1
|
Ekiz DO, Comlekcioglu U, Comlekcioglu N, Aygan A. Cloning, characterization and functional analysis of lichenase produced by Bacillus licheniformis RB16 isolated from cattle faeces. AN ACAD BRAS CIENC 2024; 96:e20231156. [PMID: 39319834 DOI: 10.1590/0001-3765202420231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/26/2024] [Indexed: 09/26/2024] Open
Abstract
Lichenan, 1,3-1,4-β-Glucan, a linear polysaccharide exists in the cell walls of various cereals, has garnered attention for its industrial applications due to its enzymatic breakdown by lichenase enzymes. In this study, Bacillus licheniformis strain RB16, isolated from cattle faeces, was identified as a robust lichenase producer. The lichenase gene, licA, was successfully cloned and characterized. The cloned RB16 lichenase (LicA) demonstrated its highest activity level at pH 7.5. It also retained over 50% of its activity within the pH range of 6.0-8.5 but experienced a decline to 40% at pH 9.0. LicA was active at temperatures ranging from 25 to 65 °C with an optimum at 45 °C. LicA exhibited more than 60% of its activity at the temperature range of 35-55 °C. Zymogram analysis confirmed LicA's lichenan-degrading ability and structural analysis revealed a stable enzyme structure primarily composed of random coils and extended strands. Although LicA exhibited low thermostability, consistent with its relatively low α-helix content, it demonstrated promising industrial potential. Evolutionary analysis placed LicA within a cluster of closely related Bacillus lichenases, particularly B. halotolerans, B. atrophaeus, and B. spizizenii. These findings expand our understanding of lichenases of Bacillus and underscore its potential for various industrial applications.
Collapse
Affiliation(s)
- Dilek Ozgun Ekiz
- Kahramanmaras Sutcu Imam University, Science Faculty, Biology Department, 46040 Kahramanmaras, Turkiye
| | - Ugur Comlekcioglu
- Osmaniye Korkut Ata University, Engineering and Natural Sciences Faculty, Biology Department, 80000 Osmaniye, Turkiye
| | - Nazan Comlekcioglu
- Kahramanmaras Sutcu Imam University, Science Faculty, Biology Department, 46040 Kahramanmaras, Turkiye
| | - Ashabil Aygan
- Kahramanmaras Sutcu Imam University, Science Faculty, Biology Department, 46040 Kahramanmaras, Turkiye
| |
Collapse
|
2
|
Lisov A, Belova O, Lisova Z, Nagel A, Shadrin A, Andreeva-Kovalevskaya Z, Nagornykh M, Zakharova M, Leontievsky A. Two β-glucanases from bacterium Cellulomonas flavigena: expression in Pichia pastoris, properties, biotechnological potential. Prep Biochem Biotechnol 2023; 53:1313-1321. [PMID: 37093814 DOI: 10.1080/10826068.2023.2201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In the genome of Cellulomonas flavigena, two genes that potentially encode endoglucanases - Cfla_2912 and Cfla_2913 were identified. We cloned the genes and created Pichia pastoris-based recombinant producers of two proteins that were expressed from the AOX1 promoter. Each of the endoglucanase molecules contains a GH6 catalytic domain, CBM2 carbohydrate-binding module, and TAT signal peptide. The fermentation of the producers was carried out in a 10 L fermenter; Cfla_2912 and Cfla_2913 were purified using affinity chromatography. The yield comprised 10.3 mg/ml (430 U/ml) for Cfla_2913 and 9 mg/ml (370 U/ml) for Cfla_2912. Cfla_2912 and Cfla_2913 were found to have a high activity against barley β-glucan and lichenan, a weak activity against carboxymethyl cellulose (CMC), phosphoric-acid treated cellulose, and no activity against laminarin, xylan, soluble starch, microcrystalline cellulose, cellobiose, and cellotriose. Thus, the proteins exhibited β-glucanase activity. Both proteins had a neutral pH optimum of about 7.0 and were more stable at neutral and slightly alkaline pH ranging from 7.0 to 9.0. Cfla_2912 and Cfla_2913 showed a moderate thermal stability. The products of barley β-glucan hydrolysis by Cfla_2912 and Cfla_2913 were trisaccharide, tetrasaccharide, and cellobiose. Cfla_2912 and Cfla_2913 efficiently hydrolyzed cereal polysaccharides, which indicate that they may have biotechnological potential.
Collapse
Affiliation(s)
- Alexander Lisov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Oksana Belova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Zoya Lisova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nagel
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Shadrin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Zhanna Andreeva-Kovalevskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Maxim Nagornykh
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Marina Zakharova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Leontievsky
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Zha ZQ, You S, Hu YH, Zhang F, Chen YW, Wang J. Asn57 N-glycosylation promotes the degradation of hemicellulose by β-1,3-1,4-glucanase from Rhizopus homothallicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8707-8721. [PMID: 35366731 DOI: 10.1007/s11356-022-19959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
N-glycosylation alters the properties of different enzymes in different ways. Rhizopus homothallicus was first described as an environmental isolate from desert soil in Guatemala. A new gene encoding glucanase RhGlu16B was identified in R. homothallicus. It had high specific activity (9673 U/mg) when barley glucan was used as a substrate, and β-glucan is hemicellulose that is abundant in nature. RhGlu16B has only one N-glycosylation site in its Ala55-Gly64 loop. It was found that N-glycosylation increased its Tm value and catalytic efficiency by 5.1 °C and 59%, respectively. Adding N-glycosylation to the same region of GH16 family glucanases TlGlu16A (from Talaromyces leycettanus) increased its thermostability and catalytic efficiency by 6.4 °C and 38%, respectively. In a verification experiment using GH16 family glucanases BisGlu16B (from Bisporus) in which N-glycosylation was removed, N-glycosylation also appeared to promote thermostability and catalytic efficiency. N-glycosylation reduced the overall root mean square deviation of the enzyme structure, creating rigidity and increasing overall thermostability. This study provided a reference for the molecular modification of GH16 family glucanases and guided the utilization of β-glucan in hemicellulose.
Collapse
Affiliation(s)
- Zi-Qian Zha
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Yang-Hao Hu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Fang Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Yi-Wen Chen
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, People's Republic of China.
| |
Collapse
|
4
|
Borshchevskaya LN, Gordeeva TL, Kalinina AN, Serkina AV, Fedorov AS, Sineoky SP. Expression of the β-Glucanase Gene from Paenibacillus jamilae Bg1 in Pichia pastoris and Characteristics of the Recombinant Enzyme. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Liu X, Jiang Z, Ma S, Yan Q, Chen Z, Liu H. High-level production and characterization of a novel β-1,3-1,4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Chen X, Wang B, Pan L. Heterologous expression and characterization of Penicillium citrinum nuclease P1 in Aspergillus niger and its application in the production of nucleotides. Protein Expr Purif 2018; 156:36-43. [PMID: 30557611 DOI: 10.1016/j.pep.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
Nuclease P1 gene (nuc P1) which was cloned from Penicillium citrinum and expressed in A. niger Bdel4 with the low-background extracellular protein. The expression strategy of multi-copy nuc P1 in the A. niger with the linker of 2A peptide was applied to improve the enzyme activity of nuclease P1, the highest activity up to 77.6 U/mL. After Ni-chelate purification, the specific enzyme activity, the optimum temperature and pH were 32.4 U/mg, 65 °C and 5.3 respectively. The recombination nuclease P1 was activated by addition of Mg2+, Zn2+ and Cu2+, and inhibited by addition of Ca2+, Fe2+, Mn2+, Ni2+, Co2+, Mg2+, K+ and EDTA. Furthermore, the enzyme hydrolyses yeast RNA efficiently into 5'- nucleotides. Through enzymolysis, the highest concentration of nucleotides achieved 15.12 mg/mL, and 75U nuclease P1 is suitable amount should be added to the enzymolysis system.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou, 510006, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Improving heterologous expression of porcine follicle-stimulating hormone in Pichia pastoris by integrating molecular strategies and culture condition optimization. Appl Microbiol Biotechnol 2018; 102:8867-8882. [PMID: 30136206 DOI: 10.1007/s00253-018-9260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Muts phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut+ phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0-6.0 and 1.5-2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.
Collapse
|
8
|
Liu Y, Yang S, Yan Q, Liu J, Jiang Z. High-level expression of a novel protease-resistant α-galactosidase from Thielavia terrestris. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Niu C, Liu C, Li Y, Zheng F, Wang J, Li Q. Production of a thermostable 1,3-1,4-β-glucanase mutant in Bacillus subtilis WB600 at a high fermentation capacity and its potential application in the brewing industry. Int J Biol Macromol 2018; 107:28-34. [DOI: 10.1016/j.ijbiomac.2017.08.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
|
10
|
Sun X, Xue X, Li M, Gao F, Hao Z, Huang H, Luo H, Qin L, Yao B, Su X. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11046-11053. [PMID: 29199828 DOI: 10.1021/acs.jafc.7b05114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL-1 and 1204 U·mL-1, respectively.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Xianli Xue
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Mengzhu Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Fei Gao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Lina Qin
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University , Fuzhou, Fujian 350108, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, China
| |
Collapse
|
11
|
Cao L, Ren G, Qin Z, Huang X, Kong W, Wang Z, Liang W, Bi X, Liu Y. Improving the Secretion Yield of the β-Galactosidase Bgal1-3 in Pichia pastoris for Use as a Potential Catalyst in the Production of Prebiotic-Enriched Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10757-10766. [PMID: 29181978 DOI: 10.1021/acs.jafc.7b04694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, three kinds of milk were treated with the β-galactosidase Bgal1-3 (4 U/mL), resulting in 7.2-9.5 g/L galactooligosaccharides (GOS) at a lactose conversion of 90-95%. Then, Bgal1-3 was secreted from Pichia pastoris X33 under the direction of an α-factor signal peptide. After cultivation for 144 h in a flask culture with shaking, the extracellular activity of Bgal1-3 was 4.4 U/mL. Five more signal peptides (HFBI, apre, INU1A, MF4I, and W1) were employed to direct the secretion, giving rise to a more efficient signal peptide, W1 (11.2 U/mL). To further improve the secretion yield, recombinant strains harboring two copies of the bgal1-3 gene were constructed, improving the extracellular activity to 22.6 U/mL (about 440 mg/L). This study successfully constructed an engineered strain for the production of the β-galactosidase Bgal1-3, which is a promising catalyst in the preparation of prebiotic-enriched milk.
Collapse
Affiliation(s)
- Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Guanghui Ren
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Zhijun Wang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Weiqu Liang
- Dongguan Agricultural Research Center , Dongguan, Guangdong 523086, P. R. China
| | - Xiaogang Bi
- The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong 510630, P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| |
Collapse
|
12
|
Li H, Cui Y, Zhang L, Zhang L, Liu H, Yu J. Optimization of recombinant Zea mays transglutaminase production and its influence on the functional properties of yogurt. Food Sci Biotechnol 2017; 26:723-730. [PMID: 30263597 DOI: 10.1007/s10068-017-0083-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/01/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
The requirements for the production of optimized Zea mays transglutaminase (TGZo) using Pichia pastoris GS115 (pPIC9K-tgzo) were optimized in this study. Plackett-Burman design was used to screen variables that significantly influence TGZo production. Oleic acid, methanol, and loading volume were identified as the most significant parameters. Central composite design was employed to determine the optimal level of these three parameters for TGZo production. Results showed that 1078 mU/mL of TGZo activity and 7.6 mg/L of TGZo production were obtained under conditions of 0.07% oleic acid, 1.31% methanol, and 7.36% loading volume. To explore the functional characteristics of TGZo, it was used in yogurt. It was found that the addition of TGZo could produce yogurt with stronger acid gel and higher consistency, cohesiveness, index of viscosity, and apparent viscosity than the untreated product. Therefore, TGZo can be used as a substitute for microbial transglutaminase in the yogurt, even in the food industry.
Collapse
Affiliation(s)
- Hongbo Li
- 1School of Food and Engineering and Biological Technology, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - Yanhua Cui
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Lanwei Zhang
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Lili Zhang
- 3College of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Hui Liu
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Jinghua Yu
- 1School of Food and Engineering and Biological Technology, Tianjin University of Science & Technology, Tianjin, 300457 China
| |
Collapse
|
13
|
Shao M, Sha Z, Zhang X, Rao Z, Xu M, Yang T, Xu Z, Yang S. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ 1 -dehydrogenase and catalase in Bacillus subtilis. J Appl Microbiol 2017; 122:119-128. [PMID: 27797429 DOI: 10.1111/jam.13336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023]
Abstract
AIMS 3-ketosteroid-Δ1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H2 O2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H2 O2 to enhance ADD production. METHODS AND RESULTS The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg-1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksddopt -katA to eliminate the toxic effects of H2 O2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l-1 . CONCLUSIONS This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H2 O2 by co-expressing catalase. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry.
Collapse
Affiliation(s)
- M Shao
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Sha
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - X Zhang
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Rao
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - M Xu
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - T Yang
- Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Z Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu Province, China
| | - S Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Wang M, Jiang S, Zhou L, Wang C, Mao R, Ponnusamy M. Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in Pichia pastoris and its protective efficacy against viral challenge in mice. Arch Virol 2016; 162:701-711. [PMID: 27868164 DOI: 10.1007/s00705-016-3154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) infection is the leading cause of genital ulcer disease and a significant public health concern. However, there are no approved vaccines available to prevent HSV-2 infection. The glycoprotein D (gD) of HSV-2 is the most important candidate antigen for vaccine development. In this study, a truncated form of gD (codons 1-340, gD1-340) was produced as a secretory protein in the methylotrophic yeast Pichia pastoris. The recombinant gD1-340 with a His6 tag was purified to homogeneity by one-step affinity chromatography. Mice immunized with the recombinant gD1-340 developed high levels of antigen-specific antibody responses with HSV-2 neutralizing activity. Immunization with the recombinant gD1-340 conferred significant protection against lethal HSV-2 infection in mice. Moreover, measurement of the secretion of gD1-340-specific cytokines demonstrated that the recombinant gD1-340 induced mixed Th1/Th2 cellular immune responses. These findings indicated that P. pastoris-derived gD1-340 represents a promising HSV-2 vaccine candidate with strong immunogenicity and prophylactic efficacy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Ruifeng Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| |
Collapse
|
15
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
16
|
High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation. ACTA ACUST UNITED AC 2016; 43:977-87. [DOI: 10.1007/s10295-016-1773-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Abstract
To improve the extracellular production of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli, two truncated recombinant mannanases (32a-ManAR2 and 22b-ManAR2) were obtained. Compared with the full-length mannanases (32a-ManAR1 and 22b-ManAR1), the truncated mannanases not only showed higher secretion rate, but also exhibited higher thermostability and alkalistability. The K m value (11 mg/mL) of 32a-ManAR2 was higher than that (1.46 mg/mL) of 32a-ManAR1. The specific activity of 22b-ManAR2 was 2.7 times higher than that of 22b-ManAR1. 22b-ManAR2 showed the highest k cat/K m value of 602.7 ml/mg s. The parameters of induction for recombinant mannanase production of E. coli BL21 (pET32a-manAR2) and E. coli BL21 (pET22b-manAR2) were subsequently optimized. The yield of soluble mannanase was found to be enhanced with lower induction temperature (25 °C), lower IPTG concentration (0.01–0.05 mM), and Triton X-100 supplement (0.1 %) in a shake flask. Moreover, a one-time feeding strategy and Triton X-100 supplement were applied in production of 22b-ManAR2 in a 10 L fermentor. The productivity of the total soluble mannanase reached 9284.64 U/mL with the extracellular rate of 74 % at 46 h of fermentation, which was the highest productive level of alkaline β-mannanase in recombinant E. coli to date.
Collapse
|
17
|
You S, Tu T, Zhang L, Wang Y, Huang H, Ma R, Shi P, Bai Y, Su X, Lin Z, Luo H, Yao B. Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge-charge interactions. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:124. [PMID: 27303445 PMCID: PMC4906821 DOI: 10.1186/s13068-016-0544-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/02/2016] [Indexed: 05/31/2023]
Abstract
BACKGROUND β-Glucanase is one of the most extensively used biocatalysts in biofuel, food and animal feed industries. However, the poor thermostability and low catalytic efficiency of most reported β-glucanases limit their applications. Currently, two strategies are used to overcome these bottlenecks, i.e., mining for novel enzymes from extremophiles and engineering existing enzymes. RESULTS A novel endo-β-1,3-1,4-glucanase of GH16 (Tlglu16A) from the thermophilic fungus Talaromyces leycettanus JCM12802 was produced in Pichia pastoris and characterized. For potential industrial applications, recombinant TlGlu16A exhibits favorable enzymatic properties over most reported glucanases, i.e., remarkable stability over a wide pH range from 1.0 to 10.0 and superior activity on glucan substrates (up to 15,197 U/mg). The only weakness of TlGlu16A is the thermolability at 65 °C and higher. To improve the thermostability, the enzyme thermal stability system was then used to engineer TlGlu16A through optimization of residual charge-charge interactions. Eleven mutants were constructed and compared to the wild-type TlGlu16A. Four mutants, H58D, E134R, D235G and D296K, showed longer half-life time at 80 °C (31, 7, 25, 22 vs. 0.5 min), and two mutants, D235G and D296K, had greater specific activities (158.2 and 122.2 %, respectively) and catalytic efficiencies (k cat/K m, 170 and 114 %, respectively). CONCLUSIONS The engineered TlGlu16A has great application potentials from the perspectives of enzyme yield and properties. Its thermostability and activity were apparently improved in the engineered enzymes through charge optimization. This study spans the genetic, functional and structural fields, and provides a combination of gene mining and protein engineering approaches for the systematic improvement of enzyme performance.
Collapse
Affiliation(s)
- Shuai You
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Tao Tu
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Lujia Zhang
- />State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Yuan Wang
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Huoqing Huang
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Pengjun Shi
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yingguo Bai
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Xiaoyun Su
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Zhemin Lin
- />Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100 People’s Republic of China
| | - Huiying Luo
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
18
|
Extracellular expression and antiviral activity of a bovine interferon-alpha through codon optimization in Pichia pastoris. Microbiol Res 2016; 191:12-8. [PMID: 27524649 DOI: 10.1016/j.micres.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 11/23/2022]
Abstract
Interferons (IFNs) are the primary line of defense against infectious agents. In particular, IFN-α is an important antiviral cytokine and has a wide range of immune-modulating functions. Porcine and human IFN-α have been successfully prepared and play important roles in the prevention and therapy of viral diseases. To date, there has been limited applied research on bovine IFN-α. To achieve high-level expression of recombinant bovine IFN-α (bIFN-α) in Pichia pastoris for large-scale application, the bIFN-α gene was optimized and synthesized on the basis of codon bias of P. pastoris. Optimized bIFN-α (opti-bIFN-α) was successfully expressed in P. pastoris and directly secreted into the culture supernatant. The amount of extracellular soluble opti-bIFN-α was observed to be 200μg/mL in a shake flask. Expression efficiency of opti-bIFN-α was found to be about three times that of wild-type bIFN-α when the expression yield was compared at the same copies of the targeted gene. In addition, both the original cultural supernatant and purified opti-bIFN-α showed strong antiviral activity in MDBK cells (2×10(6)AU/mL and 1×10(7)AU/mg, respectively) and IBRS-2 cells (3×10(5)AU/mL and 1.5×10(6)AU/mg, respectively) against a recombinant vesicular stomatitis virus expressing the green fluorescence protein. In this study, we demonstrated high-level extracellular expression of opti-bIFN-α by P. pastoris. To the best of our knowledge, the opti-bIFN-α yield observed in this study is the highest to be reported to date. Our results demonstrated that the extracellular opti-bIFN-α with strong antiviral activity could be easily prepared and purified at a low cost and that it may be a potential biological therapeutic drug against bovine viral infections.
Collapse
|
19
|
Dehnavi E, Ranaei Siadat SO, Fathi Roudsari M, Khajeh K. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions. Protein Expr Purif 2016; 124:55-61. [PMID: 27154901 DOI: 10.1016/j.pep.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications.
Collapse
Affiliation(s)
- Ehsan Dehnavi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Nanobiotechnology Engineering Laboratory, Faculty of Engineering and New Technologies, Shahid Beheshti University, GC, Tehran, Iran; Protein Engineering Laboratory, Protein Research Center (PRC), Shahid Beheshti University, GC, Tehran, Iran.
| | | | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
21
|
Improved Production of Aspergillus usamii endo-β-1,4-Xylanase in Pichia pastoris via Combined Strategies. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3265895. [PMID: 27066499 PMCID: PMC4811622 DOI: 10.1155/2016/3265895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/24/2016] [Indexed: 11/24/2022]
Abstract
A series of strategies were applied to improve expression level of recombinant endo-β-1,4-xylanase from Aspergillus usamii (A. usamii) in Pichia pastoris (P. pastoris). Firstly, the endo-β-1,4-xylanase (xynB) gene from A. usamii was optimized for P. pastoris and expressed in P. pastoris. The maximum xylanase activity of optimized (xynB-opt) gene was 33500 U/mL after methanol induction for 144 h in 50 L bioreactor, which was 59% higher than that by wild-type (xynB) gene. To further increase the expression of xynB-opt, the Vitreoscilla hemoglobin (VHb) gene was transformed to the recombinant strain containing xynB-opt. The results showed that recombinant strain harboring the xynB-opt and VHb (named X33/xynB-opt-VHb) displayed higher biomass, cell viability, and xylanase activity. The maximum xylanase activity of X33/xynB-opt-VHb in 50 L bioreactor was 45225 U/mL, which was 35% and 115% higher than that by optimized (xynB-opt) gene and wild-type (xynB) gene. Finally, the induction temperature of X33/xynB-opt-VHb was optimized in 50 L bioreactor. The maximum xylanase activity of X33/xynB-opt-VHb reached 58792 U/mL when the induction temperature was 22°C. The results presented here will greatly contribute to improving the production of recombinant proteins in P. pastoris.
Collapse
|
22
|
Akbarzadeh A, Dehnavi E, Aghaeepoor M, Amani J. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology. Jundishapur J Microbiol 2015; 8:e27553. [PMID: 26870311 PMCID: PMC4746705 DOI: 10.5812/jjm.27553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant phytase expression in shake flask culture, we concluded that P. pastoris was a suitable host for high-level expression of phytase and it can possess high potential for industrial applications.
Collapse
Affiliation(s)
- Ali Akbarzadeh
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Ehsan Dehnavi
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
| | - Mojtaba Aghaeepoor
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
- Semnan Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, IR Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Jafar Amani, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq, Molasadra St, P. O. Box: 193955487, Tehran, IR Iran. Tel: +98-2182482568, Fax: +98-2188068924, E-mail:
| |
Collapse
|
23
|
Choengpanya K, Arthornthurasuk S, Wattana-amorn P, Huang WT, Plengmuankhae W, Li YK, Kongsaeree PT. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28. Protein Expr Purif 2015; 115:132-40. [DOI: 10.1016/j.pep.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
24
|
Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites. Enzyme Microb Technol 2015; 81:80-7. [PMID: 26453475 DOI: 10.1016/j.enzmictec.2015.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 11/24/2022]
Abstract
Streptomyces lydicus A02 is a novel producer of commercially important polyene macrocyclic antibiotic natamycin and a potential biocontrol agent to several plant fungal diseases, including wilt caused by Fusarium oxysporum f. spp. To improve the natamycin production and the antifungal activity of S. lydicus A02, we coexpressed gene vgb encoding Vitreoscilla hemoglobin (VHb) and bglC encoding Bacillus megaterium L103 glucanase, both under the control of the strong constitutive ermE* promoter, in S. lydicus A02. Our results showed that coexpressing VHb and glucanase improved cell growth, and the engineered strain produced 26.90% more biomass than the wild-type strain after 72h fermentation in YSG medium. In addition, coexpressing genes encoding VHb and glucanase led to increased natamycin production, higher endogenous chitinase activity and exogenous glucanase activity, as well as enhanced antifungal activity in the engineered S. lydicus AVG02 and AGV02, regardless of the position of the two genes on the plasmids. Compared with model strains, few reports have successfully coexpressed VHb and other foreign proteins in industrial strains. Our results illustrated an effective approach for improving antifungal activity in an industrial strain by the rational engineering of combined favorable factors.
Collapse
|
25
|
Codon Optimization Significantly Improves the Expression Level of α -Amylase Gene from Bacillus licheniformis in Pichia pastoris. BIOMED RESEARCH INTERNATIONAL 2015; 2015:248680. [PMID: 26171389 PMCID: PMC4478363 DOI: 10.1155/2015/248680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/31/2014] [Indexed: 11/17/2022]
Abstract
α-Amylase as an important industrial enzyme has been widely used in starch processing, detergent, and paper industries. To improve expression efficiency of recombinant α-amylase from Bacillus licheniformis (B. licheniformis), the α-amylase gene from B. licheniformis was optimized according to the codon usage of Pichia pastoris (P. pastoris) and expressed in P. pastoris. Totally, the codons encoding 305 amino acids were optimized in which a total of 328 nucleotides were changed and the G+C content was increased from 47.6 to 49.2%. The recombinants were cultured in 96-deep-well microplates and screened by a new plate assay method. Compared with the wild-type gene, the optimized gene is expressed at a significantly higher level in P. pastoris after methanol induction for 168 h in 5- and 50-L bioreactor with the maximum activity of 8100 and 11000 U/mL, which was 2.31- and 2.62-fold higher than that by wild-type gene. The improved expression level makes the enzyme a good candidate for α-amylase production in industrial use.
Collapse
|
26
|
Maktouf S, Moulis C, Miled N, Ellouz Chaabouni S, Remaud-Simeon M. A highly thermostable lichenase from Bacillus sp. UEB-S: Biochemical and molecular characterization. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS One 2015; 10:e0116524. [PMID: 25611746 PMCID: PMC4303304 DOI: 10.1371/journal.pone.0116524] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.
Collapse
|
28
|
Zhao H, Chen D, Tang J, Jia G, Long D, Liu G, Chen X, Shang H. Partial optimization of the 5-terminal codon increased a recombination porcine pancreatic lipase (opPPL) expression in Pichia pastoris. PLoS One 2014; 9:e114385. [PMID: 25544987 PMCID: PMC4278863 DOI: 10.1371/journal.pone.0114385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 11/18/2022] Open
Abstract
Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed additive for animal improvement.
Collapse
Affiliation(s)
- Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- * E-mail:
| | - Dan Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dingbiao Long
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
29
|
Hu M, Zhou X, Shi Y, Lin J, Irfan M, Tao Y. Essential Role of the N- and C-terminals of Laccase from Pleurotus florida on the Laccase Activity and Stability. Appl Biochem Biotechnol 2014; 174:2007-17. [DOI: 10.1007/s12010-014-1147-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
|
30
|
Chaari F, Belghith-Fendri L, Blibech M, Driss D, Ellouzi SZ, sameh M, Ellouz-Chaabouni S. Biochemical characterization of a lichenase from Penicillium occitanis Pol6 and its potential application in the brewing industry. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
High Level Production of β-Galactosidase Exhibiting Excellent Milk-Lactose Degradation Ability from Aspergillus oryzae by Codon and Fermentation Optimization. Appl Biochem Biotechnol 2014; 172:2787-99. [DOI: 10.1007/s12010-013-0684-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
32
|
Characterization and High Level Expression of Acidic Endoglucanase in Pichia pastoris. Appl Biochem Biotechnol 2013; 172:2253-65. [DOI: 10.1007/s12010-013-0672-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
33
|
Elgharbi F, Hmida-Sayari A, Sahnoun M, Kammoun R, Jlaeil L, Hassairi H, Bejar S. Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohydr Polym 2013; 98:967-75. [DOI: 10.1016/j.carbpol.2013.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/10/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
|
34
|
Integrating terminal truncation and oligopeptide fusion for a novel protein engineering strategy to improve specific activity and catalytic efficiency: alkaline α-amylase as a case study. Appl Environ Microbiol 2013; 79:6429-38. [PMID: 23956385 DOI: 10.1128/aem.02087-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. The kcat/Km was increased from 1.0 × 10(5) liters · mol(-1) · s(-1) for AmyK to 30.6 × and 23.2 × 10(5) liters · mol(-1) · s(-1) for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency.
Collapse
|
35
|
Luo JJ, Song HW, Zhang B, Li LL, Chen YG, Peng Y, Wu LZ, Fan JX, Zhan JS. Gene cloning of porcine adiponectin gene from adipose tissue and construction of its eukaryotic expression vector. J Anim Physiol Anim Nutr (Berl) 2013; 98:517-21. [PMID: 23879259 DOI: 10.1111/jpn.12101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
Abstract
To clone adiponectin (ADPN) gene from Shaziling porcine adipocyte and construct its eukaryotic expression vector, total RNA was extracted from subcutaneous fatty tissue. One pair of specific primers was designed by Primer 5.0 software according to the sequence of ADPN gene of porcine available in GenBank. The ADPN gene was amplified by PCR from cDNA and cloned into pMD18-T vector to construct recombinant clonal vector pMD-ADPN, sequenced and analysed. A recombinant expression plasmid pPICZaA-ADPN was constructed by subcloning the cloned ADPN gene into the linearized pPICZaA vector. Then, the plasmid pPICZaA-ADPN was expressed in Pichia pastoris (GS115) by electrotransformation. Western blot and Bradford analysis were used to determine the target protein induced by methanol. Results showed that the genome size of ADPN was 732 bp and encoded 244 amino acid, the nucleotide sequence of ADPN shared 100% identity with that of porcine available in GenBank. Western blot and Bradford analysis showed that the recombinant ADPN was expressed in GS115 correctly and has certain immune activity. The expression level of ADPN was 28.5 μg/ml. In conclusion, the recombinant ADPN could express in eukaryotic expression vector pPICZaA-ADPN constructed in this study effectively.
Collapse
Affiliation(s)
- J-J Luo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tai HM, Yin LJ, Chen WC, Jiang ST. Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6007-6015. [PMID: 23738921 DOI: 10.1021/jf401853b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To obtain a Pichia pastoris mutant with an Escherichia coli phytase gene, which was synthesized according to P. pastoris codon preference, a mature phytase cDNA of E. coli being altered according to the codons usage preference of P. pastoris was artificially synthesized and cloned into an expression vector of pGAPZαC. The final extracellular phytase activity was 112.5 U/mL after 72 h of cultivation. The phytase, with a molecular mass of 46 kDa, was purified to electrophoretical homogeneity after Ni Sepharose 6 Fast Flow chromatography. The yield, purification fold, and specific activity were 63.97%, 26.17, and 1.57 kU/mg, respectively. It had an optimal pH and temperature of 4.0-6.0 and 50 °C, respectively, and was stable at pH 3.0-8.0 and 25-40 °C. The purified recombinant phytase was resistant to trypsin, highly inhibited by Cu(2+), Zn(2+), Hg(2+), Fe(2+), Fe(3+), phenylmethylsulfonyl fluoride, and N-tosyl-l-lysine chloromethyl ketone, but activated by Mg(2+), Ca(2+), Sr(2+), Ba(2+), glutathione, ethylenediaminetetraacetic acid, and N-ethylmaleimide. It revealed higher affinity to calcium phytate than to other phosphate conjugates.
Collapse
Affiliation(s)
- Hsueh-Ming Tai
- Department of Food and Nutrition, Providence University , Number 200, Section 7, Taiwan Boulevard, Salu, Taichung 43301, Taiwan
| | | | | | | |
Collapse
|
37
|
Fang W, Gao H, Cao Y, Shan A. Cloning and expression of a xylanase xynB from Aspergillus niger IA-001 in Pichia pastoris. J Basic Microbiol 2013; 54 Suppl 1:S190-9. [PMID: 23788000 DOI: 10.1002/jobm.201300078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/24/2013] [Indexed: 11/12/2022]
Abstract
The high-level expression of the xylanase GH11 gene from Aspergillus niger IA-001 called xynB was successfully completed in Pichia pastoris. The xynB gene encoding a mature xylanase of 225 amino acid was subcloned into the pPICZαA vector and was transformed into P. pastoris X-33 under the control of the alcohol oxidase I (AOX1) promoter. The xynB gene was ligated with a sequence encoding modified α-factor signal peptide (pPICZαmA) and the recombinant xylanase activity, which was measured 1280 U ml(-1), was 1.5-fold higher than when it was inserted into pPICZαA and was 19.39-fold greater than the native xylanase in the original strain. In a 10 L fermenter, the recombinant xylanase activity measured 10,035 U ml(-1) after 114 h. The SDS-PAGE analysis revealed that the purified xynB protein migrated as a single band with an apparent molecular weight of 24 kDa. The specific activity, using beechwood xylan as a substrate, was 1916 U mg(-1). The xylanase activity was optimal at pH 5.0 and at 50 °C. In addition, the xynB was active over a pH range of 2.2 to 10.0. The apparent Km and Vmax values were 4.429 mg ml(-1) and 1429 U mg(-1), respectively.
Collapse
Affiliation(s)
- Wei Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R., China
| | | | | | | |
Collapse
|
38
|
Expression, purification, and immunogenic characterization of Epstein-Barr virus recombinant EBNA1 protein in Pichia pastoris. Appl Microbiol Biotechnol 2013; 97:6251-62. [PMID: 23685476 DOI: 10.1007/s00253-013-4967-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with the development of both lymphoid and epithelial tumors. EBNA1 is the only viral protein expressed in all EBV-associated malignancies and plays important roles in EBV latency. Thus, EBNA1 is thought to be a promising antigen for immunotherapy of all EBV-associated malignancies. This study was undertaken to produce recombinant EBNA1 protein in Pichia pastoris and evaluate its immunogenicity. The truncated EBNA1 (E1ΔGA, codons 390-641) was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast P. pastoris and purified by Ni-NTA affinity chromatography. The purified proteins were then used as antigens to immunize BALB/c mice for production of polyclonal antibodies. Western blot analysis showed that the polyclonal antibodies specifically recognized the EBNA1 protein in B95-8 cell lysates. The recombinant E1ΔGA also induced strong lymphoproliferative and Th1 cytokine responses in mice. Furthermore, mice immunized with E1ΔGA developed CD4+ and CD8+ T cell responses. These findings showed that the yeast-expressed E1ΔGA retained good immunogenicity and might be a promising vaccine candidate against EBV-associated malignancies.
Collapse
|
39
|
Recombinant β-1,3-1,4-glucanase from Theobroma cacao impairs Moniliophthora perniciosa mycelial growth. Mol Biol Rep 2013; 40:5417-27. [DOI: 10.1007/s11033-013-2640-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 05/02/2013] [Indexed: 11/25/2022]
|
40
|
Hu H, Gao J, He J, Yu B, Zheng P, Huang Z, Mao X, Yu J, Han G, Chen D. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS One 2013; 8:e58393. [PMID: 23472192 PMCID: PMC3589435 DOI: 10.1371/journal.pone.0058393] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.
Collapse
Affiliation(s)
- Hong Hu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jie Gao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Guoquan Han
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya’an, Sichuan, P. R. China
- * E-mail:
| |
Collapse
|
41
|
Overproduction of a truncated poly (vinyl alcohol) dehydrogenase in recombinant Pichia pastoris by low-temperature induction strategy and related mechanism analysis. Bioprocess Biosyst Eng 2012. [PMID: 23207825 DOI: 10.1007/s00449-012-0863-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based on the N-terminal sequencing of poly (vinyl alcohol) dehydrogenase (PVADH), a 1,644-bp gene encoding a truncated PVADH (tPVADH) was amplified using the synthetic gene (GenBank accession No. JQ235753) as a template, and was further transformed into Pichia pastoris GS115 with the vector pPIC9K. The maximal tPVADH activity reached 546 U/mL in shake flask. The influence of methanol concentration and induction temperature on tPVADH production was further investigated in 3-L bioreactor. When the methanol concentration and induction temperature were controlled at 15 g/L and 22 °C, respectively, the maximal tPVADH activity reached 8,464 U/mL, which was nearly 10 times that of mature PVADH expressed under the same condition and was the highest level ever reported. The reason responsible for the significant improvement of tPVADH production at low induction temperature was explored in terms of cell viability, extracellular proteases activity, and alcohol oxidase activity.
Collapse
|
42
|
Yu WB, Liang X, Zhu P. High-cell-density fermentation and pilot-scale biocatalytic studies of an engineered yeast expressing the heterologous glycoside hydrolase of 7-β-xylosyltaxanes. J Ind Microbiol Biotechnol 2012. [PMID: 23179466 DOI: 10.1007/s10295-012-1212-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The glycoside hydrolase of 7-β-xylosyltaxanes (designated as LXYL-P1-2) is encoded by Lxyl-p1-2 isolated from Lentinula edodes. This hydrolase specifically removes C-7 xylose from 7-β-xylosyltaxanes to form 7-β-hydroxyltaxanes, which can be used for the semi-synthesis of paclitaxel or its analogues. In our present study, we established a high-cell-density fermentation of the recombinant Pichia pastoris harboring the Lxyl-p1-2 gene. Moreover, we further optimized the fermentation conditions, including the initial cell density and the dissolved oxygen level in the induction phase. Under optimized conditions, the biomass of 312.3 g/l (wet cell weight, WCW) was obtained, and the biomass activity of the recombinant enzyme reached 6.55 × 10(4) U/g (WCW). The freeze-dried cells (32 g/l) were used to convert 7-β-xylosyltaxanes (10 g/l, 7-β-xylosyl-10-deacetyltaxol = 62.12 %) in a 5-l reaction volume, and a bioconversion rate about 80 % was achieved. The product purification was performed by ethyl acetate, silica gel chromatography, and preparative HPLC (prep-HPLC), yielding 15.13 g of 10-deacetyltaxol, 3.07 g of 10-deacetylcephalomanine, and 3.47 g of 10-deacetyltaxol C, respectively. In addition, the average recovery rate was around 70 %. Our work provided a foundation for the industrial utilization of the recombinant enzyme on the semi-synthesis of paclitaxel using 7-β-xylosyltaxanes.
Collapse
Affiliation(s)
- Wen-Bo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
43
|
High-level expression and immunogenicity of a porcine circovirus type 2 capsid protein through codon optimization in Pichia pastoris. Appl Microbiol Biotechnol 2012; 97:2867-75. [DOI: 10.1007/s00253-012-4540-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023]
|
44
|
Li CH, Wang HR, Yan TR. Cloning, purification, and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 2012; 17:9774-89. [PMID: 22893022 PMCID: PMC6269021 DOI: 10.3390/molecules17089774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022] Open
Abstract
Endoglucanase B (EGLB) derived from Aspergillus niger BCRC31494 has been used in the food fermentation industry because of its thermal and alkaline tolerance. It was cloned and expressed in Pichia pastoris. According to sequence analysis, the gene open reading frame comprises 1,217 bp with five introns (GenBank GQ292753). According to sequence and protein domain analyses, EGLB was assigned to glycosyl hydrolase family 5 of the cellulase superfamily. Several binding sites were found in the promoter region. The purified recombinant enzyme was induced by 0.5% methanol, and it exhibited optimal activity at 70 °C and pH 4. EGLB was stable for 3 h at temperatures below 60 °C, with more than 90% of its activity remaining. The enzyme was specific for substrates with β-1,3 and β-1,4 linkages. In Lineweaver-Burk plot analysis, the Km and Vmax values of EGLB for β-D-glucan were 134 mg/mL and 4.68 U/min/mg, respectively. The enzyme activity was increased by 1.86-fold by Co2+ and by 2-fold by Triton X-100 and Tween 80. These favorable properties make EGLB a potential candidate for use in laundry and textile industrial applications.
Collapse
Affiliation(s)
| | | | - Tsong-Rong Yan
- Author to whom correspondence should be addressed; ; Tel.: +886-2-2182-2928 (ext. 6300); Fax: +886-2-2585-4735
| |
Collapse
|
45
|
Yang M, Johnson SC, Murthy PP. Enhancement of alkaline phytase production in Pichia pastoris: Influence of gene dosage, sequence optimization and expression temperature. Protein Expr Purif 2012; 84:247-54. [DOI: 10.1016/j.pep.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
46
|
High-level expression of a novel Penicillium endo-1,3(4)-β-d-glucanase with high specific activity in Pichia pastoris. ACTA ACUST UNITED AC 2012; 39:869-76. [DOI: 10.1007/s10295-012-1087-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/12/2012] [Indexed: 11/27/2022]
Abstract
Abstract
A novel endo-1,3(4)-β-d-glucanase gene (bgl16C1) from Penicillium pinophilum C1 was cloned and sequenced. The 945-bp full-length gene encoded a 315-residue polypeptide consisting of a putative signal peptide of 18 residues and a catalytic domain belonging to glycosyl hydrolase family 16. The deduced amino acid sequence showed the highest identity (82%) with the putative endo-1,3(4)-β-glucanase from Talaromyces stipitatus ATCC 10500 and 60% identity with the characterized β-1,3(4)-glucanase from Paecilomyces sp. FLH30. The gene was successfully overexpressed in Pichia pastoris. Recombinant Bgl16C1 constituted 95% of total secreted proteins (2.61 g l−1) with activity of 28,721 U ml−1 in a 15-l fermentor. The purified recombinant Bgl16C1 had higher specific activity toward barley β-glucan (12,622 U mg−1) than all known glucanases and also showed activity against lichenan and laminarin. The enzyme was optimally active at pH 5.0 and 55°C and exhibited good stability over a broad acid and alkaline pH range (>85% activity at pH 3.0–7.0 and even 30% at pH 11.0). All these favorable enzymatic properties make it attractive for potential applications in various industries.
Collapse
|
47
|
Jia H, Li Y, Liu Y, Yan Q, Yang S, Jiang Z. Engineering a thermostable β-1,3-1,4-glucanase from Paecilomyces thermophila to improve catalytic efficiency at acidic pH. J Biotechnol 2012; 159:50-5. [DOI: 10.1016/j.jbiotec.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/05/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
48
|
Potential application of two thermostable lichenases from a newly isolated Bacillus licheniformis UEB CF: Purification and characterization. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Gao Z, Li Z, Zhang Y, Huang H, Li M, Zhou L, Tang Y, Yao B, Zhang W. High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. Biotechnol Lett 2011; 34:507-14. [PMID: 22052258 DOI: 10.1007/s10529-011-0790-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/19/2011] [Indexed: 11/29/2022]
Abstract
The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35-40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml(-1) (2.5 g protein l(-1)) in a 3 l fermentor--410% higher than GOD-w (148 U ml(-1)), and thus is a low-cost alternative for the bread baking industry.
Collapse
Affiliation(s)
- Zhaowei Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang JW, Cheng YS, Ko TP, Lin CY, Lai HL, Chen CC, Ma Y, Zheng Y, Huang CH, Zou P, Liu JR, Guo RT. Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase. Appl Microbiol Biotechnol 2011; 94:111-21. [PMID: 21959377 DOI: 10.1007/s00253-011-3586-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 11/25/2022]
Abstract
1,3-1,4-β-D-Glucanase has been widely used as a feed additive to help non-ruminant animals digest plant fibers, with potential in increasing nutrition turnover rate and reducing sanitary problems. Engineering of enzymes for better thermostability is of great importance because it not only can broaden their industrial applications, but also facilitate exploring the mechanism of enzyme stability from structural point of view. To obtain enzyme with higher thermostability and specific activity, structure-based rational design was carried out in this study. Eleven mutants of Fibrobacter succinogenes 1,3-1,4-β-D-glucanase were constructed in attempt to improve the enzyme properties. In particular, the crude proteins expressed in Pichia pastoris were examined firstly to ensure that the protein productions meet the need for industrial fermentation. The crude protein of V18Y mutant showed a 2 °C increment of Tm and W203Y showed ∼30% increment of the specific activity. To further investigate the structure-function relationship, some mutants were expressed and purified from P. pastoris and Escherichia coli. Notably, the specific activity of purified W203Y which was expressed in E. coli was 63% higher than the wild-type protein. The double mutant V18Y/W203Y showed the same increments of Tm and specific activity as the single mutants did. When expressed and purified from E. coli, V18Y/W203Y showed similar pattern of thermostability increment and 75% higher specific activity. Furthermore, the apo-form and substrate complex structures of V18Y/W203Y were solved by X-ray crystallography. Analyzing protein structure of V18Y/W203Y helps elucidate how the mutations could enhance the protein stability and enzyme activity.
Collapse
|