1
|
Mostafa F, Krüger A, Nies T, Frunzke J, Schipper K, Matuszyńska A. Microbial markets: socio-economic perspective in studying microbial communities. MICROLIFE 2024; 5:uqae016. [PMID: 39318452 PMCID: PMC11421381 DOI: 10.1093/femsml/uqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Studying microbial communities through a socio-economic lens, this paper draws parallels with human economic transactions and microbes' race for resources. Extending the 'Market Economy' concept of social science to microbial ecosystems, the paper aims to contribute to comprehending the collaborative and competitive dynamics among microorganisms. Created by a multidisciplinary team of an economist, microbiologists, and mathematicians, the paper also highlights the risks involved in employing a socio-economic perspective to explain the complexities of natural ecosystems. Navigating through microbial markets offers insights into the implications of these interactions while emphasizing the need for cautious interpretation within the broader ecological context. We hope that this paper will be a fruitful source of inspiration for future studies on microbial communities.
Collapse
Affiliation(s)
- Fariha Mostafa
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Aileen Krüger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Tim Nies
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Kerstin Schipper
- Institute of Microbiology, Heinrich-Heine University Dusseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
2
|
Loureiro L, Morais J, Silva R, Martins JT, Geada P, Vasconcelos V, Vicente AA. Isolation and Identification of Lichen Photobionts Collected from Different Environments in North of Portugal and Evaluation of Bioactivities of Their Extracts. Foods 2024; 13:1759. [PMID: 38890987 PMCID: PMC11172358 DOI: 10.3390/foods13111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Lichens are organisms constituted by a symbiotic relationship between a fungus (mycobiont) and a photoautotrophic partner (photobiont). Lichens produce several bioactive compounds; however, the biotechnological exploitation of this organism is hampered by its slow growth. To start studying the possibility of exploiting lichens as alternative sources of bioactive compounds, eighteen lichens were collected in the north of Portugal in order to isolate and study the bioactivity of their photobionts. It was possible to isolate and cultivate only eight photobionts. Three of them, LFR1, LFA2 and LCF3, belong to the Coelastrella genus, the other two (LFA1 and LCF1) belong to the Chlorella genus and for the remaining three photobionts, LFS1, LCA1 and LCR1, it was impossible to isolate their microalgae. These only grow in consortium with bacteria and/or cyanobacteria. All extracts showed antioxidant activity, mainly at a concentration of 10 mg.mL-1. LFS1, a consortium extract, showed the highest antioxidant power, as well as the highest concentration of phenolic compounds (5.16 ± 0.53 mg of gallic acid equivalents (GAE).g-1). The extracts under study did not show significant antibacterial activity against Escherichia coli, Listeria or Salmonella. The Coelastrella sp. and LFA1 extracts showed the highest hyaluronidase inhibition. The LFR1 extract at a concentration of 5 mg.mL-1 showed the highest anti-inflammatory activity (79.77 ± 7.66%). The extracts of Coelastrella sp. and LFA1 also showed greater antidiabetic activity, demonstrating the high inhibitory power of α-amylase and α-glucosidase. LFR1 at a concentration of 5 mg.mL-1, due to its selective cytotoxicity inhibiting the growth of cancer cells (Caco-2 cells), is a promising anticancer agent.
Collapse
Affiliation(s)
- Luís Loureiro
- CEB—Centre of Biological Engineering, University of Minho, 4750 Braga, Portugal; (J.T.M.); (P.G.); (A.A.V.)
| | - João Morais
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research and Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (J.M.); (R.S.); (V.V.)
| | - Raquel Silva
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research and Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (J.M.); (R.S.); (V.V.)
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4750 Braga, Portugal; (J.T.M.); (P.G.); (A.A.V.)
| | - Pedro Geada
- CEB—Centre of Biological Engineering, University of Minho, 4750 Braga, Portugal; (J.T.M.); (P.G.); (A.A.V.)
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research and Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (J.M.); (R.S.); (V.V.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4750 Braga, Portugal; (J.T.M.); (P.G.); (A.A.V.)
| |
Collapse
|
3
|
Mamut R, Anwar G, Wang L, Fang J. The mitogenomes characterization of two Peltigera species (Peltigera elisabethae and Peltigera polydactylon) and comparative mitogenomic analyses of six Peltigera. J Appl Genet 2023; 64:819-829. [PMID: 37821790 DOI: 10.1007/s13353-023-00791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
In the present study, the mitochondrial genomes of Peltigera elisabethae and P. polydactylon were sequenced and assembled. The two mitogenomes were composed of circular DNA molecules, with sizes of 64,034 bp and 59,208 bp, respectively. Comparative analysis showed that the genome size, GC content, GC skew, and AT skew varied between the two mitochondrial genomes. In codon analysis, phenylalanine (Phe), isoleucine (Ile), and leucine (Leu) were most frequently used in six Peltigera genomes. Evolutionary analysis showed that all 14 protein-coding genes (PCGs) were subject to purifying selection in the six Peltigera species. Regarding gene rearrangement, the PCGs of Peltigera had the same gene sequence and gene content, and a few intron sequences and spacer sequences were rearranged in Peltigera. In the phylogenetic analysis, we used Bayesian and ML methods to construct a phylogenetic tree. Two phylogenetic trees with consistent topology with high support indicate that mitochondrial genes were reliable molecular markers for analyzing the phylogenetic relationships. The present study enriches the mitochondrial genome data of Peltigera and promotes further understanding of the genetics and evolution of the Peltigera genus.
Collapse
Affiliation(s)
- Reyim Mamut
- College of Life Sciences and Technology, Xinjiang University, No.777 Huarui Street, Urumchi, 830017, Xinjiang, China.
| | - Gulmira Anwar
- College of Life Sciences and Technology, Xinjiang University, No.777 Huarui Street, Urumchi, 830017, Xinjiang, China
| | - Lidan Wang
- College of Life Sciences and Technology, Xinjiang University, No.777 Huarui Street, Urumchi, 830017, Xinjiang, China
| | - Jinjin Fang
- College of Life Sciences and Technology, Xinjiang University, No.777 Huarui Street, Urumchi, 830017, Xinjiang, China
| |
Collapse
|
4
|
Gaikwad SB, Mapari SV, Sutar RR, Syed M, Khare R, Behera BC. In Vitro and in Silico Studies of Lichen Compounds Atranorin and Salazinic Acid as Potential Antioxidant, Antibacterial and Anticancer Agents. Chem Biodivers 2023; 20:e202301229. [PMID: 37888876 DOI: 10.1002/cbdv.202301229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Lichens are symbiotic organisms made up of alga/cyanobacterium and fungus. We investigated antioxidant, antibacterial and anticancer properties of two lichen compounds, atranorin and salazinic acid, and five lichen species: Heterodermia boryi, Heterodermia diademata, Heterodermia hypocaesia, Parmotrema reticulatum, and Stereocaulon foliolosum. Free radical scavenging, Ferric reducing potential, Nitric oxide scavenging, and Trolox equivalent capacity were used to measure antioxidant activity. Strong radical scavenging action was demonstrated by atranorin and salazinic acid, with IC50 values of 39.31 μM and 12.14 μM, respectively. The Minimum Inhibitory Concentration (MIC) assay based on resazurin, was used to measure antibacterial activity. Parmotrema reticulatum demonstrated significant antibacterial activity against Raoultella planticola with MIC of 7.8 μg/mL. Cytotoxicity assay on breast cancer cell line was used to assess anticancer activity. To further understand the binding locations on the target proteins Er (Estrogen Receptor alpha), EGFR (Epidermal Growth Factor Receptor), mTOR (Mammalian Target of Rapamycin), and PgR (Progesterone Receptor), molecular docking experiments were conducted. Docking study showed that the binding energies of atranorin and salazinic acid with mTOR were -5.31 kcal/mol and -3.43 kcal/mol, respectively. The results suggest that atranorin has the potential to be a multitargeted molecule with natural antioxidant, antibacterial, and anticancer properties.
Collapse
Affiliation(s)
- Subhash B Gaikwad
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Sachin V Mapari
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Ruchira R Sutar
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Muntjeeb Syed
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Roshni Khare
- Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Bhaskar C Behera
- Biodiversity-Lichens, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, Maharashtra, India
| |
Collapse
|
5
|
Feng J, Li J, Liu D, Xin Y, Sun J, Yin WB, Li T. Generation and comprehensive analysis of Synechococcus elongatus-Aspergillus nidulans co-culture system for polyketide production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:32. [PMID: 36859469 PMCID: PMC9979520 DOI: 10.1186/s13068-023-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Artificial microbial consortia composed of heterotrophic and photoautotrophic organisms represent a unique strategy for converting light energy and carbon dioxide into high-value bioproducts. Currently, the types of desired bioproducts are still limited, and microbial fitness benefit rendered by paired partner generally needs to be intensified. Exploring novel artificial microbial consortia at a laboratory scale is an essential step towards addressing this unmet need. This study aimed to conduct and analyze an artificial consortium composed of cyanobacterium Synechococcus elongatus FL130 with the filamentous fungus Aspergillus nidulans TWY1.1 for producing fungi-derived secondary metabolite of polyketide neosartoricin B. RESULTS Polyketide-producing A. nidulans TWY1.1 substantially ameliorated the growth and the survival of sucrose-secreting cyanobacterium S. elongatus FL130 in salt-stressed environments. Besides sucrose, comparable amounts of other carbohydrates were released from axenically cultured FL130 cells, which could be efficiently consumed by TWY1.1. Relative to axenically cultured FL130, less glycogen was accumulated in FL130 cells co-cultured with TWY1.1, and the glycogen phosphorylase gene catalyzing the first step for glycogen degradation had two-fold expression. Different from axenically cultured filamentous fungi, abundant vacuoles were observed in fungal hyphae of TWY1.1 co-cultured with cyanobacterium FL130. Meanwhile, FL130 cells displayed a characteristic pattern of interacting with its heterotrophic partner, densely dispersing along certain hyphae of TWY1.1. Finally, polyketide neosartoricin B was produced from TWY1.1 in FL130-TWY1.1 co-cultures, which was tightly adjusted by nitrogen level. CONCLUSION Overall, the results thoroughly proved the concept of pairing cyanobacteria with filamentous fungi to build artificial consortia for producing fungi-derived biomolecules.
Collapse
Affiliation(s)
- Jie Feng
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jingwei Li
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Dongxia Liu
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Yuxian Xin
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jingrong Sun
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Wen-Bing Yin
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Tingting Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Vaccination of Elms against Dutch Elm Disease—Are the Associated Epiphytes and Endophytes Affected? J Fungi (Basel) 2023; 9:jof9030297. [PMID: 36983465 PMCID: PMC10057572 DOI: 10.3390/jof9030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Dutch elm disease (DED) is causing extensive mortality of ecologically and culturally valuable elm trees (Ulmus spp.). Treatment of elms with the biological vaccine Dutch Trig® has been found to provide effective protection against DED by stimulating the defensive mechanisms of the trees. We hypothesized that the same mechanisms could also affect non-target organisms associated with elms. We explored the possible effects of vaccination on epiphytes (mainly lichens) and fungal endophytes living in the bark and young xylem of treated elms. Epiphyte cover percentage was assessed visually using a grid placed on the trunks, and a culture-based approach was used to study endophytes. Epiphyte cover was lower on the trunks of vaccinated trees as compared with unvaccinated trees, but the difference was not statistically significant. The presence of slow-growing and uncommon endophytes seemed to be reduced in continuously vaccinated elms; however, the highest endophyte diversity was found in elms four years after cessation of the vaccination treatments. Our findings suggest that although vaccination may shape epiphyte and endophyte communities in elms, its impacts are not straightforward. More detailed studies are, therefore, needed to inform the sustainable application of the vaccine as a part of the integrated management of DED.
Collapse
|
7
|
Sanad H, Belattmania Z, Nafis A, Hassouani M, Mazoir N, Reani A, Hassani L, Vasconcelos V, Sabour B. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Mar Drugs 2022; 20:md20030169. [PMID: 35323468 PMCID: PMC8955006 DOI: 10.3390/md20030169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Volatile compounds from the marine cyanolichen Lichina pygmaea, collected from the Moroccan Atlantic coast, were extracted by hydrodistillation and their putative chemical composition was investigated by gas chromatography coupled to mass spectrometry (GC/MS). Based on the obtained results, Lichina pygmaea volatile compounds (LPVCs) were mainly dominated by sesquiterpenes compounds, where γ-himachalene, β-himachalene, (2E,4E)-2,4 decadienal and α-himachalene were assumed to be the most abundant constituents, with percentage of 37.51%, 11.71%, 8.59% and 7.62%, respectively. LPVCs depicted significant antimicrobial activity against all tested strains (Staphylococcus aureus CCMM B3, Pseudomonas aeruginosa DSM 50090, Escherichia coli ATCC 8739 and Candida albicans CCMM-L4) with minimum inhibitory concentration (MIC) values within the range of 1.69–13.5 mg/mL. Moreover, this LPVC showed interesting scavenging effects on the 2,2-diphenyl-1-picrylhydrazyl radical with an IC50 of 0.21 mg/mL. LPVCs could be an approving resource with moderate antimicrobial potential and interesting antioxidant activity for cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Hiba Sanad
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Zahira Belattmania
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Ahmed Nafis
- Department of Biology, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco;
| | - Meryem Hassouani
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Noureddine Mazoir
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Abdeltif Reani
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Lahcen Hassani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, University Cadi Ayyad, P.O. Box 2390, Marrakech 40001, Morocco;
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-223-401-817
| | - Brahim Sabour
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| |
Collapse
|
8
|
Kyriatzi A, Tzivras G, Pirintsos S, Kotzabasis K. Biotechnology under extreme conditions: Lichens after extreme UVB radiation and extreme temperatures produce large amounts of hydrogen. J Biotechnol 2021; 342:128-138. [PMID: 34743006 DOI: 10.1016/j.jbiotec.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
The present study demonstrates biotechnological applications of the lichen Pleurosticta acetabulum, specifically the production of large amounts of hydrogen even after the lichen exposure to extreme conditions such as a) extreme UVB radiation (1.7 mW/cm2 = 1000 J m-2 min-1) over different time periods (4, 20 & 70 h) and b) combined exposure of the lichen to high intensity UVB radiation and extreme low (-196 °C) or extreme high temperatures (+70 °C). The results highlight that the extremophilic and polyextremophilic behavior of lichens both in dehydrated and in regenerated form, under extreme conditions not necessarily recorded on earth, is compatible with their biotechnological uses. The lichen viability was measured using fluorescence induction techniques (OJIP-test), which record changes in the molecular structure and function of the photosynthetic mechanism, while its ability to produce molecular hydrogen was measured through thermal conductivity gas chromatography (GC-TCD) analysis. Hydrogen is a promising fuel for the future. The exciting result of a lichen micro-ecosystem is its ability to expel its moisture and remain in an inactive state, protecting itself from extreme conditions and maintaining its ability to high yield hydrogen production in a closed system, with the sole addition of water and without the need for additional energy. Our results expand the potential use of lichens for future biotechnological applications in extreme Earth environments, but also in environments on other planets, such as Mars, thus paving the way for astrobiotechnological applications.
Collapse
Affiliation(s)
- Anastasia Kyriatzi
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece
| | - Gerasimos Tzivras
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece; Botanical Garden, University of Crete, Gallos University Campus, GR-74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece; Botanical Garden, University of Crete, Gallos University Campus, GR-74100 Rethymnon, Crete, Greece.
| |
Collapse
|
9
|
Grzesiak J, Woltyńska A, Zdanowski MK, Górniak D, Świątecki A, Olech MA, Aleksandrzak-Piekarczyk T. Metabolic fingerprinting of the Antarctic cyanolichen Leptogium puberulum-associated bacterial community (Western Shore of Admiralty Bay, King George Island, Maritime Antarctica). MICROBIAL ECOLOGY 2021; 82:818-829. [PMID: 33555368 PMCID: PMC8674174 DOI: 10.1007/s00248-021-01701-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/24/2021] [Indexed: 05/15/2023]
Abstract
Lichens are presently regarded as stable biotopes, small ecosystems providing a safe haven for the development of a diverse and numerous microbiome. In this study, we conducted a functional diversity assessment of the microbial community residing on the surface and within the thalli of Leptogium puberulum, a eurytopic cyanolichen endemic to Antarctica, employing the widely used Biolog EcoPlates which test the catabolism of 31 carbon compounds in a colorimetric respiration assay. Lichen thalli occupying moraine ridges of differing age within a proglacial chronosequence, as well as those growing in sites of contrasting nutrient concentrations, were procured from the diverse landscape of the western shore of Admiralty Bay in Maritime Antarctica. The L. puberulum bacterial community catabolized photobiont- (glucose-containing carbohydrates) and mycobiont-specific carbon compounds (D-Mannitol). The bacteria also had the ability to process degradation products of lichen thalli components (D-cellobiose and N-acetyl-D-glucosamine). Lichen thalli growth site characteristics had an impact on metabolic diversity and respiration intensity of the bacterial communities. While high nutrient contents in lichen specimens from "young" proglacial locations and in those from nitrogen enriched sites stimulated bacterial catabolic activity, in old proglacial locations and in nutrient-lacking sites, a metabolic activity restriction was apparent, presumably due to lichen-specific microbial control mechanisms.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland.
| | - Aleksandra Woltyńska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Marek K Zdanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Dorota Górniak
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Aleksander Świątecki
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Maria A Olech
- Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Krakow, Poland
| | | |
Collapse
|
10
|
Chemical Characterization of the Lichen-Symbiont Microalga Asterochloris erici and Study of Its Cytostatic Effect on the L929 Murine Fibrosarcoma Cell Line. Processes (Basel) 2021. [DOI: 10.3390/pr9091509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New resources of food, pharmaceuticals or biotechnological products are needed. The huge biodiversity of aero-terrestrial lichen-symbiont microalgae belonging to the Chlorophyta group remains unexplored despite they present interesting features such as extreme stress tolerance and growth in water shortage. Appropriateness for human consumption demands the demonstration of the absence of toxic effects. In vitro biocompatibility of crude homogenates of axenic microalga Asterochloris erici, isolated from the lichen Cladonia cristatella, was analyzed after treatment of cultured L929 fibroblasts with different concentrations of microalgal homogenates. The microalgal protein content (37%) was similar to spirulina or soybean. Antioxidant capacity (10.6 ± 0.6 µmol TE/g WW) or phenolic content (7.5 ± 0.5 mg GAE/g DW) were high compared to Chlorella. The results show that crude homogenates of A. erici do not induce cytotoxicity but seem to have some cytostatic effect inducing slight cell cycle alterations and intracellular reactive oxygen species (ROS) increase at the highest concentration. Carotenoid analysis demonstrates high contents of lutein (1211 µg/g microalga DW), a xanthophyll with antioxidant and cytostatic properties in vivo and high commercial added value. These findings confirm that Asterochloris erici can be suitable for the development of alimentary or pharmaceutical applications and further in vivo animal testing. The cytostatic effects should be further investigated for antitumor agents.
Collapse
|
11
|
Sargsyan R, Gasparyan A, Tadevosyan G, Panosyan H. Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia. AMB Express 2021; 11:110. [PMID: 34324070 PMCID: PMC8322222 DOI: 10.1186/s13568-021-01271-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
Due to wide range of secondary metabolites, lichens were used from antiquity as sources of colorants, perfumes and medicaments. This research focuses on exploring the antioxidant, antimicrobial and cytotoxic activities of methanol, ethanol, acetone extracts and aqueous infusions of corticolous lichens sampled from Armenia. Methanol, ethanol and acetone extracts from all tested lichens were active against Gram-positive bacterial strains. The most effective solvent to retrieve antimicrobial compounds was methanol. Aqueous infusions of tested lichens didn’t show any significant antibacterial and antifungal activity. The highest antimicrobial activity was observed for methanol extract of Ramalina sinensis. The minimum inhibitory concentration of methanol extract of Ramalina sinensis were 0.9–1.8 mg mL− 1. Pseudevernia furfuracea demonstrated antifungal activity (Ø 12 mm). Methanol extract of Parmelia sulcata demonstrated largest 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity (71 %). The cytotoxicity was measured on human HeLa (cervical carcinoma) cell lines using microculture tetrazolium test assay. The IC50 values estimated for methanol extracts of Peltigera praetextata, Evernia prunastri, Ramalina sinensis and Ramalina farinacea species in HeLa cell line were within 1.8–2.8 mg mL− 1 and considered as non-cytotoxic. Obtained results suggest that studied lichens can be prospective in biotechnologies as alternative sources of antimicrobial and antioxidant substances.
Collapse
|
12
|
Tatipamula VB, Nguyen HT, Kukavica B. Beneficial Effects of Liposomal Formulations of Lichen Substances: A Review. Curr Drug Deliv 2021; 19:252-259. [PMID: 34259144 DOI: 10.2174/1567201818666210713110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Lichens are commonly used as essential traditional medicines to treat various conditions, including skin disorders, wounds, digestive, respiratory, obstetric, and gynecological problems in many cultures in Africa, Asia, Europe, Haitian, Oceania, and North and South America. Lichens have been deeply investigated for their phytochemical properties, and to date, numerous compounds (also known as substances) have been successfully isolated from the extracts. However, the low solubility and bioavailability of pure lichen substances have been widely recognized as the significant issues hindering their biological applications. Recently, several groups have investigated the properties and the potential applications of lichen metabolites-based liposomal formulations and revealed a substantial improvement in their solubility, bioactivity, and toxicity in the animal. Thus, in this topical review, we aimed to provide an overview of liposomal structures, the efficacy of liposomal formulations, as well as their beneficial effects as compared to the free compounds themselves.
Collapse
Affiliation(s)
| | - Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Biljana Kukavica
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Mladena Stojanovića 2, 78000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
13
|
Gluck-Thaler E, Haridas S, Binder M, Grigoriev IV, Crous PW, Spatafora JW, Bushley K, Slot JC. The Architecture of Metabolism Maximizes Biosynthetic Diversity in the Largest Class of Fungi. Mol Biol Evol 2021; 37:2838-2856. [PMID: 32421770 PMCID: PMC7530617 DOI: 10.1093/molbev/msaa122] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or “specialized” metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Plant Pathology, The Ohio State University, Columbus, OH.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH
| |
Collapse
|
14
|
Kerboua M, Ahmed MA, Samba N, Aitfella-Lahlou R, Silva L, Boyero JF, Raposo C, Lopez Rodilla JM. Phytochemical Investigation of New Algerian Lichen Species: Physcia Mediterranea Nimis. Molecules 2021; 26:1121. [PMID: 33672591 PMCID: PMC7924039 DOI: 10.3390/molecules26041121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The present study provides new data concerning the chemical characterisation of Physcia mediterranea Nimis, a rare Mediterranean species belonging to the family Physciaceae. The phytochemical screening was carried out using GC-MS, HPLC-ESI-MS-MS, and NMR techniques. Hot extraction of n-hexane was carried out, followed by separation of the part insoluble in methanol: wax (WA-hex), from the part soluble in methanol (ME-hex). GC-MS analysis of the ME-hex part revealed the presence of methylbenzoic acids such as sparassol and atraric acid and a diterpene with a kaurene skeleton which has never been detected before in lichen species. Out of all the compounds identified by HPLC-ESI-MS-MS, sixteen compounds are common between WA-hex and ME-hex. Most are aliphatic fatty acids, phenolic compounds and depsides. The wax part is characterised by the presence of atranorin, a depside of high biological value. Proton 1H and carbon 13C NMR have confirmed its identification. Atranol, chloroatranol (depsides compound), Ffukinanolide (sesquiterpene lactones), leprolomin (diphenyl ether), muronic acid (triterpenes), and ursolic acid (triterpenes) have also been identified in ME-hex. The results suggested that Physcia mediterranea Nimis is a valuable source of bioactive compounds that could be useful for several applications as functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Marwa Kerboua
- Laboratory of Vegetal Biology and Environment, Biology Department, Badji Mokhtar University, Annaba 23000, Algeria; (M.K.); (M.A.A.)
| | - Monia Ali Ahmed
- Laboratory of Vegetal Biology and Environment, Biology Department, Badji Mokhtar University, Annaba 23000, Algeria; (M.K.); (M.A.A.)
| | - Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, Boumerdes 35000, Algeria
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Juan F. Boyero
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Chromatographic and mass analysis service (NUCLEUS), University of Salamanca, 37008 Salamanca, Spain; (J.F.B.); (C.R.)
| | - Cesar Raposo
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Chromatographic and mass analysis service (NUCLEUS), University of Salamanca, 37008 Salamanca, Spain; (J.F.B.); (C.R.)
| | - Jesus Miguel Lopez Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
15
|
Mendili M, Bannour M, Araújo MEM, Seaward MRD, Khadhri A. Lichenochemical Screening and Antioxidant Capacity of Four Tunisian Lichen Species. Chem Biodivers 2021; 18:e2000735. [DOI: 10.1002/cbdv.202000735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Mohamed Mendili
- University of Tunis El-Manar II Faculty of Sciences Plant Ecology Research Unit Campus Academia 2092 Tunis Tunisia
| | - Marwa Bannour
- University of Tunis El-Manar II Faculty of Sciences Plant Ecology Research Unit Campus Academia 2092 Tunis Tunisia
| | - Maria Eduarda M. Araújo
- Faculty of Sciences Center of Chemistry and Biochemistry University of Lisbon Lisboan Portugal
| | - Mark R. D. Seaward
- School of Archaeological and Forensic Sciences University of Bradford Bradford BD7 1DP UK
| | - Ayda Khadhri
- University of Tunis El-Manar II Faculty of Sciences Plant Ecology Research Unit Campus Academia 2092 Tunis Tunisia
| |
Collapse
|
16
|
Mukhopadhyay S, Dutta R, Das P. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques. CHEMOSPHERE 2020; 251:126441. [PMID: 32443242 DOI: 10.1016/j.chemosphere.2020.126441] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons having two or more fused aromatic rings, released from natural (like forest fires and volcanic eruption) as well as man-made sources (like burning of fossil fuel & wood, automobile emission). They are persistent priority pollutants and continue to last for a long time in the environment causing severe damage to human health owing to their genotoxicity, mutagenicity and carcinogenicity. The study of PAHs in environment has therefore aroused a global concern. PAHs adsorption to plant cell wall is facilitated by transpiration and plant root lipids which help PAHs transfer from roots to leaves and stalks, causing more accumulation of contaminants with the increase in lipid content. Hence, these bioaccumulators can be utilized as biomonitors for indirect assessment of ambient air pollution. Efficacy of specific plants, lichens and mosses as useful biomonitors of airborne PAHs pollution has been discussed in this review along with prevalent classical and modified extraction techniques coupled with proper analytical procedures in order to gain an insight into the assessment of atmospheric PAHs concentrations. Different modern and modified solvent extraction techniques along with conventional Soxhlet method are identified for extraction of PAHs from accumulative bioindicators and analytical methods are also developed for accurate determination of PAHs. Process parameters like choice of solvent, temperature, time of extraction, pressure and matrix characteristics are usually checked. An approach of biomonitoring of PAHs using plants, lichens and mosses has been discussed here as they usually trap the atmospheric PAHs and mineralize them.
Collapse
Affiliation(s)
- Shritama Mukhopadhyay
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
17
|
Jiang L, Li T, Jenkins J, Hu Y, Brueck CL, Pei H, Betenbaugh MJ. Evidence for a mutualistic relationship between the cyanobacteria Nostoc and fungi Aspergilli in different environments. Appl Microbiol Biotechnol 2020; 104:6413-6426. [PMID: 32472175 DOI: 10.1007/s00253-020-10663-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/29/2022]
Abstract
Symbiotic partnerships are widespread in nature and in industrial applications yet there are limited examples of laboratory communities. Therefore, using common photobionts and mycobionts similar to those in natural lichens, we create an artificial lichen-like symbiosis. While Aspergillus nidulans and Aspergillus niger could not obtain nutrients from the green algae, Chlorella, and Scenedesmus, the cyanobacteria Nostoc sp. PCC 6720 was able to support fungal growth and also elevated the accumulation of total biomass. The Nostoc-Aspergillus co-cultures grew on light and CO2 in an inorganic BG11 liquid medium without any external organic carbon and fungal mycelia were observed to peripherally contact with the Nostoc cells in liquid and on solid media at lower cell densities. Overall biomass levels were reduced after implementing physical barriers to indicate that physical contact between cyanobacteria and heterotrophic microbes may promote symbiotic growth. The synthetic Nostoc-Aspergillus nidulans co-cultures also exhibited robust growth and stability when cultivated in wastewater over days to weeks in a semi-continuous manner when compared with axenic cultivation of either species. These Nostoc-Aspergillus consortia reveal species-dependent and mutually beneficial design principles that can yield stable lichen-like co-cultures and provide insights into microbial communities that can facilitate sustainability studies and broader applications in the future. KEY POINTS: • Artificial lichen-like symbiosis was built with wild-type cyanobacteria and fungi. • Physical barriers decreased biomass production from artificial lichen co-cultures. • Artificial lichen adapted to grow and survive in wastewater for 5 weeks.
Collapse
Affiliation(s)
- Liqun Jiang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, People's Republic of China
| | - Tingting Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jackson Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Christopher L Brueck
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, People's Republic of China
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
18
|
Jin R, Fu J, Zheng M, Yang L, Habib A, Li C, Liu G. Polychlorinated Naphthalene Congener Profiles in Common Vegetation on the Tibetan Plateau as Biomonitors of Their Sources and Transportation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2314-2322. [PMID: 31951122 DOI: 10.1021/acs.est.9b06668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are globally transported, carcinogenic, persistent organic pollutants (POPs) that were recently added to the Stockholm Convention with 184 parties. The Tibetan Plateau plays an important role in the global transportation and distribution of POPs. Knowledge of PCN sources and transportation on the Tibetan Plateau is important for their control globally. In this study, we quantified the congener-specific concentrations of PCNs in lichen, moss, soil, and air samples collected on the Tibetan plateau and found that common lichens were effective biomonitors for predicting atmospheric PCNs in this area. The physiochemical properties of the PCNs, the temperatures, and the lichen lipid contents were identified as important factors influencing PCN partitioning between lichens and air. Lichen-air partitioning equations were established and used to predict PCN concentrations in air in Southeast Tibet. The lichens could be used as PCN biomonitors to clarify their spatial variations, sources, and transportation in the southeast of the plateau. PCN concentrations in lichens increased with altitude, suggesting that high-mountain cold-trapping influenced the PCN transportation behavior. Principal component analysis and linear discriminant analysis showed that the major source of PCNs in this region was long-range atmospheric transportation via the Indian monsoon in summer and wind from Southwest Asia in winter. This study provides a novel method using PCN congener profiles as fingerprints and statistical models for studying the geochemical effects of conditions in high-mountain regions on the contamination behaviors of 75 congeners of the notorious PCNs.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Ahsan Habib
- Department of Chemistry , University of Dhaka , Dhaka 1000 , Bangladesh
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085 , China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study , University of Chinese Academy of Sciences , Hangzhou 310024 , China
| |
Collapse
|
19
|
Creating a synthetic lichen: Mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Role of Algae–Fungi Relationship in Sustainable Agriculture. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Joshi T, Sharma P, Joshi T, Chandra S. In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2. J Biomol Struct Dyn 2019; 38:3544-3562. [PMID: 31524074 DOI: 10.1080/07391102.2019.1664328] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) targeting cyclooxygenase-2 are clinically effective. However, they lack anti-thrombotic activity resulting in incidences of adverse effects like myocardial infarction, gastrointestinal and abdominal discomfort which necessitate for discovering new drug candidates with improved therapeutic effects and tolerability. Various recent researches have suggested that many lichens offer a vast reservoir for anti-inflammatory drug candidates which are natural as well as safe for human consumption. Drug discovery is a very complex and time-consuming process; however, in silico techniques can make this process simple and economic. Hence to find out natural anti-inflammatory compounds, we have carried out the virtual screening of 412 lichen compounds by molecular docking with human Cox-2 enzyme and validated the docking score by X-Score followed by ADMET and Drug-likeness analysis. The resulting 6 top-scored compounds were subjected to Molecular dynamics simulation (MDS) to analyze the stability of docked protein-ligand complex, to assess the fluctuation and conformational changes during protein-ligand interaction. The values of RMSD, Rg, and interaction energy after 30 ns of MDS revealed the good stability of these Lichen compounds in the active site pocket of Cox-2 in compare to reference, JMS. Additionally, we have done the pharmacophore analysis which found many common pharmacophore features between Lichen compounds and well known anti-inflammatory compounds. Our result shows that these lichen compounds are potential anti-inflammatory candidates and could be further modified and evaluated to develop more effective anti-inflammatory drugs with fewer side effects for the treatment of inflammatory diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanuja Joshi
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India
| | - Priyanka Sharma
- Department of Botany, Kumaun University, D.S.B. Campus, Nainital, Uttarakhand, India
| | - Tushar Joshi
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India.,Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India
| |
Collapse
|
22
|
González-Burgos E, Fernández-Moriano C, Gómez-Serranillos MP. Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities and therapeutic potential. PHYTOCHEMISTRY 2019; 165:112051. [PMID: 31234093 DOI: 10.1016/j.phytochem.2019.112051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Parmelia Acharius is one of the most representative genera within Parmeliaceae family which is the largest and the most widespread family of lichen-forming fungi. Parmelia lichens present a medium to large foliose thallus and they are distributed from the Artic to the Antartic continents, being more concentrated in temperate regions. According to its current description, the genus encompasses up to 41 different species and it is phylogenetically located within the Parmelioid clade (the largest group in the family). Interestingly, some of its species are among the most common epiphytic lichens in Europe such as Parmelia sulcata Taylor and Parmelia saxatilis (L.) Ach. The present work aims at providing a complete overview of the existing knowledge on the genus, from general concepts such as taxonomy and phylogeny, to their ecological relevance and biological interest for pharmaceutical uses. As reported, Parmelia lichens arise as valuable tools for biomonitoring environmental pollution due to their capacity to bioaccumulate metal elements and its response to acid rain. Moreover, they produce a wide array of specialized products/metabolites including depsides, depsidones, triterpenes and dibenzofurans, which have been suggested to exert promising pharmacological activities, mainly antimicrobial, antioxidant and cytotoxic activities. Herein, we discuss past and recent data regarding to the phytochemical characterization of more than 15 species. Even though the knowledge is still scarce in comparsion to other groups of organisms such as higher plants and other non-lichenized fungi. Reviewed works suggest that Parmelia lichens are worthy of further research for determining their actual possibilities as sources of bioactive compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - Carlos Fernández-Moriano
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - M Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain.
| |
Collapse
|
23
|
Goga M, Kello M, Vilkova M, Petrova K, Backor M, Adlassnig W, Lang I. Oxidative stress mediated by gyrophoric acid from the lichen Umbilicaria hirsuta affected apoptosis and stress/survival pathways in HeLa cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:221. [PMID: 31426865 PMCID: PMC6701105 DOI: 10.1186/s12906-019-2631-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
Background Lichens produce a huge diversity of bioactive compounds with several biological effects. Gyrophoric acid (GA) is found in high concentrations in the common lichen Umbilicaria hirsuta, however evidence for biological activity was limited to anti-proliferative activity described on several cancer cell lines. Methods We developed and validated a new protocol for GA isolation, resulting in a high yield of highly pure GA (validated by HPLC and NMR) in an easy and time saving manner. Anti-proliferative and pro-apoptotic activity, oxygen radicals formation and stress/survival proteins activity changes was study by flow cytometry. Results The highly purified GA showed anti-proliferative activity against HeLa (human cervix carcinoma) and other tumor cells. Moreover, GA threated cells showed a significant increase in caspase-3 activation followed by PARP cleavage, PS externalization and cell cycle changes mediated by oxidative stress. Production of oxygen radicals led to DNA damage and changes in stress/survival pathways activation. Conclusions GA treatment on HeLa cells clearly indicates ROS production and apoptosis as form of occurred cell death. Moreover, DNA damage and changing activity of stress/survival proteins as p38MAPK, Erk1/2 and Akt mediated by GA treatment confirm pro-apoptotic potential. The pharmacological potential of U. hirsuta derived GA is discussed. Electronic supplementary material The online version of this article (10.1186/s12906-019-2631-4) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Bhatnagar VS, Bandyopadhyay P, Rajacharya GH, Sarkar S, Poluri KM, Kumar S. Amelioration of biomass and lipid in marine alga by an endophytic fungus Piriformospora indica. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:176. [PMID: 31316583 PMCID: PMC6613240 DOI: 10.1186/s13068-019-1516-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/23/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Many studies have been carried out on the growth-modulating efficiency of plants by the colonization of an endophytic fungus Piriformospora indica. However, studies involving the co-culture of alga with endophytic fungal strains for enhanced biodiesel production are rare. In this study, the interaction between P. indica and Parachlorella kessleri-I, a marine algal strain, was assessed at metabolic level. RESULTS In association with an endophytic fungus, the algal biomass enhanced from 471.6 to 704 mg/L, and the fatty acid methyl ester (FAME) profile of P. kessleri-I increased substantially. In case of FAME profile of co-cultured P. kessleri-I, two essential components of biodiesel, i.e. elaidic acid and oleic acid, increased by 1.4- and 1.8-fold, respectively. To ascertain changes in the metabolic profile of P. kessleri-I by P. indica co-culture, gas chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics study was performed to identify the metabolites involved; and differential nature of the essential metabolites was also confirmed using HPLC and LC-MS. Significant modulation of the bioactive metabolites such as succinate, oxo-propanoate, l-alanine, glutamate, acetate and 1,2 propanediol, hydroxy butane was observed. CONCLUSION The metabolites like glutamate and succinate that usually belong to the GABA shunt pathway were observed to be upregulated. The pathway links nitrogen metabolism and carbon metabolism, thus influencing the growth and lipid profile of the algae. These differential metabolites thus indicated the important commensal association between the endophytic fungus and autotrophic marine alga, and established that endophytic fungus can be handy for the sustainability of algal biofuel industries.
Collapse
Affiliation(s)
- Vipul Swarup Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Prasun Bandyopadhyay
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Girish H. Rajacharya
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sharanya Sarkar
- Department of Biotechnology & Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Krishna Mohan Poluri
- Department of Biotechnology & Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
25
|
Elshobary ME, Becker MG, Kalichuk JL, Chan AC, Belmonte MF, Piercey-Normore MD. Tissue-specific localization of polyketide synthase and other associated genes in the lichen, Cladonia rangiferina, using laser microdissection. PHYTOCHEMISTRY 2018; 156:142-150. [PMID: 30296707 DOI: 10.1016/j.phytochem.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023]
Abstract
The biosynthesis of two polyketides, atranorin and fumarprotocetraric acid, produced from a lichen-forming fungus, Cladonia rangiferina (L.) F. H. Wigg. was correlated with the expression of eight fungal genes (CrPKS1, CrPKS3, CrPKS16, Catalase (CAT), Sugar Transporter (MFsug), Dioxygenase (YQE1), C2H2 Transcription factor (C2H2), Transcription Factor PacC (PacC), which are thought to be involved in polyketide biosynthesis, and one algal gene, NAD-dependent deacetylase sirtuin 2 (AsNAD)), using laser microdissection (LMD). The differential gene expression levels within the thallus tissue layers demonstrate that the most active region for potential polyketide biosynthesis within the lichen is the outer apical region proximal to the photobiont but some expression also occurs in reproductive tissue. This is the first study using laser microdissection to explore gene expression of these nine genes and their location of expression; it provides a proof-of-concept for future experiments exploring tissue-specific gene expression within lichens; and it highlights the utility of LMD for use in lichen systems.
Collapse
Affiliation(s)
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Jenna L Kalichuk
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Ainsley C Chan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Michele D Piercey-Normore
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; School of Science and the Environment, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, A2H 5G4, Canada.
| |
Collapse
|
26
|
Basnet BB, Liu L, Zhao W, Liu R, Ma K, Bao L, Ren J, Wei X, Yu H, Wei J, Liu H. New 1, 2-naphthoquinone-derived pigments from the mycobiont of lichen Trypethelium eluteriae Sprengel. Nat Prod Res 2018; 33:2044-2050. [DOI: 10.1080/14786419.2018.1484458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Buddha Bahadur Basnet
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- International College, University of Chinese Academy of Sciences , Beijing, China
| | - Li Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences , Beijing, China
| | - Wen Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
| | - Ruixing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences , Beijing, China
| | - Ke Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences , Beijing, China
| | - Li Bao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences , Beijing, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- College of Life Sciences, University of Chinese Academy of Science , Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
27
|
Kim JT, Choi YJ, Barghi M, Yoon YJ, Kim JH, Kim JH, Chang YS. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:302-311. [PMID: 29294456 DOI: 10.1016/j.envpol.2017.12.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The spatial distribution of old and new halogenated flame retardants (HFRs), including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DPs) and related compounds (Dechloranes), were investigated in the South Shetland Islands of Antarctica, employing mosses (Andreaea depressinervis and Sanionia uncinata) and lichens (Himantormia lugubris and Usnea antarctica) as bioindicators. The levels of PBDEs, HBCDs, and Dechloranes ranged from 3.2 to 71.5, 0.63-960, and 2.04-2400 pg/g dw (dry weight) in the mosses, and from 1.5 to 188, 0.1-21.1, and 1.0-83.8 pg/g dw in the lichens, respectively. HFRs were detected in all of the collected samples, even in those from the remote regions. The dominance of high brominated-BDE, anti-DP fraction, and HBCD diastereomeric ratio in the samples from remote regions suggested the long-range atmospheric transport (LRAT) of the HFRs. The relatively high HBCDs and Dechloranes contamination and their similar chemical profile with commercial products in the vicinity of Antarctic research stations indicated that human activities might act as local sources, while PBDEs appeared to be more influenced by LRAT and bioaccumulation rather than local emission. Lastly, the relatively high HFR levels and dominance of more brominated BDEs at the Narębski Point and in the wet lowlands suggested that penguin colonies and melting glacier water could be secondary HFR sources in Antarctica. The HFR levels differed by sample species, suggesting that further research on the factors associated with the HFR accumulation in the different species is necessary. This study firstly reports the alternative HFR levels in a wide area of the Antarctica, which could improve our understanding of the source, transport, and fate of the HFRs.
Collapse
Affiliation(s)
- Jun-Tae Kim
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, 37673, Republic of Korea; Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Yun-Jeong Choi
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, 37673, Republic of Korea
| | - Mandana Barghi
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, 37673, Republic of Korea
| | - Young-Jun Yoon
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Ji Hee Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Yoon-Seok Chang
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, 37673, Republic of Korea.
| |
Collapse
|
28
|
Choi RY, Ham JR, Yeo J, Hur JS, Park SK, Kim MJ, Lee MK. Anti-Obesity Property of Lichen Thamnolia vermicularis Extract in 3T3-L1 Cells and Diet-Induced Obese Mice. Prev Nutr Food Sci 2017; 22:285-292. [PMID: 29333380 PMCID: PMC5758091 DOI: 10.3746/pnf.2017.22.4.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Thamnolia vermicularis (TV) is an edible lichen that is prevalent in the alpine zone of East Asia. This study evaluated the feasibility of using TV acetone extracts as a functional food based on experiments using cell line and obese mice. The cellular triglyceride levels and Oil red O staining of 3T3-L1 cells indicated that TV extracts (5 and 10 μg/mL) dose-dependently suppressed adipocyte differentiation and lipid accumulation compared with the control. The TV extract (0.4%, w/w) in a high-fat diet (HFD) was supplemented to C57BL/6N mice for 12 weeks, and TV extract supplement significantly reduced visceral fat mass and body weight compared with HFD feeding alone. The TV extract also induced significant decreases in serum and hepatic lipids, whereas it increased the serum high-density lipoproteins-cholesterol/total cholesterol ratio and fecal lipids levels. Moreover, the TV extract led to significantly lower homeostasis model assessment of insulin resistance in diet-induced obese mice. Taken together, these results suggest that the TV extract may have anti-obesity effects, including lipid-lowering, and it is a natural resource with the potential for use in obesity management.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| | - Jiyoung Yeo
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| | - Jae-Seoun Hur
- Department of Environmental Education, Sunchon National University, Jeonnam 57922, Korea
| | - Seok-Kyu Park
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| | - Myung-Joo Kim
- Department of Bakery & Barista, Suseong College, Daegu 42078, Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea
| |
Collapse
|
29
|
Felczykowska A, Pastuszak-Skrzypczak A, Pawlik A, Bogucka K, Herman-Antosiewicz A, Guzow-Krzemińska B. Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming fungi. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:300. [PMID: 28592323 PMCID: PMC5463493 DOI: 10.1186/s12906-017-1819-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/31/2017] [Indexed: 11/10/2022]
Abstract
Background Lichens that were used in traditional medicine for ages produce numerous secondary metabolites, however our knowledge about biological activities of substances secreted by separated bionts is scarce. The main objectives of this study were to isolate and find optimal conditions for the growth of mycelia from three common lichen-forming fungi, i.e. Caloplaca pusilla, Protoparmeliopsis muralis and Xanthoria parietina and to evaluate antibacterial and antiproliferative activities of their acetone extracts. Methods Agar disc diffusion and broth microdilution methods were used to test antimicrobial activity against six species of bacteria. MTT method, flow cytometry assay and DAPI staining were applied to test antiproliferative activity of selected extracts against MCF-7 (human breast adenocarcinoma), PC-3 (human prostate cancer) and HeLa (human cervix adenocarcinoma) cancer cells. Results P. muralis strongly inhibited the growth of Gram-positive bacteria, i.e. Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis (MICs from 6.67 to 100.00 μg mL−1). X. parietina grown on PDA and G-LBM media decreased HeLa or MCF-7 cancer cells viability with IC50 values of about 8 μg mL−1, while C. pusilla grown on G-LBM medium showed the highest potency in decreasing MCF-7 (7.29 μg mL−1), PC-3 (7.96 μg mL−1) and HeLa (6.57 μg mL−1) cancer cells viability. We also showed induction of apoptosis in HeLa, PC-3 and MCF-7 cell lines treated with increasing concentrations of C. pusilla extract. Conclusion We showed that selected acetone extracts demonstrated a strong antimicrobial and anticancer effects that suggests that aposymbiotically cultured lichen-forming fungi can be a source of antibacterial and antiproliferative compounds.
Collapse
|
30
|
Li T, Li CT, Butler K, Hays SG, Guarnieri MT, Oyler GA, Betenbaugh MJ. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:55. [PMID: 28344645 PMCID: PMC5360037 DOI: 10.1186/s13068-017-0736-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/17/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The feasibility of heterotrophic-phototrophic symbioses was tested via pairing of yeast strains Cryptococcus curvatus, Rhodotorula glutinis, or Saccharomyces cerevisiae with a sucrose-secreting cyanobacterium Synechococcus elongatus. RESULTS The phototroph S. elongatus showed no growth in standard BG-11 medium with yeast extract, but grew well in BG-11 medium alone or supplemented with yeast nitrogen base without amino acids (YNB w/o aa). Among three yeast species, C. curvatus and R. glutinis adapted well to the BG-11 medium supplemented with YNB w/o aa, sucrose, and various concentrations of NaCl needed to maintain sucrose secretion from S. elongatus, while growth of S. cerevisiae was highly dependent on sucrose levels. R. glutinis and C. curvatus grew efficiently and utilized sucrose produced by the partner in co-culture. Co-cultures of S. elongatus and R. glutinis were sustained over 1 month in both batch and in semi-continuous culture, with the final biomass and overall lipid yields in the batch co-culture 40 to 60% higher compared to batch mono-cultures of S. elongatus. The co-cultures showed enhanced levels of palmitoleic and linoleic acids. Furthermore, cyanobacterial growth in co-culture with R. glutinis was significantly superior to axenic growth, as S. elongatus was unable to grow in the absence of the yeast partner when cultivated at lower densities in liquid medium. Accumulated reactive oxygen species was observed to severely inhibit axenic growth of cyanobacteria, which was efficiently alleviated through catalase supply and even more effectively with co-cultures of R. glutinis. CONCLUSIONS The pairing of a cyanobacterium and eukaryotic heterotroph in the artificial lichen of this study demonstrates the importance of mutual interactions between phototrophs and heterotrophs, e.g., phototrophs provide a carbon source to heterotrophs, and heterotrophs assist phototrophic growth and survival by removing/eliminating oxidative stress. Our results establish a potential stable production platform that combines the metabolic capability of photoautotrophs to capture inorganic carbon with the channeling of the resulting organic carbon directly to a robust heterotroph partner for producing biofuel and other chemical precursors.
Collapse
Affiliation(s)
- Tingting Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Chien-Ting Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kirk Butler
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Stephanie G. Hays
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Michael T. Guarnieri
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - George A. Oyler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
31
|
Elshobary ME, Osman ME, Abo-Shady AM, Komatsu E, Perreault H, Sorensen J, Piercey-Normore MD. Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina. Mycologia 2016; 108:646-56. [PMID: 27091386 DOI: 10.3852/15-263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023]
Abstract
Lichen secondary metabolites (polyketides) are produced by the fungal partner, but the role of algal carbohydrates in polyketide biosynthesis is not clear. This study examined whether the type and concentration of algal carbohydrate explained differences in polyketide production and gene transcription by a lichen fungus (Cladonia rangiferina). The carbohydrates identified from a free-living cyanobacterium (Spirulina platensis; glucose), a lichen-forming alga (Diplosphaera chodatii; sorbitol) and the lichen alga that associates with C. rangiferina (Asterochloris sp.; ribitol) were used in each of 1%, 5% and 10% concentrations to enrich malt yeast extract media for culturing the mycobiont. Polyketides were determined by high performance liquid chromatography (HPLC), and polyketide synthase (PKS) gene transcription was measured by quantitative PCR of the ketosynthase domain of four PKS genes. The lower concentrations of carbohydrates induced the PKS gene expression where ribitol up-regulated CrPKS1 and CrPKS16 gene transcription and sorbitol up-regulated CrPKS3 and CrPKS7 gene transcription. The HPLC results revealed that lower concentrations of carbon sources increased polyketide production for three carbohydrates. One polyketide from the natural lichen thallus (fumarprotocetraric acid) also was produced by the fungal culture in ribitol supplemented media only. This study provides a better understanding of the role of the type and concentration of the carbon source in fungal polyketide biosynthesis in the lichen Cladonia rangiferina.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2; and Department of Botany, University of Tanta, Egypt
| | - Mohamed E Osman
- Department of Botany, Faculty of Science, University of Tanta, Egypt
| | - Atef M Abo-Shady
- Department of Botany, Faculty of Science, University of Tanta, Egypt
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - John Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | | |
Collapse
|
32
|
Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:441-459. [PMID: 27064003 DOI: 10.1016/j.phymed.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Lichens, as a symbiotic association of photobionts and mycobionts, display an unmatched environmental adaptability and a great chemical diversity. As an important morphological group, cetrarioid lichens are one of the most studied lichen taxa for their phylogeny, secondary chemistry, bioactivities and uses in folk medicines, especially the lichen Cetraria islandica. However, insufficient structure elucidation and discrepancy in bioactivity results could be found in a few studies. PURPOSE This review aimed to present a more detailed and updated overview of the knowledge of secondary metabolites from cetrarioid lichens in a critical manner, highlighting their potentials for pharmaceuticals as well as other applications. Here we also highlight the uses of molecular phylogenetics, metabolomics and ChemGPS-NP model for future bioprospecting, taxonomy and drug screening to accelerate applications of those lichen substances. CHAPTERS The paper starts with a short introduction in to the studies of lichen secondary metabolites, the biological classification of cetrarioid lichens and the aim. In light of ethnic uses of cetrarioid lichens for therapeutic purposes, molecular phylogeny is proposed as a tool for future bioprospecting of cetrarioid lichens, followed by a brief discussion of the taxonomic value of lichen substances. Then a delicate description of the bioactivities, patents, updated chemical structures and lichen sources is presented, where lichen substances are grouped by their chemical structures and discussed about their bioactivity in comparison with reference compounds. To accelerate the discovery of bioactivities and potential drug targets of lichen substances, the application of the ChemGPS NP model is highlighted. Finally the safety concerns of lichen substances (i.e. toxicity and immunogenicity) and future-prospects in the field are exhibited. CONCLUSION While the ethnic uses of cetrarioid lichens and the pharmaceutical potential of their secondary metabolites have been recognized, the knowledge of a large number of lichen substances with interesting structures is still limited to various in vitro assays with insufficient biological annotations, and this area still deserves more research in bioactivity, drug targets and screening. Attention should be paid on the accurate interpretation of their bioactivity for further applications avoiding over-interpretations from various in vitro bioassays.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Starri Heidmarsson
- Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri, Iceland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Rosa Buonfiglio
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Thierry Kogej
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, Pepparedsleden 1, Mölndal SE-43183, Sweden
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
33
|
Esteban S, Moreno-Merino L, Matellanes R, Catalá M, Gorga M, Petrovic M, López de Alda M, Barceló D, Silva A, Durán JJ, López-Martínez J, Valcárcel Y. Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region. ENVIRONMENTAL RESEARCH 2016; 147:179-92. [PMID: 26882535 DOI: 10.1016/j.envres.2016.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 05/27/2023]
Abstract
The increasing human presence in Antarctica and the waste it generates is causing an impact on the environment at local and border scale. The main sources of anthropic pollution have a mainly local effect, and include the burning of fossil fuels, waste incineration, accidental spillage and wastewater effluents, even when treated. The aim of this work is to determine the presence and origin of 30 substances of anthropogenic origin considered to be, or suspected of being, endocrine disruptors in the continental waters of the Antarctic Peninsula region. We also studied a group of toxic metals, metalloids and other elements with possible endocrine activity. Ten water samples were analyzed from a wide range of sources, including streams, ponds, glacier drain, and an urban wastewater discharge into the sea. Surprisingly, the concentrations detected are generally similar to those found in other studies on continental waters in other parts of the world. The highest concentrations of micropollutants found correspond to the group of organophosphate flame retardants (19.60-9209ngL(-1)) and alkylphenols (1.14-7225ngL(-1)); and among toxic elements the presence of aluminum (a possible hormonal modifier) (1.7-127µgL(-1)) is significant. The concentrations detected are very low and insufficient to cause acute or subacute toxicity in aquatic organisms. However, little is known as yet of the potential sublethal and chronic effects of this type of pollutants and their capacity for bioaccumulation. These results point to the need for an ongoing system of environmental monitoring of these substances in Antarctic continental waters, and the advisability of regulating at least the most environmentally hazardous of these in the Antarctic legislation.
Collapse
Affiliation(s)
- S Esteban
- Ecotoxicology and Environmental Health Research Group (Toxamb), Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, (Madrid), Spain.
| | - L Moreno-Merino
- Instituto Geológico y Minero de España (IGME), C/ Ríos Rosas 23, 28003 Madrid, Spain
| | - R Matellanes
- Ecotoxicology and Environmental Health Research Group (Toxamb), Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, (Madrid), Spain
| | - M Catalá
- Ecotoxicology and Environmental Health Research Group (Toxamb), Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, (Madrid), Spain; Biology and Geology Department, ESCET, Rey Juan Carlos University, Avda Tulipán s/n, Mostoles, (Madrid), Spain
| | - M Gorga
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Petrovic
- Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - M López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit 101, 17003 Girona, Spain
| | - A Silva
- National Institute of Water, Empalme J. Newbery km 1,620, Ezeiza, Buenos Aires, Argentina
| | - J J Durán
- Instituto Geológico y Minero de España (IGME), C/ Ríos Rosas 23, 28003 Madrid, Spain
| | - J López-Martínez
- Department of Geology and Geochemistry, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Y Valcárcel
- Ecotoxicology and Environmental Health Research Group (Toxamb), Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, (Madrid), Spain; Department of Preventive Medicine, Public Health, Inmunology and Medical Microbiology, Faculty of Health Sciencies, Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, (Madrid), Spain.
| |
Collapse
|
34
|
Prateeksha P, Paliya BS, Bajpai R, Jadaun V, Kumar J, Kumar S, Upreti DK, Singh BR, Nayaka S, Joshi Y, Singh BN. The genus Usnea: a potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology. RSC Adv 2016. [DOI: 10.1039/c5ra24205c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The genusUsneaAdans. (Parmeliaceae; lichenized Ascomycetes) is a typical group of mostly pale grayish-green fruticoselichens that grow as leafless mini-shrubs.
Collapse
Affiliation(s)
- Prateeksha Prateeksha
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - B. S. Paliya
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - R. Bajpai
- Lichenology Laboratory
- Plant Biodiversity and Conservation Biology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - V. Jadaun
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - J. Kumar
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - S. Kumar
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - D. K. Upreti
- Lichenology Laboratory
- Plant Biodiversity and Conservation Biology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | - B. R. Singh
- Centre of Excellence in Materials Science (Nanomaterials)
- Z. H. College of Engineering & Technology
- Aligarh Muslim University
- Aligarh-202002
- India
| | - S. Nayaka
- Lichenology Laboratory
- Plant Biodiversity and Conservation Biology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| | | | - Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow – 226001
- India
| |
Collapse
|
35
|
Transplantation of lichen thalli: a case study on Cetraria islandica for conservation and pharmaceutical purposes. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Cernava T, Müller H, Aschenbrenner IA, Grube M, Berg G. Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Front Microbiol 2015; 6:620. [PMID: 26157431 PMCID: PMC4476105 DOI: 10.3389/fmicb.2015.00620] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/08/2015] [Indexed: 02/01/2023] Open
Abstract
Naturally occurring antagonists toward pathogens play an important role to avoid pathogen outbreaks in ecosystems, and they can be applied as biocontrol agents for crops. Lichens present long-living symbiotic systems continuously exposed to pathogens. To analyze the antagonistic potential in lichens, we studied the bacterial community active against model bacteria and fungi by an integrative approach combining isolate screening, omics techniques, and high resolution mass spectrometry. The highly diverse microbiome of the lung lichen [Lobaria pulmonaria (L.) Hoffm.] included an abundant antagonistic community dominated by Stenotrophomonas, Pseudomonas, and Burkholderia. While antagonists represent 24.5% of the isolates, they were identified with only 7% in the metagenome; which means that they were overrepresented in the culturable fraction. Isolates of the dominant antagonistic genus Stenotrophomonas produced spermidine as main bioactive component. Moreover, spermidine-related genes, especially for the transport, were identified in the metagenome. The majority of hits identified belonged to Alphaproteobacteria, while Stenotrophomonas-specific spermidine synthases were not present in the dataset. Evidence for plant growth promoting effects was found for lichen-associated strains of Stenotrophomonas. Linking of metagenomic and culture data was possible but showed partly contradictory results, which required a comparative assessment. However, we have shown that lichens are important reservoirs for antagonistic bacteria, which open broad possibilities for biotechnological applications.
Collapse
Affiliation(s)
- Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Ines A Aschenbrenner
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria ; Institute of Plant Sciences, University of Graz Graz, Austria
| | - Martin Grube
- Institute of Plant Sciences, University of Graz Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| |
Collapse
|
37
|
Şahin S, Oran S, Şahintürk P, Demir C, Öztürk Ş. R
amalina
Lichens and Their Major Metabolites as Possible Natural Antioxidant and Antimicrobial Agents. J Food Biochem 2015. [DOI: 10.1111/jfbc.12142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saliha Şahin
- Department of Chemistry; University of Uludag; 16059 Bursa Turkey
| | - Seyhan Oran
- Department of Biology; Faculty of Arts and Science; University of Uludag; 16059 Bursa Turkey
| | - Pınar Şahintürk
- Laboratory of Molecular Pharmacology; Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; University of Uludag; 16059 Bursa Turkey
| | - Cevdet Demir
- Department of Chemistry; University of Uludag; 16059 Bursa Turkey
| | - Şule Öztürk
- Department of Biology; Faculty of Arts and Science; University of Uludag; 16059 Bursa Turkey
| |
Collapse
|
38
|
Moreira ASN, Braz-Filho R, Mussi-Dias V, Vieira IJC. Chemistry and biological activity of ramalina lichenized fungi. Molecules 2015; 20:8952-87. [PMID: 25996207 PMCID: PMC6272487 DOI: 10.3390/molecules20058952] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/04/2022] Open
Abstract
Lichens are a form of symbiont between a fungus and an alga or cyanobacterium, which contains a wide variety of organic compounds with certain secondary metabolite classes typical of these organisms. The Ramalina genus has approximately 246 species distributed around the World, of which in this review approximately 118 species with published chemical or biological activity studies of extracts or isolated compounds were cited. From the 153 mentioned compounds, only 27 passed were tested for biological activity, being usnic acid the most studied compound and the one showing the best results in almost all in vitro tests performed, although other compounds also presented excellent results as antimicrobial, antitumor and anti-inflammatory agents, among others. Extracts of several species also presented significant results in performed biological tests, demonstrating the potential that these organisms have, in particular, the gender Ramalina, to produce bioactive molecules that can be used as a model for the production of pharmaceuticals.
Collapse
Affiliation(s)
- Antônio Sérgio Nascimento Moreira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Avenida Alberto Lamego 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
- Instituto Federal Fluminense, IFF, Avenida Souza Mota 350, Parque Fundão, Campos dos Goytacazes, 28060-010 Rio de Janeiro, Brazil.
| | - Raimundo Braz-Filho
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Avenida Alberto Lamego 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
| | - Vicente Mussi-Dias
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Avenida Alberto Lamego 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Avenida Alberto Lamego 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Hirsch PR, Mauchline TH. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:45-71. [PMID: 26505688 DOI: 10.1016/bs.aambs.2015.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitrogen is crucial for living cells, and prior to the introduction of mineral N fertilizer, fixation of atmospheric N2 by diverse prokaryotes was the primary source of N in all ecosystems. Microorganisms drive the N cycle starting with N2 fixation to ammonia, through nitrification in which ammonia is oxidized to nitrate and denitrification where nitrate is reduced to N2 to complete the cycle, or partially reduced to generate the greenhouse gas nitrous oxide. Traditionally, agriculture has relied on rotations that exploited N fixed by symbiotic rhizobia in leguminous plants, and recycled wastes and manures that microbial activity mineralized to release ammonia or nitrate. Mineral N fertilizer provided by the Haber-Bosch process has become essential for modern agriculture to increase crop yields and replace N removed from the system at harvest. However, with the increasing global population and problems caused by unintended N wastage and pollution, more sustainable ways of managing the N cycle in soil and utilizing biological N2 fixation have become imperative. This review describes the biological N cycle and details the steps and organisms involved. The effects of various agricultural practices that exploit fixation, retard nitrification, and reduce denitrification are presented, together with strategies that minimize inorganic fertilizer applications and curtail losses. The development and implementation of new technologies together with rediscovering traditional practices are discussed to speculate how the grand challenge of feeding the world sustainably can be met.
Collapse
Affiliation(s)
- Penny R Hirsch
- Department of AgroEcology, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Tim H Mauchline
- Department of AgroEcology, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
40
|
|
41
|
|
42
|
Jeong MH, Kim JA, Yu NH, Jung JS, Hong SG, Cheong YH, Hur JS. Isolation and characterization of a non-reducing polyketide synthase gene in Cladonia macilenta. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Park B, Yim JH, Lee HK, Kim BO, Pyo S. Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways. Biosci Biotechnol Biochem 2014; 79:539-52. [PMID: 25494680 DOI: 10.1080/09168451.2014.991681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cell adhesion molecules play a critical role in inflammatory processes and atherosclerosis. In this study, we investigated the effect of ramalin, a chemical compound from the Antarctic lichen Ramalina terebrata, on vascular cell adhesion molecule-1 (VCAM-1) expression induced by TNF-α in vascular smooth muscular cells (VSMCs). Pretreatment of VSMCs with ramalin (0.1-10 μg/mL) concentration-dependently inhibited TNF-α-induced VCAM-1 expression. Additionally, ramalin inhibited THP-1 (human acute monocytic leukemia cell line) cell adhesion to TNF-α-stimulated VSMCs. Ramalin suppressed TNF-α-induced production of reactive oxygen species (ROS), PADI4 expression, and phosphorylation of p38, ERK, and JNK. Moreover, ramalin inhibited TNF-α-induced translocation of NF-κB and AP-1. Inhibition of PADI4 expression by small interfering RNA or the PADI4-specific inhibitor markedly attenuated TNF-α-induced activation of NF-κB and AP-1 and VCAM-1 expression in VSMCs. Our study provides insight into the mechanisms underlying ramalin activity and suggests that ramalin may be a potential therapeutic agent to modulate inflammation within atherosclerosis.
Collapse
Affiliation(s)
- Bongkyun Park
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | | | | | | | | |
Collapse
|
44
|
Gómez-Serranillos MP, Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A. Parmeliaceae family: phytochemistry, pharmacological potential and phylogenetic features. RSC Adv 2014. [DOI: 10.1039/c4ra09104c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Gaikwad S, Verma N, Sharma BO, Behera BC. Growth promoting effects of some lichen metabolites on probiotic bacteria. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:2624-31. [PMID: 25328204 PMCID: PMC4190253 DOI: 10.1007/s13197-012-0785-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/17/2012] [Accepted: 07/22/2012] [Indexed: 10/28/2022]
Abstract
In the present study, the extract of four natural lichen species Canoparmelia eruptens, Everniastrum cirrhatum, Parmotrema austrosinense and Rimelia cetrata were studied for the source of natural antioxidant and their purified secondary metabolites were evaluated for growth promoting effects on probiotic bacteria Lactobacillus casei. The methanolic fraction of lichen species showed moderate to high antioxidant activity in the order P. austrosinense > E. cirrhatum > C. eruptens > R. cetrata. The lichen metabolites showed antioxidant activity with an IC50 values (μg/ml); lecanoric acid 79-95, salazinic 88-108, atranorin 100-116 and consalazinic acid 119-125. As far as the growth promoting effects of lichen metabolites on L. casei is concerned, lecanoric acid at 100 μg/ml conc. showed high growth stimulating activity in terms of increased dry matter of biomass (56.08 mg) of L. casei. Other lichen metabolites; salazinic acid, atranorin and consalazinic acid produced relatively less dry biomass 43.98 mg, 41.1 mg, 40.68 mg, respectively. However, standard antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and Trolox after 36 h produced 39.04-47.81 mg dry biomass. At lower pH the growth promoting activity of lichen metabolites was found stable.
Collapse
Affiliation(s)
- Subhash Gaikwad
- Mycology & Plant Pathology Group, Plant Science Division, Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004 MS INDIA
| | - Neeraj Verma
- Mycology & Plant Pathology Group, Plant Science Division, Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004 MS INDIA
| | - B. O. Sharma
- Mycology & Plant Pathology Group, Plant Science Division, Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004 MS INDIA
| | - B. C. Behera
- Mycology & Plant Pathology Group, Plant Science Division, Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004 MS INDIA
| |
Collapse
|
46
|
Ari F, Aztopal N, Oran S, Bozdemir S, Celikler S, Ozturk S, Ulukaya E. Parmelia sulcata Taylor and Usnea filipendula Stirt induce apoptosis-like cell death and DNA damage in cancer cells. Cell Prolif 2014; 47:457-64. [PMID: 25081971 DOI: 10.1111/cpr.12123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/31/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Successful cancer treatments still require more compounds to be isolated from natural sources. Thus, we have investigated anti-proliferative/apoptotic effects of methanolic extracts of lichen species Parmelia sulcata Taylor and Usnea filipendula Stirt on human lung cancer (A549, PC3), liver cancer (Hep3B) and rat glioma (C6) cells. MATERIALS AND METHODS Anti-proliferative effects were monitored by MTT and adenosine triphosphate viability assays, while genotoxic activity was studied using the comet assay. Additionally, cell death mode and apoptosis assays (fluorescence staining, caspase-cleaved cytokeratin 18, caspase-3 activity and PARP cleavage) were performed. RESULTS Extracts produced anti-population growth effects in a dose-dependent manner (1.56-100 μg/ml) by inducing apoptosis-like cell death. This resulted in the lines having the presence of pyknotic cell nuclei. In addition, significant increase in genetic damage in the cell lines was seen, indicating that DNA damage may have been responsible for apoptotic cell death. CONCLUSION In this study, methanolic extracts of Parmelia sulcata and Usnea filipendula induced apoptosis-like cell death by causing DNA damage, to cancer cells.
Collapse
Affiliation(s)
- F Ari
- Faculty of Science and Arts, Department of Biology, Uludag University, 16059, Bursa, Turkey
| | | | | | | | | | | | | |
Collapse
|
47
|
Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Arora R, Srivastava RB. Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-Himalayan cold desert of Ladakh. PLoS One 2014; 9:e98696. [PMID: 24937759 PMCID: PMC4061001 DOI: 10.1371/journal.pone.0098696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/06/2014] [Indexed: 12/11/2022] Open
Abstract
Fourteen saxicolous lichens from trans-Himalayan Ladakh region were identified by morpho-anatomical and chemical characteristics. The n-hexane, methanol and water extracts of the lichens were evaluated for their antioxidant capacities. The lichen extracts showing high antioxidant capacities and rich phenolic content were further investigated to determine their cytotoxic activity on human HepG2 and RKO carcinoma cell lines. The ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities and β-carotene-linoleic acid bleaching property exhibited analogous results where the lichen extracts showed high antioxidant action. The lichen extracts were also found to possess good amount of total proanthocyanidin, flavonoid and polyphenol. The methanolic extract of Lobothallia alphoplaca exhibited highest FRAP value. Methanolic extract of Xanthoparmelia stenophylla showed the highest ABTS radical scavenging capacity. The n-hexane extract of Rhizoplaca chrysoleuca exhibited highest DPPH radical scavenging capacity. Highest antioxidant capacity in terms of β-carotene linoleic acid bleaching property was observed in the water extract of Xanthoria elegans. Similarly, Melanelia disjuncta water extract showed highest NO scavenging capacity. Among n-hexane, methanol and water extracts of all lichens, the methanolic extract of Xanthoparmelia mexicana showed highest total proanthocyanidin, flavonoid and polyphenol content. From cytotoxic assay, it was observed that the methanolic extracts of L. alphoplaca and M. disjuncta were exhibiting high cytotoxic effects against cancer cell growth. Similarly, the water extract of Dermatocarpon vellereum, Umbilicaria vellea, X. elegans and M. disjuncta and the methanolic extract of M. disjuncta and X. stenophylla were found to possess high antioxidant capacities and were non-toxic and may be used as natural antioxidants for stress related problems. Our studies go on to prove that the unique trans-Himalayan lichens are a hitherto untapped bioresource with immense potential for discovery of new chemical entities, and this biodiversity needs to be tapped sustainably.
Collapse
Affiliation(s)
- Jatinder Kumar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Priyanka Dhar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Amol B. Tayade
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Damodar Gupta
- Medicinal and Aromatic Plants Laboratory, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Om P. Chaurasia
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Dalip K. Upreti
- Lichenology Laboratory, Plant Biodiversity and Conservation Biology Division, CSIR- National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rajesh Arora
- Medicinal and Aromatic Plants Laboratory, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
- Office of the Director General-Life Sciences, DRDO Bhawan, New Delhi, India
| | - Ravi B. Srivastava
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| |
Collapse
|
48
|
Microalgal symbiosis in biotechnology. Appl Microbiol Biotechnol 2014; 98:5839-46. [DOI: 10.1007/s00253-014-5764-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/26/2022]
|
49
|
Ari F, Celikler S, Oran S, Balikci N, Ozturk S, Ozel MZ, Ozyurt D, Ulukaya E. Genotoxic, cytotoxic, and apoptotic effects of Hypogymnia physodes (L.) Nyl. on breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:804-813. [PMID: 22907900 DOI: 10.1002/tox.21809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study is to determine the chemical composition, and evaluate the genotoxic, and anti-growth potency of the methanol extracts of lichen species Hypogymnia physodes (L.) Nyl. (HPE). Anti-growth effect was tested in two different human breast cancer cell lines (MCF-7 and MDA-MB-231) by the MTT and ATP viability assays and apoptosis was assayed by the caspase-cleaved cytokeratin 18 (M30-antigen). Genotoxic activity of HPE was studied using chromosome aberration and micronuclei tests in human lymphocytes culture in vitro. The chemical composition of H. physodes was analyzed by using direct thermal desorption method coupled with comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Our results indicate that HPE has an anti-growth effect at relatively lower concentrations, while relatively higher concentrations are required for genotoxic activity. HPE, therefore, seems to represent a therapeutic potential and poses new challenges for medicinal chemistry.
Collapse
Affiliation(s)
- Ferda Ari
- Faculty of Science and Arts, Department of Biology, Uludag University, Bursa 16059, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ari F, Ulukaya E, Oran S, Celikler S, Ozturk S, Ozel MZ. Promising anticancer activity of a lichen, Parmelia sulcata Taylor, against breast cancer cell lines and genotoxic effect on human lymphocytes. Cytotechnology 2014; 67:531-43. [PMID: 24676908 DOI: 10.1007/s10616-014-9713-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/03/2014] [Indexed: 11/29/2022] Open
Abstract
Plants are still to be explored for new anti-cancer compounds because overall success in cancer treatment is still not satisfactory. As a new possible source for such compounds, the lichens are recently taking a great attention. We, therefore, explored both the genotoxic and anti-growth properties of lichen species Parmelia sulcata Taylor. The chemical composition of P. sulcata was analyzed with comprehensive gas chromatography-time of flight mass spectrometry. Anti-growth effect was tested in human breast cancer cell lines (MCF-7 and MDA-MB-231) by the MTT and ATP viability assays, while the genotoxic activity was studied by assays for micronucleus, chromosomal aberration and DNA fragmentation in human lymphocytes culture. Cell death modes (apoptosis/necrosis) were morphologically assessed. P. sulcata inhibited the growth in a dose-dependent manner up to a dose of 100 μg/ml and induced caspase-independent apoptosis. It also showed genotoxic activity at doses (>125 μg/ml) higher than that required for apoptosis. These results suggest that P. sulcata may induce caspase-independent apoptotic cell death at lower doses, while it may be genotoxic at relatively higher doses.
Collapse
Affiliation(s)
- Ferda Ari
- Department of Biology, Faculty of Science and Arts, Uludag University, 16059, Bursa, Turkey,
| | | | | | | | | | | |
Collapse
|