employed an artificial selection process involving enrichment cultures derived from microbial communities associated with the marine sponge Hymeniacidon perlevis, its surrounding seawater and sediment, to select bacterial consortia capable of degrading raw chitin. Throughout the artificial selection process, chitin degradation rates and the taxonomic composition of the four successive enrichment cultures were followed. To the best of our knowledge, chitin degradation was characterized for the first time using size exclusion chromatography, which revealed significant shifts in the numbered average chitin molecular weight, strongly suggesting the involvement of endo-chitinases in the breakdown of the chitin polymer during the enrichment process. Concomitantly with chitin degradation, the enrichment cultures exhibited a decrease in alpha diversity compared with the environmental samples. Notably, some of the dominant taxa in the enriched communities, such as Motilimonas, Arcobacter, and Halarcobacter, were previously unknown to be involved in chitin degradation. In particular, the analysis of published genomes of these genera suggests a pivotal role of Motilimonas in the hydrolytic cleavage of chitin. This study provides context to the microbiome of the marine sponge Hymeniacidon perlevis in light of its environmental surroundings and opens new ground to the future discovery and characterization of novel enzymes of marine origin involved in chitin degradation processes.IMPORTANCEChitin is the second most abundant biopolymer on Earth after cellulose, and the most abundant in the marine environment. At present, industrial processes for the conversion of seafood waste into chitin, chitosan, and chitooligosaccharide (COS) rely on the use of high amounts of concentrated acids or strong alkali at high temperature. Developing bio-based methods to transform available chitin into valuable compounds, such as chitosan and COS, holds promise in promoting a more sustainable, circular bioeconomy. By employing an artificial selection procedure based on chitin as a sole C and N source, we discovered microorganisms so-far unknown to metabolize chitin in the rare microbial biosphere of several marine biotopes. This finding represents a first important step on the path towards characterizing and exploiting potentially novel enzymes of marine origin with biotechnological interest, since products of chitin degradation may find applications across several sectors, such as agriculture, pharmacy, and waste management.
Collapse
Affiliation(s)
- Laurence Meunier
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Nutrition and Biostimulation Lab (CPBL) and Biomass Transformation Lab (BTL), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels, Belgium
| | - Etienne Dechamps
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F. George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Yang L, Qu M, Wang Z, Huang S, Wang Q, Wei M, Li F, Yang D, Pan L. Biochemical Properties of a Novel Cold-Adapted GH19 Chitinase with Three Chitin-Binding Domains from Chitinilyticum aquatile CSC-1 and Its Potential in Biocontrol of Plant Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19581-19593. [PMID: 39190598 DOI: 10.1021/acs.jafc.4c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
GH19 (glycoside hydrolase 19) chitinases play crucial roles in the enzymatic conversion of chitin and biocontrol of phytopathogenic fungi. Herein, a novel multifunctional chitinase of GH19 (CaChi19A), which contains three chitin-binding domains (ChBDs), was successfully cloned from Chitinilyticum aquatile CSC-1 and heterologously expressed in Escherichia coli. We also generated truncated mutants of CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD consisting of two ChBDs and a catalytic domain, one ChBD and a catalytic domain, and only a catalytic domain, respectively. CaChi19A, CaChi19A_ΔI, CaChi19A_ΔIΔII, and CaChi19A_CatD exhibited cold adaptation, as their relative enzyme activities at 5 °C were 40.7, 51.6, 66.2, and 82.6%, respectively. Compared with CaChi19A and other variants, CaChi19A_ΔIΔII demonstrated a higher level of stability below 50 °C and retained relatively high activity over a wide pH range of 5-12. Analysis of the hydrolysis products revealed that CaChi19A and CaChi19A_ΔIΔII exhibit exoacting, endoacting, and N-acetyl-β-d-glucosaminidase activities toward colloidal chitin. Furthermore, CaChi19A and CaChi19A_ΔIΔII exhibited inhibitory effects on the hyphal growth of Fusarium oxysporum, Fusarium redolens, Fusarium fujikuroi, Fusarium solani, and Coniothyrium diplodiella, thereby illustrating effective biocontrol activity. These results indicated that CaChi19A and CaChi19A_ΔIΔII show advantages in some applications where low temperatures were demanded in industries as well as the biocontrol of fungal diseases in agriculture.
Collapse
Affiliation(s)
- Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingbo Qu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhou Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shiyong Huang
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Maochun Wei
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China
| | - Fei Li
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
3
|
Wang F, Ghonimy A, Wang X. Whole-genome sequencing of Pseudoalteromonas piscicida 2515 revealed its antibacterial potency against Vibrio anguillarum: a preliminary invitro study. Antonie Van Leeuwenhoek 2024; 117:84. [PMID: 38809302 DOI: 10.1007/s10482-024-01974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Pseudoalteromonas piscicida 2515, isolated from Litopenaeus vannamei culture water, is a potential marine probiotic with broad anti-Vibrio properties. However, genomic information on P. piscicida 2515 is scarce. In this study, the general genomic characteristics and probiotic properties of the P. piscicida 2515 strain were analysed. In addition, we determined the antibacterial mechanism of this bacterial strain by scanning electron microscopy (SEM). The results indicated that the whole-genome sequence of P. piscicida 2515 contained one chromosome and one plasmid, including a total length of 5,541,406 bp with a G + C content of 43.24%, and 4679 protein-coding genes were predicted. Various adhesion-related genes, amino acid and vitamin metabolism and biosynthesis genes, and stress-responsive genes were found with genome mining tools. The presence of genes encoding chitin, bromocyclic peptides, lantibiotics, and sactipeptides showed the strong antibacterial activity of the P. piscicida 2515 strain. Moreover, in coculture with Vibrio anguillarum, P. piscicida 2515 displayed vesicle/pilus-like structures located on its surface that possibly participated in its bactericidal activity, representing an antibacterial mechanism. Additionally, 16 haemolytic genes and 3 antibiotic resistance genes, including tetracycline, fluoroquinolone, and carbapenem were annotated, but virulence genes encoding enterotoxin FM (entFM), cereulide (ces), and cytotoxin K were not detected. Further tests should be conducted to confirm the safety characteristics of P. piscicida 2515, including long-term toxicology tests, ecotoxicological assessment, and antibiotic resistance transfer risk assessment. Our results here revealed a new understanding of the probiotic properties and antibacterial mechanism of P. piscicida 2515, in addition to theoretical information for its application in aquaculture.
Collapse
Affiliation(s)
- Fenglin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Abdallah Ghonimy
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiuhua Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
4
|
Zhang J, Zhang H, Luo S, Ye L, Wang C, Wang X, Tian C, Sun Y. Analysis and Functional Prediction of Core Bacteria in the Arabidopsis Rhizosphere Microbiome under Drought Stress. Microorganisms 2024; 12:790. [PMID: 38674734 PMCID: PMC11052302 DOI: 10.3390/microorganisms12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of global warming, population growth, and economic development are increasing the frequency of extreme weather events, such as drought. Among abiotic stresses, drought has the greatest impact on soil biological activity and crop yields. The rhizosphere microbiota, which represents a second gene pool for plants, may help alleviate the effects of drought on crops. In order to investigate the structure and diversity of the bacterial communities on drought stress, this study analyzed the differences in the bacterial communities by high-throughput sequencing and bioinformatical analyses in the rhizosphere of Arabidopsis thaliana under normal and drought conditions. Based on analysis of α and β diversity, the results showed that drought stress had no significant effect on species diversity between groups, but affected species composition. Difference analysis of the treatments showed that the bacteria with positive responses to drought stress were Burkholderia-Caballeronia-Paraburkholderia (BCP) and Streptomyces. Drought stress reduced the complexity of the rhizosphere bacterial co-occurrence network. Streptomyces was at the core of the network in both the control and drought treatments, whereas the enrichment of BCP under drought conditions was likely due to a decrease in competitors. Functional prediction showed that the core bacteria metabolized a wide range of carbohydrates, such as pentose, glycans, and aromatic compounds. Our results provide a scientific and theoretical basis for the use of rhizosphere microbial communities to alleviate plant drought stress and the further exploration of rhizosphere microbial interactions under drought stress.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Hengfei Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Shouyang Luo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Libo Ye
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Changji Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Xiaonan Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil, Conservation College of Life Science, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (H.Z.); (L.Y.); (X.W.)
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (S.L.); (C.W.); (C.T.)
| |
Collapse
|
5
|
Zhang P, Huguet-Tapia J, Peng Z, Liu S, Obasa K, Block AK, White FF. Genome analysis and hyphal movement characterization of the hitchhiker endohyphal Enterobacter sp. from Rhizoctonia solani. Appl Environ Microbiol 2024; 90:e0224523. [PMID: 38319098 PMCID: PMC10952491 DOI: 10.1128/aem.02245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.
Collapse
Affiliation(s)
- Peiqi Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jose Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Ken Obasa
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- High Plains Plant Disease Diagnostic Lab, Texas A&M AgriLife Extension Service, Amarillo, Texas, USA
| | - Anna K. Block
- Chemistry Research Unit, US Department of Agriculture-Agricultural Research Service, Gainesville, Florida, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Ajuna HB, Lim HI, Moon JH, Won SJ, Choub V, Choi SI, Yun JY, Ahn YS. The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. Int J Mol Sci 2023; 24:16889. [PMID: 38069212 PMCID: PMC10707167 DOI: 10.3390/ijms242316889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Plant diseases and insect pest damage cause tremendous losses in forestry and fruit tree production. Even though chemical pesticides have been effective in the control of plant diseases and insect pests for several decades, they are increasingly becoming undesirable due to their toxic residues that affect human life, animals, and the environment, as well as the growing challenge of pesticide resistance. In this study, we review the potential of hydrolytic enzymes from Bacillus species such as chitinases, β-1,3-glucanases, proteases, lipases, amylases, and cellulases in the biological control of phytopathogens and insect pests, which could be a more sustainable alternative to chemical pesticides. This study highlights the application potential of the hydrolytic enzymes from different Bacillus sp. as effective biocontrol alternatives against phytopathogens/insect pests through the degradation of cell wall/insect cuticles, which are mainly composed of structural polysaccharides like chitins, β-glucans, glycoproteins, and lipids. This study demonstrates the prospects for applying hydrolytic enzymes from Bacillus sp. as effective biopesticides in forest and fruit tree production, their mode of biocidal activity and dual antimicrobial/insecticidal potential, which indicates a great prospect for the simultaneous biocontrol of pests/diseases. Further research should focus on optimizing the production of hydrolytic enzymes, and the antimicrobial/insecticidal synergism of different Bacillus sp. which could facilitate the simultaneous biocontrol of pests and diseases in forest and fruit tree production.
Collapse
Affiliation(s)
- Henry B. Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Hyo-In Lim
- Forest Bioinformation Division, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Vantha Choub
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Ju-Yeol Yun
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| |
Collapse
|
7
|
Kotb E, Alabdalall AH, Alghamdi AI, Ababutain IM, Aldakeel SA, Al-Zuwaid SK, Algarudi BM, Algarudi SM, Ahmed AA, Albarrag AM. Screening for chitin degrading bacteria in the environment of Saudi Arabia and characterization of the most potent chitinase from Streptomyces variabilis Am1. Sci Rep 2023; 13:11723. [PMID: 37474592 PMCID: PMC10359409 DOI: 10.1038/s41598-023-38876-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Forty-six promising chitinolytic isolates were recovered during a screening for chitinolytic bacteria in the environment of Saudi Arabia. The top three isolates belonged to the genus Streptomyces. Streptomyces variabilis Am1 was able to excrete the highest amount of chitinases, reaching the maximum at 84 h with 0.5% yeast extract and nitrogen source and 2% galactose as a carbon source. Purification of chitinase by DEAE-Cellulose and Sephadex G75 improved the specific activity to 18.6-fold and the recovery to 23.8% and showed a mass at 56 kDa. The optimal catalysis of the purified chitinase was at 40 °C and pH 8 with high thermostability and pH stability as reflected by a midpoint temperature value of 66.6 °C and stability at pH 4-9. The protein reagents SDS, EDTA, and EGTA significantly inhibited the enzyme and the EDTA-chelated chitinase restored its activity after the addition of Fe2+ ions suggesting a metallo-chitinase type with ferric ions as cofactors. Chitinase exerted high antifungal activity against some phytopathogenic fungi. Interestingly, the tested Streptomyces were able to produce chitosan nanocubes along with chitosan from chitin degradation which may be an additional power in their antifungal activity in nature. This work also reveals the importance of unexplored environments as a pool of promising microorganisms with biotechnological applications.
Collapse
Affiliation(s)
- Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Amira H Alabdalall
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Azzah I Alghamdi
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ibtisam M Ababutain
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sumayh A Aldakeel
- The National Center for Genomic Technology (NCGT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Genomic of Infectious Diseases Laboratory, Saudi Center for Disease Prevention and Control, Public Health Authority, Riyadh, Saudi Arabia
| | - Safa K Al-Zuwaid
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Batool M Algarudi
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakina M Algarudi
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Asmaa A Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University (Girls' Branch), P.O. Box 11751, Cairo, Egypt
| | - Ahmed M Albarrag
- Department of Pathology, School of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Xing A, Hu Y, Wang W, Secundo F, Xue C, Mao X. A novel microbial-derived family 19 endochitinase with exochitinase activity and its immobilization. Appl Microbiol Biotechnol 2023; 107:3565-3578. [PMID: 37103491 DOI: 10.1007/s00253-023-12523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
A novel chitinase gene of 888 bp from Streptomyces bacillaris was cloned and expressed in Escherichia coli BL21. The purified recombinant enzyme (SbChiAJ103) was identified as the first microbial-derived family 19 endochitinase that showed exochitinase activity. SbChiAJ103 exhibited the substrate preference for N-acetylchitooligosaccharides with even degrees of polymerization and the capability to specifically hydrolyze colloidal chitin into (GlcNAc)2. Mono-methyl adipate was employed as a novel linker for the efficient covalent immobilization of chitinase on magnetic nanoparticles (MNPs). The immobilized SbChiAJ103, SbChiAJ103@MNPs, exhibited superior pH tolerance, temperature stability, and storage stability than free SbChiAJ103. Even after incubation at 45 °C for 24 h, SbChiAJ103@MNPs could retain more than 60.0% initial activity. As a result, the enzymatic hydrolysis yield of SbChiAJ103@MNPs increased to 1.58 times that of free SbChiAJ103. Moreover, SbChiAJ103@MNPs could be reused by convenient magnetic separation. After 10 recycles, SbChiAJ103@MNPs could retain almost 80.0% of its initial activity. The immobilization of the novel chitinase SbChiAJ103 paves the way to the efficient and eco-friendly commercial production of (GlcNAc)2. KEY POINTS: • The first microbial GH19 endochitinase with exochitinase activity was reported. • Mono-methyl adipate was first employed to immobilize chitinase. • SbChiAJ103@MNPs showed excellent pH stability, thermal stability, and reusability.
Collapse
Affiliation(s)
- Aijia Xing
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
| | - Yang Hu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China.
| | - Wei Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, 20131, Milan, Italy
| | - Changhu Xue
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
9
|
Ngo-Mback MNL, Zeuko’o Menkem E, Marco HG. Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens 2023; 12:617. [PMID: 37111503 PMCID: PMC10142389 DOI: 10.3390/pathogens12040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal infections continue to be a serious public health problem, leading to an estimated 1.6 million deaths annually. It remains a major cause of mortality for people with a weak or affected immune system, such as those suffering from cancer under aggressive chemotherapies. On the other hand, pathogenic fungi are counted among the most destructive factors affecting crops, causing a third of all food crop losses annually and critically affecting the worldwide economy and food security. However, the limited number currently available and the cytotoxicity of the conventional antifungal drugs, which are not yet properly diversified in terms of mode of action, in addition to resistance phenomena, make the search for new antifungals imperative to improve both human health and food protection. Symbiosis has been a crucial alternative for drug discovery, through which many antimicrobials have been discovered. This review highlights some antifungal models of a defensive symbiosis of microbial symbiont natural products derived from interacting with aquatic animals as one of the best opportunities. Some recorded compounds with supposed novel cell targets such as apoptosis could lead to the development of a multitherapy involving the mutual treatment of fungal infections and other metabolic diseases involving apoptosis in their pathogenesis pathways.
Collapse
Affiliation(s)
| | | | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
10
|
Sim JXF, Drigo B, Doolette CL, Vasileiadis S, Karpouzas DG, Lombi E. Impact of twenty pesticides on soil carbon microbial functions and community composition. CHEMOSPHERE 2022; 307:135820. [PMID: 35944675 DOI: 10.1016/j.chemosphere.2022.135820] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Pesticides are known to affect non-targeted soil microorganisms. Still, studies comparing the effect of multiple pesticides on a wide range of microbial endpoints associated with carbon cycling are scarce. Here, we employed fluorescence enzymatic assay and real-time PCR to evaluate the effect of 20 commercial pesticides, applied at their recommended dose and five times their recommended dose, on soil carbon cycling related enzymatic activities (α-1,4-glucosidase, β-1,4-glucosidase, β-d-cellobiohydrolase and β-xylosidase), and on the absolute abundance of functional genes (cbhl and chiA), in three different South Australian agricultural soils. The effects on cellulolytic and chitinolytic microorganisms, and the total microbial community composition were determined using shotgun metagenomic sequencing in selected pesticide-treated and untreated samples. The application of insecticides significantly increased the cbhl and chiA genes absolute abundance in the acidic soil. At the community level, insecticide fipronil had the greatest stimulating effect on cellulolytic and chitinolytic microorganisms, followed by fungicide metalaxyl-M and insecticide imidacloprid. A shift towards a fungal dominated microbial community was observed in metalaxyl-M treated soil. Overall, our results suggest that the application of pesticides might affect the soil carbon cycle and may disrupt the formation of soil organic matter and structure stabilisation.
Collapse
Affiliation(s)
- Jowenna X F Sim
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Casey L Doolette
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Viopolis, 41500, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Viopolis, 41500, Greece
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia; University of South Australia, UniSA STEM, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
11
|
Du Y, Wang T, Jiang J, Wang Y, Lv C, Sun K, Sun J, Yan B, Kang C, Guo L, Huang L. Biological control and plant growth promotion properties of Streptomyces albidoflavus St-220 isolated from Salvia miltiorrhiza rhizosphere. FRONTIERS IN PLANT SCIENCE 2022; 13:976813. [PMID: 36110364 PMCID: PMC9468599 DOI: 10.3389/fpls.2022.976813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 05/02/2023]
Abstract
Root rot disease caused by Fusarium oxysporum is a devastating disease of Salvia miltiorrhiza and dramatically affected the production and quality of Sa. miltiorrhiza. Besides the agricultural and chemical control, biocontrol agents can be utilized as an additional solution. In the present study, an actinomycete that highly inhibited F. oxysporum was isolated from rhizosphere soil and identified as based on morphological and molecular characteristics. Greenhouse assay proved that the strain had significant biological control effect against Sa. miltiorrhiza root rot disease and growth-promoting properties on Sa. miltiorrhiza seedlings. To elucidate the biocontrol and plant growth-promoting properties of St-220, we employed an analysis combining genome mining and metabolites detection. Our analyses based on genome sequence and bioassays revealed that the inhibitory activity of St-220 against F. oxysporum was associated with the production of enzymes targeting fungal cell wall and metabolites with antifungal activities. Strain St-220 possesses phosphate solubilization activity, nitrogen fixation activity, siderophore and indole-3-acetic acid production activity in vitro, which may promote the growth of Sa. miltiorrhiza seedlings. These results suggest that St. albidoflavus St-220 is a promising biocontrol agent and also a biofertilizer that could be used in the production of Sa. miltiorrhiza.
Collapse
Affiliation(s)
- Yongxi Du
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tielin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Jingyi Jiang
- National Agricultural Technology Extension and Service Center, Beijing, China
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chaogeng Lv
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kai Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Binbin Yan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chuanzhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
12
|
Highly specialized bacterial communities within three distinct rhizocompartments of Antarctic hairgrass (Deschampsia antarctica Desv.). Polar Biol 2022. [DOI: 10.1007/s00300-022-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ali NS, Syafiq TM, Saad MM. Induction of Hydrolytic Enzymes: A Criterion for Biological Control Candidates against Fungal Pathogen. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kim SK, Park JE, Oh JM, Kim H. Molecular Characterization of Four Alkaline Chitinases from Three Chitinolytic Bacteria Isolated from a Mudflat. Int J Mol Sci 2021; 22:ijms222312822. [PMID: 34884628 PMCID: PMC8658002 DOI: 10.3390/ijms222312822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Four chitinases were cloned and characterized from three strains isolated from a mudflat: Aeromonas sp. SK10, Aeromonas sp. SK15, and Chitinibacter sp. SK16. In SK10, three genes, Chi18A, Pro2K, and Chi19B, were found as a cluster. Chi18A and Chi19B were chitinases, and Pro2K was a metalloprotease. With combinatorial amplification of the genes and analysis of the hydrolysis patterns of substrates, Chi18A and Chi19B were found to be an endochitinase and exochitinase, respectively. Chi18A and Chi19B belonged to the glycosyl hydrolase family 18 (GH18) and GH19, with 869 and 659 amino acids, respectively. Chi18C from SK15 belonged to GH18 with 864 amino acids, and Chi18D from SK16 belonged to GH18 with 664 amino acids. These four chitinases had signal peptides and high molecular masses with one or two chitin-binding domains and, interestingly, preferred alkaline conditions. In the activity staining, their sizes were determined to be 96, 74, 95, and 73 kDa, respectively, corresponding to their expected sizes. Purified Chi18C and Chi18D after pET expression produced N,N′-diacetylchitobiose as the main product in hydrolyzing chitooligosaccharides and colloidal chitin. These results suggest that Chi18A, Chi18C, and Chi18D are endochitinases, that Chi19B is an exochitinase, and that these chitinases can be effectively used for hydrolyzing natural chitinous sources.
Collapse
Affiliation(s)
- Sung Kyum Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Korea;
| | - Jong Eun Park
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea; (J.E.P.); (J.M.O.)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea; (J.E.P.); (J.M.O.)
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea; (J.E.P.); (J.M.O.)
- Correspondence: ; Tel.: +82-61-750-3751
| |
Collapse
|
15
|
Bai L, Kim J, Son KH, Chung CW, Shin DH, Ku BH, Kim DY, Park HY. Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Symbiont of Eisenia fetida, Cellulosimicrobium funkei HY-13. Biomolecules 2021; 11:1735. [PMID: 34827733 PMCID: PMC8615386 DOI: 10.3390/biom11111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Endo-type chitinase is the principal enzyme involved in the breakdown of N-acetyl-d-glucosamine-based oligomeric and polymeric materials through hydrolysis. The gene (966-bp) encoding a novel endo-type chitinase (ChiJ), which is comprised of an N-terminal chitin-binding domain type 3 and a C-terminal catalytic glycoside hydrolase family 19 domain, was identified from a fibrolytic intestinal symbiont of the earthworm Eisenia fetida, Cellulosimicrobium funkei HY-13. The highest endochitinase activity of the recombinant enzyme (rChiJ: 30.0 kDa) toward colloidal shrimp shell chitin was found at pH 5.5 and 55 °C and was considerably stable in a wide pH range (3.5-11.0). The enzyme exhibited the highest biocatalytic activity (338.8 U/mg) toward ethylene glycol chitin, preferentially degrading chitin polymers in the following order: ethylene glycol chitin > colloidal shrimp shell chitin > colloidal crab shell chitin. The enzymatic hydrolysis of N-acetyl-β-d-chitooligosaccharides with a degree of polymerization from two to six and colloidal shrimp shell chitin yielded primarily N,N'-diacetyl-β-d-chitobiose together with a small amount of N-acetyl-d-glucosamine. The high chitin-degrading ability of inverting rChiJ with broad pH stability suggests that it can be exploited as a suitable biocatalyst for the preparation of N,N'-diacetyl-β-d-chitobiose, which has been shown to alleviate metabolic dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- Lu Bai
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Jonghoon Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Kwang-Hee Son
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Chung-Wook Chung
- Department of Biological Sciences, Andong National University, Andong 36729, Korea;
| | - Dong-Ha Shin
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Bon-Hwan Ku
- Insect Biotech Co. Ltd., Daejeon 34054, Korea; (D.-H.S.); (B.-H.K.)
| | - Do Young Kim
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| | - Ho-Yong Park
- Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea;
- Industrial Bio-Materials Research Center, KRIBB, Daejeon 34141, Korea; (J.K.); (K.-H.S.)
| |
Collapse
|
16
|
Genome information of the cellulolytic soil actinobacterium Isoptericola dokdonensis DS-3 and comparative genomic analysis of the genus Isoptericola. J Microbiol 2021; 59:1010-1018. [PMID: 34724179 DOI: 10.1007/s12275-021-1452-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
The actinobacterial group is regarded as a reservoir of biologically active natural products and hydrolytic enzymes with the potential for biomedical and industrial applications. Here, we present the complete genome sequence of Isoptericola dokdonensis DS-3 isolated from soil in Dokdo, small islets in the East Sea of Korea. This actinomycete harbors a large number of genes encoding carbohydrate-degrading enzymes, and its activity to degrade carboxymethyl cellulose into glucose was experimentally evaluated. Since the genus Isoptericola was proposed after reclassification based on phylogenetic analysis, strains of Isoptericola have been continuously isolated from diverse environments and the importance of this genus in the ecosystem has been suggested by recent culturomic or metagenomic studies. The phylogenic relationships of the genus tended to be closer among strains that had been isolated from similar habitats. By analyzing the properties of published genome sequences of seven defined species in the genus, a large number of genes for carbohydrate hydrolysis and utilization, as well as several biosynthetic gene clusters for secondary metabolites, were identified. Genomic information of I. dokdonensis DS-3 together with comparative analysis of the genomes of Isoptericola provides insights into understanding this actinobacterial group with a potential for industrial applications.
Collapse
|
17
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
18
|
Yano S, Kanno H, Tsuhako H, Ogasawara S, Suyotha W, Konno H, Makabe K, Uechi K, Taira T. Cloning, expression, and characterization of a GH 19-type chitinase with antifungal activity from Lysobacter sp. MK9-1. J Biosci Bioeng 2020; 131:348-355. [PMID: 33281068 DOI: 10.1016/j.jbiosc.2020.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022]
Abstract
The chitin-assimilating gram-negative bacterium, Lysobacter sp. MK9-1, was isolated from soil and was the source of a glycoside hydrolase family 19-type chitinase (Chi19MK) gene that is 933-bp long and encodes a 311-residue protein. The deduced amino acid sequence of Chi19MK includes a signal peptide, an uncharacterized sequence, a carbohydrate-binding module family 12-type chitin binding domain, and a catalytic domain. The catalytic domain of Chi19MK is approximately 60% similar to those of ChiB from Burkholderia gladioli CHB101, chitinase N (ChiN) from Chitiniphilus shinanonensis SAY3T, ChiF from Streptomyces coelicolor A3(2), Chi30 from Streptomyces olivaceoviridisis, ChiA from Streptomyces cyaneus SP-27, and ChiC from Streptomyces griseus HUT6037. Chi19MK lacking the signal and uncharacterized sequences (Chi19MKΔNTerm) was expressed in Escherichia coli Rosetta-gami B(DE3), resulting in significant chitinase activity in the soluble fraction. Purified Chi19MKΔNTerm hydrolyzed colloidal chitin and released disaccharide. Furthermore, Chi19MKΔNTerm inhibited hyphal extension in Trichoderma reesei and Schizophyllum commune. Based on quantitative antifungal activity assays, Chi19MKΔNTerm inhibits the growth of Trichoderma viride with an IC50 value of 0.81 μM.
Collapse
Affiliation(s)
- Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Haruki Kanno
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Haruna Tsuhako
- Department of Bioscience and Biotechnology, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Sonoka Ogasawara
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Koki Makabe
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Keiko Uechi
- Department of Bioscience and Biotechnology, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
19
|
Salwan R, Sharma V, Sharma A, Singh A. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiol Res 2020; 235:126449. [PMID: 32114361 DOI: 10.1016/j.micres.2020.126449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Streptomyces and their biomolecules are well explored for antibiotics production, bioremediation and alleviating the plant stresses due to their plant beneficial attributes. Therefore, due to plethora of biological attributes, the accurate portraying of molecular capabilities of these microorganisms at genomic level is of paramount importance. Here, we have evaluated biochemical attributes of two Streptomyces sp. AC30and AC40 for different plant beneficial activities which are antagonistic to Fusarium oxysporum, Alternaria solani, Sclerotinia sclerotium and Phytopthora infestans. In parallel, the draft genomes of these strains were deduced to understand their genomic capabilities using Illumina platform. The complete genome of AC30and AC40 were 11,284,599 bp and 12,636,188 bp in size with total G + C content of 62.36 and 54.75 %, respectively. Overall, higher number of genes (14,024) was reported for AC40 as compared to AC30 (12,476). The comparative genome organization revealed sharing of a few biosynthetic clusters as well as some exclusive biosynthetic clusters among both the strains. Further, expansion in the chitinases and glucanases was found in the genome of AC40. In addition, genes for 3-phytase and glycosyl hydrolase family 19 were restricted to AC40 only. The comparative genome study revealed presence of plant induced nitrilase in AC40 which is predicted for its role in IAA biosynthesis, release of ammonia, biotransformation of nitrile compounds to corresponding acids and bioremediation of soil containing nitrile compounds. For IAA and secondary metabolites biosynthesis, flavin-dependent monooxygenase, a rate limiting factor in Trp-dependent auxin biosynthesis pathway was found exclusive to AC30 genome. The comparative study revealed the diversification of few pathways/strategies to suppress plant pathogens and promote plant growth by Streptomyces strains.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, (Dr YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, HP, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India.
| | - Anu Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India
| | - Ankita Singh
- Bionivid Technology Private Limited Kasturi Nagar, Bangalore-560043, India
| |
Collapse
|
20
|
Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Compr Rev Food Sci Food Saf 2020; 19:643-669. [DOI: 10.1111/1541-4337.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Siti Nur Ezzati Yazid
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Siti Izera Ismail
- Laboratory of Climate‐Smart Food Crop ProductionInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Plant ProtectionFaculty of AgricultureUniversiti Putra Malaysia Serdang Malaysia
| | - Naresh Magan
- Applied Mycology GroupCranfield Soil and AgriFood InstituteCranfield University Cranfield UK
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
21
|
Management of Fusarium udum Causing Wilt of Pigeon Pea. Fungal Biol 2020. [DOI: 10.1007/978-3-030-35947-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Myo EM, Ge B, Ma J, Cui H, Liu B, Shi L, Jiang M, Zhang K. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol 2019; 19:155. [PMID: 31286877 PMCID: PMC6615096 DOI: 10.1186/s12866-019-1528-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA) is produced by microorganisms and plants via either tryptophan-dependent or tryptophan-independent pathways. Herein, we investigated the optimisation of IAA production by Streptomyces fradiae NKZ-259 and its formulation as a plant growth promoter to improve economic and agricultural development. RESULTS The maximum IAA yield achieved using optimal conditions was 82.363 μg/mL in the presence of 2 g/L tryptophan after 6 days of incubation. Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis of putative IAA revealed an RF value of 0.69 and a retention time of 11.842 min, comparable with the IAA standard. Regarding product formulation, kaolin-based powder achieved a suspension rate of 73.74% and a wetting time of 80 s. This carrier exhibited good shelf life stability for NKZ-259, and the cell population did not decrease obviously over 4 months of storage at 4 °C. In vivo analysis of plant growth promotion showed that tomato seedlings treated with kaolin powder containing NKZ-259 cells displayed a significant increase in root and shoot length of 7.97 cm and 32.77 cm, respectively, and an increase in fresh weight and dry weight of 6.72 g and 1.34 g. Compared to controls, plant growth parameters were increased almost it two-fold. CONCLUSION Optimising the culture conditions resulted in an almost four-fold increase in IAA secretion by NKZ-259 cells. The results clearly demonstrate that S. fradiae NKZ-259 holds great potential for plant growth promotion and IAA production. Furthermore, kaolin-based powder is an effective carrier for NKZ-259 cells and may be useful for commercial applications.
Collapse
Affiliation(s)
- Ei Mon Myo
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Biotechnology Research Department, Department of Research and Innovation, Ministry of Education, Kyaukse, Myanmar
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinjin Ma
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailan Cui
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Binghua Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingguo Jiang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
23
|
Newitt JT, Prudence SMM, Hutchings MI, Worsley SF. Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens 2019; 8:pathogens8020078. [PMID: 31200493 PMCID: PMC6630304 DOI: 10.3390/pathogens8020078] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.
Collapse
Affiliation(s)
- Jake T Newitt
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
24
|
Yang Y, Wu ZM, Li KT. The peculiar physiological responses of Rhizoctonia solani under the antagonistic interaction coupled by a novel antifungalmycin N2 from Streptomyces sp. N2. Arch Microbiol 2019; 201:787-794. [DOI: 10.1007/s00203-019-01645-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
25
|
Chitinolytic actinobacteria isolated from an Algerian semi-arid soil: development of an antifungal chitinase-dependent assay and GH18 chitinase gene identification. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1426-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
26
|
Stumpf AK, Vortmann M, Dirks-Hofmeister ME, Moerschbacher BM, Philipp B. Identification of a novel chitinase from Aeromonas hydrophila AH-1N for the degradation of chitin within fungal mycelium. FEMS Microbiol Lett 2019; 366:5266298. [PMID: 30596975 DOI: 10.1093/femsle/fny294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/27/2018] [Indexed: 11/14/2022] Open
Abstract
Defined organic waste products are ideal and sustainable secondary feedstocks for production organisms in microbial biotechnology. Chitin from mycelia of fungal fermentation processes represents a homogeneous and constantly available waste product that can, however, not be utilised by typical bacterial production strains. Therefore, enzymes that degrade chitin within fungal mycelia have to be identified and expressed in production organisms. In this study, chitin-degrading bacteria were enriched and isolated from lake water with mycelia of Aspergillus tubingensis as sole organic growth substrate. This approach yielded solely strains of Aeromonas hydrophila. Comparison of the isolated strains with other A. hydrophila strains regarding their chitinolytic activities on fungal mycelia identified strain AH-1N as the best enzyme producer. From this strain, a chitinase (EC:3.2.1.14) was identified by peptide mass fingerprinting. Heterologous expression of the respective gene combined with mass spectrometry showed that the purified enzyme was capable of releasing chitobiose from fungal mycelia with a higher yield than a well-described chitinase from Serratia marcescens. Expression of the newly identified chitinase in biotechnological production strains could be the first step for making fungal mycelium accessible as a secondary feedstock. Additionally, the enrichment strategy proved to be feasible for identifying strains able to degrade fungal chitin.
Collapse
Affiliation(s)
- Anna K Stumpf
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Muenster, Corrensstraße 3, 48149 Münster, Germany
| | - Marina Vortmann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Muenster, Schlossplatz 8, 48143 Münster, Germany
| | | | - Bruno M Moerschbacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität (WWU) Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Muenster, Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
27
|
Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 2018; 103:1179-1188. [PMID: 30594952 PMCID: PMC6394478 DOI: 10.1007/s00253-018-09577-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
With the impending increase of the world population by 2050, more activities have been directed toward the improvement of crop yield and a safe environment. The need for chemical-free agricultural practices is becoming eminent due to the effects of these chemicals on the environment and human health. Actinomycetes constitute a significant percentage of the soil microbial community. The Streptomyces genus, which is the most abundant and arguably the most important actinomycetes, is a good source of bioactive compounds, antibiotics, and extracellular enzymes. These genera have shown over time great potential in improving the future of agriculture. This review highlights and buttresses the agricultural importance of Streptomyces through its biocontrol and plant growth-promoting activities. These activities are highlighted and discussed in this review. Some biocontrol products from this genus are already being marketed while work is still ongoing on this productive genus. Compared to more focus on its biocontrol ability, less work has been done on it as a biofertilizer until recently. This genus is as efficient as a biofertilizer as it is as a biocontrol.
Collapse
|
28
|
Thijs S, Sillen W, Truyens S, Beckers B, van Hamme J, van Dillewijn P, Samyn P, Carleer R, Weyens N, Vangronsveld J. The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1134. [PMID: 30123233 PMCID: PMC6085565 DOI: 10.3389/fpls.2018.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/13/2018] [Indexed: 05/23/2023]
Abstract
Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.
Collapse
Affiliation(s)
- Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sascha Truyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram Beckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Pieter van Dillewijn
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Pieter Samyn
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
29
|
Emruzi Z, Aminzadeh S, Karkhane AA, Alikhajeh J, Haghbeen K, Gholami D. Improving the thermostability of Serratia marcescens B4A chitinase via G191V site-directed mutagenesis. Int J Biol Macromol 2018; 116:64-70. [PMID: 29733926 DOI: 10.1016/j.ijbiomac.2018.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022]
Abstract
Chitinases with high thermostability are important for many industrial and biotechnological applications. This study was conducted to enhance the stability of Serratia marcescens B4A chitinase by site directed mutagenesis of G191 V. Further characterization showed that the thermal stability of the mutant showed marked increase of about 5 and 15 fold at 50 and 60 °C respectively, while the optimum temperature and pH was retained. Kinetic analysis showed decreased Km and Vmax of the mutant in comparison with the wild type chitinase of about 1.3 and 3 fold, respectively. Based on structural prediction, it was speculated that this replacement shortened an important loop concomitant with the extension of adjacent β sheets. Accordingly, a higher thermostability of G191 V up to 90 °C supporting the decreased flexibility of unfolded state was also indicated. Finally, a practical proof of kinetic and thermal stabilization of chitinase was provided through decreased flexibility and entropic stabilization of its surface loops.
Collapse
Affiliation(s)
- Zeinab Emruzi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran.
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Jahan Alikhajeh
- Departments of Physiology and Cellular Biophysics, Columbia University Medical Center, USA
| | - Kamahldin Haghbeen
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Dariush Gholami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| |
Collapse
|
30
|
Mishra A, Singh SP, Mahfooz S, Bhattacharya A, Mishra N, Shirke PA, Nautiyal CS. Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiol Res 2018; 212-213:17-28. [PMID: 29853165 DOI: 10.1016/j.micres.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/22/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
Despite the vast exploration of endophytic microbes for growth enhancement in various crops, knowledge about their impact on the production of therapeutically important secondary metabolites is scarce. In the current investigation, chitinolytic bacterial endophytes were isolated from selected medicinal plants and assessed for their mycolytic as well as plant growth promoting potentials. Among them the two most efficient bacterial endophytes namely Bacillus amyloliquefaciens (MPE20) and Pseudomonas fluorescens (MPE115) individually as well as in combination were able to modulate withanolide biosynthetic pathway and tolerance against Alternaria alternata in Withania somnifera. Interestingly, the expression level of withanolide biosynthetic pathway genes (3-hydroxy-3-methylglutaryl co-enzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductase, farnesyl di-phosphate synthase, squalene synthase, cytochrome p450, sterol desaturase, sterol Δ-7 reductase and sterol glycosyl transferases) were upregulated in plants treated with the microbial consortium under A. alternata stress. In addition, application of microbes not only augmented withaferin A, withanolide A and withanolide B content (1.52-1.96, 3.32-5.96 and 12.49-21.47 fold, respectively) during A. alternata pathogenicity but also strengthened host resistance via improvement in the photochemical efficiency, normalizing the oxidized and non-oxidized fraction, accelerating photochemical and non-photochemical quantum yield, and electron transport rate. Moreover, reduction in the passively dissipated energy of PSI and PSII in microbial combination treated plants corroborate well with the above findings. Altogether, the above finding highlights novel insights into the underlying mechanisms in application of endophytes and emphasizes their capability to accelerate biosynthesis of withanolides in W. somnifera under biotic stress caused by A. alternata.
Collapse
Affiliation(s)
- Aradhana Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India.
| | - Satyendra Pratap Singh
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India; Department of Microbiology, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Sahil Mahfooz
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India
| | - Arpita Bhattacharya
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India
| | - Nishtha Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Plant Physiology Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - C S Nautiyal
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
31
|
Ren G, Ma Y, Guo D, Gentry TJ, Hu P, Pierson EA, Gu M. Soil Bacterial Community Was Changed after Brassicaceous Seed Meal Application for Suppression of Fusarium Wilt on Pepper. Front Microbiol 2018; 9:185. [PMID: 29487582 PMCID: PMC5816756 DOI: 10.3389/fmicb.2018.00185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Application of Brassicaceous seed meal (BSM) is a promising biologically based disease-control practice but BSM could directly and indirectly also affect the non-target bacterial communities, including the beneficial populations. Understanding the bacterial response to BSM at the community level is of great significance for directing plant disease management through the manipulation of resident bacterial communities. Fusarium wilt is a devastating disease on pepper. However, little is known about the response of bacterial communities, especially the rhizosphere bacterial community, to BSM application to soil heavily infested with Fusarium wilt pathogen and cropped with peppers. In this study, a 25-day microcosm incubation of a natural Fusarium wilt pathogen-infested soil supplemented with three BSMs, i.e., Camelina sativa 'Crantz' (CAME), Brassica juncea 'Pacific Gold' (PG), and a mixture of PG and Sinapis alba cv. 'IdaGold' (IG) (PG+IG, 1:1 ratio), was performed. Then, a further 35-day pot experiment was established with pepper plants growing in the BSM treated soils. The changes in the bacterial community in the soil after 25 days of incubation and changes in the rhizosphere after an additional 35 days of pepper growth were investigated by 454 pyrosequencing technique. The results show that the application of PG and PG+IG reduced the disease index by 100% and 72.8%, respectively, after 35 days of pepper growth, while the application of CAME did not have an evident suppressive effect. All BSM treatments altered the bacterial community structure and decreased the bacterial richness and diversity after 25 days of incubation, although this effect was weakened after an additional 35 days of pepper growth. At the phylum/class and the genus levels, the changes in specific bacterial populations resulting from the PG and PG+IG treatments, especially the significant increase in Actinobacteria-affiliated Streptomyces and an unclassified genus and the significant decrease in Chloroflexi, were suspected to be one of the microbial mechanisms involved in PG-containing BSM-induced disease suppression. This study is helpful for our understanding of the mechanisms that lead to contrasting plant disease severity after the addition of different BSMs.
Collapse
Affiliation(s)
- Gaidi Ren
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province–State Key Laboratory Breeding Base, Nanjing, China
| | - Yan Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province–State Key Laboratory Breeding Base, Nanjing, China
| | - Dejie Guo
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province–State Key Laboratory Breeding Base, Nanjing, China
| | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Ping Hu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Mengmeng Gu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
32
|
Oh SY, Kim M, Eimes JA, Lim YW. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One 2018; 13:e0190948. [PMID: 29420560 PMCID: PMC5805168 DOI: 10.1371/journal.pone.0190948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/24/2017] [Indexed: 12/30/2022] Open
Abstract
Tricholoma matsutake (pine mushroom, PM) is a prized mushroom in Asia due to its unique flavor and pine aroma. The fruiting body of PM forms only in its natural habitat (pine forest), and little is known regarding the natural conditions required for successful generation of the fruiting bodies in this species. Recent studies suggest that microbial interactions may be associated with the growth of PM; however, there have been few studies of the bacterial effects on PM growth. In this study, we surveyed which bacteria can directly and indirectly promote the growth of PM by using co-cultures with PM and molds associated with the fruiting body. Among 16 bacterial species isolated from the fruiting body, some species significantly influenced the mycelial growth of PM and molds. Most bacteria negatively affected PM growth and exhibited various enzyme activities, which suggests that they use the fruiting body as nutrient source. However, growth-promoting bacteria belonging to the Dietzia, Ewingella, Pseudomonas, Paenibacillus, and Rodococcus were also found. In addition, many bacteria suppressed molds, which suggests an indirect positive effect on PM as a biocontrol agent. Our results provide important insights toward a better understanding of the microbial interactions in the fruiting body of PM, and indicate that growth-promoting bacteria may be an important component in successful cultivation of PM.
Collapse
Affiliation(s)
- Seung-Yoon Oh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Misong Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - John A. Eimes
- University College, Sungkyunkwan University, Suwon, South Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
Berini F, Presti I, Beltrametti F, Pedroli M, Vårum KM, Pollegioni L, Sjöling S, Marinelli F. Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Fact 2017; 16:16. [PMID: 28137256 PMCID: PMC5282697 DOI: 10.1186/s12934-017-0634-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Background Through functional screening of a fosmid library, generated from a phytopathogen-suppressive soil metagenome, the novel antifungal chitinase—named Chi18H8 and belonging to family 18 glycosyl hydrolases—was previously discovered. The initial extremely low yield of Chi18H8 recombinant production and purification from Escherichia coli cells (21 μg/g cell) limited its characterization, thus preventing further investigation on its biotechnological potential. Results We report on how we succeeded in producing hundreds of milligrams of pure and biologically active Chi18H8 by developing and scaling up to a high-yielding, 30 L bioreactor process, based on a novel method of mild solubilization of E. coli inclusion bodies in lactic acid aqueous solution, coupled with a single step purification by hydrophobic interaction chromatography. Chi18H8 was characterized as a Ca2+-dependent mesophilic chitobiosidase, active on chitin substrates at acidic pHs and possessing interesting features, such as solvent tolerance, long-term stability in acidic environment and antifungal activity against the phytopathogens Fusarium graminearum and Rhizoctonia solani. Additionally, Chi18H8 was found to operate according to a non-processive endomode of action on a water-soluble chitin-like substrate. Conclusions Expression screening of a metagenomic library may allow access to the functional diversity of uncultivable microbiota and to the discovery of novel enzymes useful for biotechnological applications. A persisting bottleneck, however, is the lack of methods for large scale production of metagenome-sourced enzymes from genes of unknown origin in the commonly used microbial hosts. To our knowledge, this is the first report on a novel metagenome-sourced enzyme produced in hundreds-of-milligram amount by recovering the protein in the biologically active form from recombinant E. coli inclusion bodies. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0634-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy. .,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy.
| | - Ilaria Presti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy.,Chemo Biosynthesis, Corana, Pavia, Italy
| | | | | | - Kjell M Vårum
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy
| | - Sara Sjöling
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy
| |
Collapse
|
34
|
Paulsen SS, Andersen B, Gram L, Machado H. Biological Potential of Chitinolytic Marine Bacteria. Mar Drugs 2016; 14:md14120230. [PMID: 27999269 PMCID: PMC5192467 DOI: 10.3390/md14120230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022] Open
Abstract
Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using in silico and phenotypic assays. Of 10 chitinolytic strains, three strains, Photobacterium galatheae S2753, Pseudoalteromonas piscicida S2040 and S2724, produced large clearing zones on chitin plates. All strains were antifungal, but against different fungal targets. One strain, Pseudoalteromonas piscicida S2040, had a pronounced antifungal activity against all seven fungal strains. There was no correlation between the number of chitin modifying enzymes as found by genome mining and the chitin degrading activity as measured by size of clearing zones on chitin agar. Based on in silico and in vitro analyses, we cloned and expressed two ChiA-like chitinases from the two most potent candidates to exemplify the industrial potential.
Collapse
Affiliation(s)
- Sara Skøtt Paulsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Birgitte Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Henrique Machado
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
35
|
Human ZR, Moon K, Bae M, de Beer ZW, Cha S, Wingfield MJ, Slippers B, Oh DC, Venter SN. Antifungal Streptomyces spp. Associated with the Infructescences of Protea spp. in South Africa. Front Microbiol 2016; 7:1657. [PMID: 27853450 PMCID: PMC5090004 DOI: 10.3389/fmicb.2016.01657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
Common saprophytic fungi are seldom present in Protea infructescences, which is strange given the abundance of mainly dead plant tissue in this moist protected environment. We hypothesized that the absence of common saprophytic fungi in Protea infructescences could be due to a special symbiosis where the presence of microbes producing antifungal compounds protect the infructescence. Using a culture based survey, employing selective media and in vitro antifungal assays, we isolated antibiotic producing actinomycetes from infructescences of Protea repens and P. neriifolia from two geographically separated areas. Isolates were grouped into three different morphological groups and appeared to be common in the Protea spp. examined in this study. The three groups were supported in 16S rRNA and multi-locus gene trees and were identified as potentially novel Streptomyces spp. All of the groups had antifungal activity in vitro. Streptomyces sp. Group 1 had inhibitory activity against all tested fungi and the active compound produced by this species was identified as fungichromin. Streptomyces spp. Groups 2 and 3 had lower inhibition against all tested fungi, while Group 3 showed limited inhibition against Candida albicans and Sporothrix isolates. The active compound for Group 2 was also identified as fungichromin even though its production level was much lower than Group 1. The antifungal activity of Group 3 was linked to actiphenol. The observed antifungal activity of the isolated actinomycetes could contribute to protection of the plant material against common saprophytic fungi, as fungichromin was also detected in extracts of the infructescence. The results of this study suggest that the antifungal Streptomyces spp. could play an important role in defining the microbial population associated with Protea infructescences.
Collapse
Affiliation(s)
- Zander R. Human
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoul, Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoul, Republic of Korea
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Sangwon Cha
- Department of Chemistry, Hankuk University of Foreign StudiesYongin, Republic of Korea
| | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Bernard Slippers
- Department of Genetics, Forestry and Agriculture Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoul, Republic of Korea
| | - Stephanus N. Venter
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
36
|
Solans M, Scervino JM, Messuti MI, Vobis G, Wall LG. Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes. J Basic Microbiol 2016; 56:1289-1298. [PMID: 27550574 DOI: 10.1002/jobm.201600323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/17/2016] [Indexed: 11/06/2022]
Abstract
Control of fungal plant diseases by using naturally occurring non-pathogenic microorganisms represents a promising approach to biocontrol agents. This study reports the isolation, characterization, and fungal antagonistic activity of actinobacteria from forage soils in the Flooding Pampa, Argentina. A total of 32 saprophytic strains of actinobacteria were obtained by different isolation methods from rhizospheric soil of Lotus tenuis growing in the Salado River Basin. Based on physiological traits, eight isolates were selected for their biocontrol-related activities such as production of lytic extracellular enzymes, siderophores, hydrogen cyanide (HCN), and antagonistic activity against Cercospora sojina, Macrophomia phaseolina, Phomopsis sp., Fusarium oxysporum, and Fusarium verticilloides. These actinobacteria strains were characterized morphologically, physiologically, and identified by using molecular techniques. The characterization of biocontrol-related activities in vitro showed positive results for exoprotease, phospholipase, fungal growth inhibition, and siderophore production. However, none of the strains was positive for the production of hydrogen cyanide (HCN). Streptomyces sp. MM140 presented the highest index for biocontrol, and appear to be promising pathogenic fungi biocontrol agents. These results show the potential capacity of actinobacteria isolated from forage soils in the Argentine Pampas lowlands as promising biocontrol agents, and their future agronomic applications.
Collapse
Affiliation(s)
- Mariana Solans
- INIBIOMA, UNComahue, CONICET. CRUB, Quintral 1250, S. C. Bariloche, 8400, Argentina
| | - Jose Martin Scervino
- INIBIOMA, UNComahue, CONICET. CRUB, Quintral 1250, S. C. Bariloche, 8400, Argentina
| | - María Inés Messuti
- INIBIOMA, UNComahue, CONICET. CRUB, Quintral 1250, S. C. Bariloche, 8400, Argentina
| | - Gernot Vobis
- INIBIOMA, UNComahue, CONICET. CRUB, Quintral 1250, S. C. Bariloche, 8400, Argentina
| | - Luis Gabriel Wall
- Departamento de Ciencia y Tecnología, Programa de Interacciones Biológicas, UNQuilmes, CONICET, R. Saénz Peña 352, B1876BXD Bernal, Argentina
| |
Collapse
|
37
|
Singh S, Gaur R. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii
in chickpea. J Appl Microbiol 2016; 121:506-18. [DOI: 10.1111/jam.13176] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- S.P. Singh
- Department of Microbiology; Mewar University, Gangrar; Chittorgarh India
| | - R. Gaur
- Department of Microbiology; Mewar University, Gangrar; Chittorgarh India
- Department of Microbiology; Dr R. M. L. Avadh University; Faizabad India
| |
Collapse
|
38
|
Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S. Streptomycesas a plant's best friend? FEMS Microbiol Ecol 2016; 92:fiw119. [DOI: 10.1093/femsec/fiw119] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 11/14/2022] Open
|
39
|
de Almeida Lopes KB, Carpentieri-Pipolo V, Oro TH, Stefani Pagliosa E, Degrassi G. Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 2016; 120:740-55. [PMID: 26744016 DOI: 10.1111/jam.13046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
AIMS Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. METHODS AND RESULTS Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. CONCLUSIONS The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. SIGNIFICANCE AND IMPACT OF THE STUDY Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean.
Collapse
Affiliation(s)
- K B de Almeida Lopes
- Agronomy Department, Post Graduation Program in Agronomy, Londrina State University, Londrina, PR, Brazil
| | | | - T H Oro
- Agronomy Department, Post Graduation Program in Agronomy, Londrina State University, Londrina, PR, Brazil
| | - E Stefani Pagliosa
- Agronomy Department, Post Graduation Program in Agronomy, Londrina State University, Londrina, PR, Brazil
| | - G Degrassi
- Industrial Biotechnology Group, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
- IBioBA-ICGEB, Polo Cientifico Tecnologico, Buenos Aires, Argentina
| |
Collapse
|
40
|
Characterization of Thermotolerant Chitinases Encoded by a Brevibacillus laterosporus Strain Isolated from a Suburban Wetland. Genes (Basel) 2015; 6:1268-82. [PMID: 26690223 PMCID: PMC4690040 DOI: 10.3390/genes6041268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022] Open
Abstract
To isolate and characterize chitinases that can be applied with practical advantages, 57 isolates of chitin-degrading bacteria were isolated from the soil of a suburban wetland. 16S rRNA gene analysis revealed that the majority of these strains belonged to two genera, Paenibacillus and Brevibacillus. Taking thermostability into account, the chitinases (ChiA and ChiC) of a B. laterosporus strain were studied further. Ni-NTA affinity-purified ChiA and ChiC were optimally active at pH 7.0 and 6.0, respectively, and showed high temperature stability up to 55 °C. Kinetic analysis revealed that ChiC has a lower affinity and stronger catalytic activity toward colloidal chitin than ChiA. With their stability in a broad temperature range, ChiA and ChiC can be utilized for the industrial bioconversion of chitin wastes into biologically active products.
Collapse
|
41
|
Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 2015; 31:1217-25. [PMID: 25982747 DOI: 10.1007/s11274-015-1870-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
A chitinolytic actinomycete Streptomyces vinaceusdrappus S5MW2 was isolated from water sample of Chilika lake, India and identified using 16S rRNA gene sequencing. It showed in vitro antifungal activity against the sclerotia producing pathogen Rhizoctonia solani in a dual culture assay and by chitinase enzyme production in a chitin supplemented minimal broth. Moreover, isolate S5MW2 was further characterized for biocontrol (BC) and plant growth promoting features in a greenhouse experiment with or without colloidal chitin (CC). Results of greenhouse experiment showed that CC supplementation with S5MW2 showed a significant growth of tomato plants and superior disease reduction as compared to untreated control and without CC treated plants. Moreover, higher accumulation of chitinase also recovered in the CC supplemented plants. Significant effect of CC also concurred with the Analysis of Variance of greenhouse parameters. These results show that the a marine antagonist S5MW2 has BC efficiency against R. solani and chitinase enzyme played important role in plant resistance.
Collapse
|
42
|
Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1085-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 2015; 81:3086-103. [PMID: 25724963 DOI: 10.1128/aem.03859-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 12/29/2022] Open
Abstract
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds.
Collapse
|
44
|
Isolation of a Chitinolytic Bacillus licheniformis S213 Strain Exerting a Biological Control Against Phoma medicaginis Infection. Appl Biochem Biotechnol 2015; 175:3494-506. [DOI: 10.1007/s12010-015-1520-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
45
|
Hjort K, Presti I, Elväng A, Marinelli F, Sjöling S. Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 2014; 98:2819-28. [PMID: 24121932 PMCID: PMC3936118 DOI: 10.1007/s00253-013-5287-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022]
Abstract
Plant disease caused by fungal pathogens results in vast crop damage globally. Microbial communities of soil that is suppressive to fungal crop disease provide a source for the identification of novel enzymes functioning as bioshields against plant pathogens. In this study, we targeted chitin-degrading enzymes of the uncultured bacterial community through a functional metagenomics approach, using a fosmid library of a suppressive soil metagenome. We identified a novel bacterial chitinase, Chi18H8, with antifungal activity against several important crop pathogens. Sequence analyses show that the chi18H8 gene encodes a 425-amino acid protein of 46 kDa with an N-terminal signal peptide, a catalytic domain with the conserved active site F175DGIDIDWE183, and a chitinase insertion domain. Chi18H8 was expressed (pGEX-6P-3 vector) in Escherichia coli and purified. Enzyme characterization shows that Chi18H8 has a prevalent chitobiosidase activity with a maximum activity at 35 °C at pH lower than 6, suggesting a role as exochitinase on native chitin. To our knowledge, Chi18H8 is the first chitinase isolated from a metagenome library obtained in pure form and which has the potential to be used as a candidate agent for controlling fungal crop diseases. Furthermore, Chi18H8 may also answer to the demand for novel chitin-degrading enzymes for a broad range of other industrial processes and medical purposes.
Collapse
Affiliation(s)
- Karin Hjort
- School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ilaria Presti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100 Italy
| | - Annelie Elväng
- School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100 Italy
- The Protein Factory Research Center, Politecnico of Milano, ICRM CNR and University of Insubria, Varese, 21100 Italy
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, 141 89 Huddinge, Sweden
| |
Collapse
|
46
|
Awad HM, El-Enshasy HA, Hanapi SZ, Hamed ER, Rosidi B. A new chitinase-producer strainStreptomyces glaucinigerWICC-A03: isolation and identification as a biocontrol agent for plants phytopathogenic fungi. Nat Prod Res 2014; 28:2273-7. [DOI: 10.1080/14786419.2014.939083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Mao B, Liu X, Hu D, Li D. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World J Microbiol Biotechnol 2013; 30:1229-38. [PMID: 24197785 DOI: 10.1007/s11274-013-1546-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
Abstract
Rice sheath blight and blast caused by Rhizoctonia solani Kühn and Magnorpathe oryzae respectively, are the two most destructive fungal diseases in rice. With no genetic natural traits conferring resistance to sheath blight, transgenic manipulation provides an obvious approach. In this study, the rice basic chitinase gene (RCH10) and the alfalfa β-1,3-glucanase gene (AGLU1) were tandemly inserted into transformation vector pBI101 under the control of 35S promoter with its enhancer sequence to generate a double-defense gene expression cassette pZ100. The pZ100 cassette was transformed into rice (cv. Taipei 309) by Agrobacterium-mediated transformation. More than 160 independent transformants were obtained and confirmed by PCR. Northern analysis of inheritable progenies revealed similar levels of both RCH10 and AGLU1 transcripts in the same individuals. Disease resistance to both sheath blight and blast was challenged in open field inoculation. Immunogold detection revealed that RCH10 and AGLU1 proteins were initially located mainly in the chloroplasts and were delivered to the vacuole and cell wall upon infection, suggesting that these subcellular compartments act as the gathering and execution site for these anti-fungal proteins. We also observed that transgenic seeds display lower germination rate and seedling vigor, indicating that defense enhancement might be achieved at the expense of development.
Collapse
Affiliation(s)
- Bizeng Mao
- State Key Laboratory of Rice Biology and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | |
Collapse
|
48
|
Yu M, Tang K, Liu J, Shi X, Gulder TAM, Zhang XH. Genome analysis of Pseudoalteromonas flavipulchra JG1 reveals various survival advantages in marine environment. BMC Genomics 2013; 14:707. [PMID: 24131871 PMCID: PMC3853003 DOI: 10.1186/1471-2164-14-707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Competition between bacteria for habitat and resources is very common in the natural environment and is considered to be a selective force for survival. Many strains of the genus Pseudoalteromonas were confirmed to produce bioactive compounds that provide those advantages over their competitors. In our previous study, P. flavipulchra JG1 was found to synthesize a Pseudoalteromonas flavipulchra antibacterial Protein (PfaP) with L-amino acid oxidase activity and five small chemical compounds, which were the main competitive agents of the strain. In addition, the genome of this bacterium has been previously sequenced as Whole Genome Shotgun project (PMID: 22740664). In this study, more extensive genomic analysis was performed to identify specific genes or gene clusters which related to its competitive feature, and further experiments were carried out to confirm the physiological roles of these genes when competing with other microorganisms in marine environment. RESULTS The antibacterial protein PfaP may also participate in the biosynthesis of 6-bromoindolyl-3-acetic acid, indicating a synergistic effect between the antibacterial macromolecule and small molecules. Chitinases and quorum quenching enzymes present in P. flavipulchra, which coincide with great chitinase and acyl homoserine lactones degrading activities of strain JG1, suggest other potential mechanisms contribute to antibacterial/antifungal activities. Moreover, movability and rapid response mechanisms to phosphorus starvation and other stresses, such as antibiotic, oxidative and heavy metal stress, enable JG1 to adapt to deleterious, fluctuating and oligotrophic marine environments. CONCLUSIONS The genome of P. flavipulchra JG1 exhibits significant genetic advantages against other microorganisms, encoding antimicrobial agents as well as abilities to adapt to various adverse environments. Genes involved in synthesis of various antimicrobial substances enriches the antagonistic mechanisms of P. flavipulchra JG1 and affords several admissible biocontrol procedures in aquaculture. Furthermore, JG1 also evolves a range of mechanisms adapting the adverse marine environment or multidrug rearing conditions. The analysis of the genome of P. flavipulchra JG1 provides a better understanding of its competitive properties and also an extensive application prospect.
Collapse
Affiliation(s)
- Min Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kaihao Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaochong Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tobias AM Gulder
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn 53121, Germany
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Mailing address: College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
49
|
Blaya J, López-Mondéjar R, Lloret E, Pascual JA, Ros M. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:112-119. [PMID: 25149244 DOI: 10.1016/j.pestbp.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 06/03/2023]
Abstract
The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media.
Collapse
Affiliation(s)
- Josefa Blaya
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | - Rubén López-Mondéjar
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain
| | - Eva Lloret
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain
| | - Jose Antonio Pascual
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain
| | - Margarita Ros
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
50
|
Xiong ZQ, Tu XR, Wei SJ, Huang L, Li XH, Lu H, Tu GQ. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani. PLoS One 2013; 8:e73884. [PMID: 23951364 PMCID: PMC3741153 DOI: 10.1371/journal.pone.0073884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Antifungalmycin 702, a new polyene macrolide antibiotic produced by Streptomycespadanus JAU4234, has a broad antifungal activity and may have potential future agricultural and/or clinical applications. However, the mechanism of antifungal action of antifungalmycin 702 remains unknown. Antifungalmycin 702 strongly inhibited mycelial growth and sclerotia formation/germination of Rhizoctonia solani. When treated with antifungalmycin 702, the hyphae morphology of R. solani became more irregular. The membrane and the cellular organelles were disrupted and there were many vacuoles in the cellular space. The lesion in the plasma membrane was detected through the increase of membrane permeability, lipid peroxidation and leakage of cell constituents. In summary, antifungalmycin 702 may exert its antifungal activity against R. solani by changing the structure of cell membranes and the cytoskeleton and interacting with the organelles.
Collapse
Affiliation(s)
- Zhi-Qiang Xiong
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (Z-QX); (G-QT)
| | - Xiao-Rong Tu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Sai-Jin Wei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Lin Huang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xun-Hang Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Hui Lu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Guo-Quan Tu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (Z-QX); (G-QT)
| |
Collapse
|