1
|
Almihyawi RAH, Musazade E, Alhussany N, Zhang S, Chen H. Production and characterization of bacterial cellulose by Rhizobium sp. isolated from bean root. Sci Rep 2024; 14:10848. [PMID: 38740945 DOI: 10.1038/s41598-024-61619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp. was isolated from bean roots and systematically assessed for BC synthesis under optimal conditions, with a comparative analysis against BC produced by Komagataeibacter hansenii. The study revealed that Rhizobium sp. exhibited optimal BC synthesis when supplied with a 1.5% glucose carbon source and a 0.15% yeast extract nitrogen source. Under static conditions at 30 °C and pH 6.5, the most favorable conditions for growth and BC production (2.5 g/L) were identified. Modifications were introduced using nisin to enhance BC properties, and the resulting BC-nisin composites were comprehensively characterized through various techniques, including FE-SEM, FTIR, porosity, swelling, filtration, and antibacterial activity assessments. The results demonstrated that BC produced by Rhizobium sp. displayed properties comparable to K. hansenii-produced BC. Furthermore, the BC-nisin composites exhibited remarkable inhibitory activity against Escherichia coli and Pseudomonas aeruginosa. This study contributes valuable insights into BC's production, modification, and characterization utilizing Rhizobium sp., highlighting the exceptional properties that render it efficacious across diverse applications.
Collapse
Affiliation(s)
- Raed A H Almihyawi
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Department of Quality Control, Baghdad Water Authority, Baghdad, 10011, Iraq
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | | | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Changchun, 130118, China.
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
2
|
Budhwani Z, Buragina JT, Lang J, Acedo JZ. Characterization of the Novel Leaderless Bacteriocin, Bawcin, from Bacillus wiedmannii. Int J Mol Sci 2023; 24:16965. [PMID: 38069290 PMCID: PMC10707071 DOI: 10.3390/ijms242316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The rise of drug-resistant bacteria is a major threat to public health, highlighting the urgent need for new antimicrobial compounds and treatments. Bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by bacteria, hold promise as alternatives to conventional antibiotics. In this study, we identified and characterized a novel leaderless bacteriocin, bawcin, the first bacteriocin to be characterized from a Bacillus wiedmannii species. Chemically synthesized and purified bawcin was shown to be active against a broad range of Gram-positive bacteria, including foodborne pathogens Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes. Stability screening revealed that bawcin is stable over a wide range of pH (2.0-10.0), temperature conditions (25-100 °C), and against the proteases, papain and pepsin. Lastly, three-dimensional structure homology modeling suggests that bawcin contains a saposin-fold with amphipathic helices and a highly cationic surface that may be critical for membrane interaction and the subsequent cell death of its targets. This study provides the foundational understanding of the activity and properties of bawcin, offering valuable insights into its applications across different antimicrobial uses, including as a natural preservative in food and livestock industries.
Collapse
Affiliation(s)
- Zafina Budhwani
- Department of Chemistry and Physics, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Jenna T. Buragina
- Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada; (J.T.B.)
| | - Jen Lang
- Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada; (J.T.B.)
| | - Jeella Z. Acedo
- Department of Chemistry and Physics, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| |
Collapse
|
3
|
Wen X, Liang C, Zhang D, Li X, Chen L, Zheng X, Fang F, Cheng Z, Wang D, Hou C. Effects of hot or cold boning on the freshness and bacterial community changes of lamb cuts during chilled storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
5
|
Vogel V, Bauer R, Mauerer S, Schiffelholz N, Haupt C, Seibold GM, Fändrich M, Walther P, Spellerberg B. Angicin, a novel bacteriocin of Streptococcus anginosus. Sci Rep 2021; 11:24377. [PMID: 34934110 PMCID: PMC8692603 DOI: 10.1038/s41598-021-03797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
As a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which provide a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from - 70 to 90 °C and pH values from 2 to 10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.
Collapse
Affiliation(s)
- Verena Vogel
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
6
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
7
|
Lu Y, Aizhan R, Yan H, Li X, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Characterization, modes of action, and application of a novel broad-spectrum bacteriocin BM1300 produced by Lactobacillus crustorum MN047. Braz J Microbiol 2020; 51:2033-2048. [PMID: 32537676 PMCID: PMC7688877 DOI: 10.1007/s42770-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022] Open
Abstract
Bacteriocins are ribosomally synthesized peptides with antibacterial activity against food-borne pathogenic bacteria that cause spoilage, possessing important potential for use as a natural preservative in the food industry. The novel bacteriocin BM1300 produced by Lactobacillus crustorum MN047 was identified after purification in this study. It displayed broad-spectrum antibacterial activity against some selected Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) values of BM1300 against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 were 13.4 μg/mL and 6.7 μg/mL, respectively. Moreover, BM1300 showed excellent thermal (between 60 and 120 °C), pH (2-11), and chemical (Tween-40, Tween-80, Triton X-100, and EDTA) stabilities. Time-kill curves revealed that BM1300 exhibited bactericidal activity against S. aureus and E. coli. The scanning and transmission electron microscopy indicated that BM1300 acted by disrupting the cell membrane integrity and increasing cell membrane permeabilization of indicator bacteria. The disruption of cell membrane integrity caused by BM1300 was further demonstrated by the uptake of propidium iodide (PI) and the release of intracellular lactate dehydrogenase (LDH) and nucleic acid and proteins. Moreover, BM1300 affected cell cycle distribution to exert antibacterial activity collaboratively. Meanwhile, BM1300 inhibited the growth of S. aureus and E. coli of beef meat and improved the microbiological quality of beef meat. These findings place BM1300 as a potential biopreservative in the food industry.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Rakhmanova Aizhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
8
|
Das A, Chauhan G, Agrawal RK, Das AK, Tomar S, Uddin S, Satyaprakash K, Pateiro M, Lorenzo JM. Characterization of crude extract prepared from Indian curd and its potential as a biopreservative. FOOD SCI TECHNOL INT 2020; 27:313-325. [PMID: 32910706 DOI: 10.1177/1082013220940093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adverse effects of chemical preservatives used to prevent food spoilage have led to the search for various biopreservatives. Considering this, a study was undertaken to prepare crude extract (CE) from Indian curd (a fermented dairy product) and characterized it in terms of antioxidant and antimicrobial activities against some common food-borne bacteria. The CE exhibited well pronounced antimicrobial activity against Bacillus cereus and Salmonella typhimurium. The minimum inhibitory concentration (MIC) of CE was recorded for 2-fold concentrated solution prepared from a 10-fold stock. The CE exhibited a significantly higher (p < 0.05) antioxidant and antimicrobial activities compared to its fractions. The CE was found to be heat stable (up to 100 ℃ for 30 min) and exhibited a significant (p < 0.05) increase in activity at pH 2-7 and in combination with 2% citric acid solution. Trypsin treatment suggested it to be of proteinaceous in nature. The antibacterial activity of CE remained intact at 4 ℃ for seven days, whereas non-significant (p > 0.05) changes in its activity were noted during storage at -20 ℃ for 30 days. The curd sample used for preparation of CE, when tested for bacteriocin production and subsequent antimicrobial activity, did not show inhibition against S. typhimurium. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of CE and its fractions revealed multi-banding pattern. By virtue of its bioactivities observed, CE can be explored as a promising food biopreservative.
Collapse
Affiliation(s)
- Annada Das
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Geeta Chauhan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Ravi K Agrawal
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Serlene Tomar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Siraj Uddin
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Kaushik Satyaprakash
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| |
Collapse
|
9
|
Zhang H, Tikekar RV, Ding Q, Gilbert AR, Wimsatt ST. Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food-grade compounds. Compr Rev Food Sci Food Saf 2020; 19:2110-2138. [PMID: 33337103 DOI: 10.1111/1541-4337.12582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
There is a need to develop food processing technologies with enhanced antimicrobial capacity against foodborne pathogens. While considering the challenges of adequate inactivation of pathogenic microorganisms in different food matrices, the emerging technologies are also expected to be sustainable and have a minimum impact on food quality and nutrients. Synergistic combinations of food processing technologies and food-grade compounds have a great potential to address these needs. During these combined treatments, food processes directly or indirectly interact with added chemicals, intensifying the overall antimicrobial effect. This review provides an overview of the combinations of different thermal or nonthermal processes with a variety of food-grade compounds that show synergistic antimicrobial effect against pathogenic microorganisms in foods and model systems. Further, we summarize the underlying mechanisms for representative combined treatments that are responsible for the enhanced microbial inactivation. Finally, regulatory issues and challenges for further development and technical transfer of these new approaches at the industrial level are also discussed.
Collapse
Affiliation(s)
- Hongchao Zhang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Andrea R Gilbert
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Stratton T Wimsatt
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
10
|
Sabo SDS, Mendes MA, Araújo EDS, Muradian LBDA, Makiyama EN, LeBlanc JG, Borelli P, Fock RA, Knöbl T, Oliveira RPDS. Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci Rep 2020; 10:7235. [PMID: 32350311 PMCID: PMC7190695 DOI: 10.1038/s41598-020-64038-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023] Open
Abstract
The demand for animal protein for human consumption has been risen exponentially. Modern animal production practices are associated with the regular use of antibiotics, potentially increasing the emerging multi-resistant bacteria, which may have a negative impact on public health. In poultry production, substances capable of maximizing the animals’ performance and displaying an antimicrobial activity against pathogens are very well desirable features. Probiotic can be an efficient solution for such a task. In the present work, lactic acid bacteria (LAB) were isolated from chicken cecum and screened for their antagonistic effect towards many pathogens. Their capacity of producing the B-complex vitamins folate and riboflavin were also evaluated. From 314 isolates, three (C43, C175 and C195) produced Bacteriocin-Like Inhibitory Substances (BLIS) against Staphylococcus aureus (inhibition zones of 18.9, 21.5, 19.5 mm, respectively) and also inhibited the growth of Salmonella Heidelberg. The isolate C43 was identified as Enterococcus faecium, while C173 and C195 were both identified as Lactococcus lactis subsp. lactis. Moreover, the isolates L. lactis subsp. lactis strains C173 and C195 demonstrated high potential to be used as probiotic in poultry feed, in addition to their advantage of producing folate (58.0 and 595.5 ng/mL, respectively) and riboflavin (223.3 and 175.0 ng/mL, respectively).
Collapse
Affiliation(s)
- Sabrina da Silva Sabo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Anita Mendes
- Chemical Engineering Department, University of São Paulo, São Paulo, Brazil
| | - Elias da Silva Araújo
- Department of Food and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | | | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Science, University of São Paulo, São Paulo, Brazil
| | - Terezinha Knöbl
- Department of Pathology, School of Veterinary Medicine and Animal Science, São Paulo, Brazil, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
12
|
Kubašová I, Diep DB, Ovchinnikov KV, Lauková A, Strompfová V. Bacteriocin production and distribution of bacteriocin-encoding genes in enterococci from dogs. Int J Antimicrob Agents 2019; 55:105859. [PMID: 31794868 DOI: 10.1016/j.ijantimicag.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
Many enterococcal strains produce bacteriocins, which could be useful as natural food preservatives through inhibition of pathogenic and spoilage microorganisms. There is little knowledge of the distribution and spectrum of bacteriocin activity and the distribution of bacteriocin-encoding genes in enterococci isolated from dogs. Therefore, we subjected 160 enterococcal isolates (E. faecium n=92, E. faecalis n=35, E. hirae n=28, E. casseliflavus n=3, E. mundtii n=2) from 105 samples of dog faeces to polymerase chain reaction (PCR) detection of genes for enterocin A, P, B, L50A, L50B, AS-48, and bac31 and to screening for bacteriocin activity. The results showed the presence of at least one of the tested genes in 54/160 isolates, with E. faecium the most common gene-possessing species. The most frequently occurring gene for production of enterocin A was observed in combination with enterocin P and B. Bacteriocin activity was observed in 76/160 isolates against at least one of 5 indicator bacteria from the genus Listeria, Enterococcus, Streptococcus and Staphylococcus. Four selected strains (IK25, Bri, I/Dz, P10) were active mostly against different species of Enterococcus (in the range 400-25 600 AU/mL) and Listeria sp. (800-12 800 AU/mL) but no Gram-negative bacteria were inhibited. Protein character, thermostability (up to 121°C) and stability at different pH values (3.0-10.0) were confirmed for crude bacteriocins of these four strains. The antimicrobial substance of E. faecium IK25 strain was identified as enterocin B using molecular weight detection and the presence of genes.
Collapse
Affiliation(s)
- Ivana Kubašová
- Centre of Biosciences, Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01 Košice, Slovakia.
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Kirill V Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Andrea Lauková
- Centre of Biosciences, Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01 Košice, Slovakia
| | - Viola Strompfová
- Centre of Biosciences, Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01 Košice, Slovakia
| |
Collapse
|
13
|
Azevedo PODSD, Molinari F, Oliveira RPDS. Importance of the agar-media in the evaluation of bacteriocin activity against the same test-microorganisms. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000117533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Prudêncio CV, dos Santos MT, Vanetti MCD. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:5408-17. [PMID: 26344957 PMCID: PMC4554667 DOI: 10.1007/s13197-014-1666-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
Abstract
Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gram-negative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.
Collapse
Affiliation(s)
- Cláudia Vieira Prudêncio
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, 36570-900 Minas Gerais Brazil
| | - Miriam Teresinha dos Santos
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, 36570-900 Minas Gerais Brazil
| | - Maria Cristina Dantas Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, 36570-900 Minas Gerais Brazil
| |
Collapse
|
15
|
Galvão MF, Prudêncio CV, Vanetti MCD. Stress enhances the sensitivity of Salmonella enterica serovar Typhimurium to bacteriocins. J Appl Microbiol 2015; 118:1137-43. [PMID: 25693498 DOI: 10.1111/jam.12776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 12/27/2022]
Abstract
AIMS The aim of this study was to evaluate the potential application of bacteriocins against Gram-negative bacteria when associated with others food preservation methods. METHODS AND RESULTS Salmonella was subjected to heat, cold, acid and chemical (with ethylenediaminetetracetate and trisodium phosphate) stresses. Then, the cells were recovered and subjected to treatment with bacteriocins (500 AU ml(-1) ) for 6 h. Heat and cold stress were those that promoted more sensitization to bactericidal activity of nisin. Under the same conditions, bovicin HC5 acted more rapidly than nisin reducing the number of viable cells to undetectable levels after 20 min of treatment. Similar results with use of nisin only were observed after 6 h of treatment. CONCLUSIONS Stress conditions used in food industry, such as temperature and pH, and use of chelating agents or membrane disruptors, sensitized Salmonella Typhimurium cells to bacteriocins produced by lactic acid bacteria, such as nisin and bovicin HC5. SIGNIFICANCE AND IMPACT OF THE STUDY Food preservation methods sensitized Gram-negative bacteria to bacteriocins activity, which demonstrate the potential of nisin and bovicin HC5 to inhibit the growth of Salmonella.
Collapse
Affiliation(s)
- M F Galvão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
16
|
Tolerance of Salmonella enterica serovar Typhimurium to nisin combined with EDTA is accompanied by changes in cellular composition. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens. Int J Mol Sci 2013; 14:4640-54. [PMID: 23443163 PMCID: PMC3634443 DOI: 10.3390/ijms14034640] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/08/2023] Open
Abstract
In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB) food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17%) producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s) of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials.
Collapse
|
18
|
Zou Y, Jung LS, Lee SH, Kim S, Cho Y, Ahn J. Enhanced antimicrobial activity of nisin in combination with allyl isothiocyanate againstListeria monocytogenes,Staphylococcus aureus,Salmonella TyphimuriumandShigella boydii. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03190.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunyun Zou
- Department of Medical Biomaterials Engineering; Kangwon National University; Chuncheon; Gangwon 200-701; Korea
| | - Lae-Seung Jung
- Department of Medical Biomaterials Engineering; Kangwon National University; Chuncheon; Gangwon 200-701; Korea
| | | | - Sungkyun Kim
- CJ CheilJedang Corp; Guro-gu; Seoul 152-050; Korea
| | - Youngjae Cho
- Research Institute of Bioscience & Biotechnology; Kangwon National University; Chuncheon; Gangwon 200-701; Korea
| | | |
Collapse
|
19
|
Roche Y, Cao-Hoang L, Perrier-Cornet JM, Waché Y. Advanced fluorescence technologies help to resolve long-standing questions about microbial vitality. Biotechnol J 2012; 7:608-19. [PMID: 22253212 DOI: 10.1002/biot.201100344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 11/11/2011] [Accepted: 12/06/2011] [Indexed: 11/08/2022]
Abstract
Advances in fundamental physical and optical principles applied to novel fluorescence methods are currently resulting in rapid progress in cell biology and physiology. Instrumentation devised in pioneering laboratories is becoming commercially available, and study findings are now becoming accessible. The first results have concerned mainly higher eukaryotic cells but many more developments can be expected, especially in microbiology. Until now, some important problems of cell physiology have been difficult to investigate due to interactions between probes and cells, excretion of probes from cells and the inability to make in situ observations deep within the cell, within tissues and structures. These technologies will enable microbiologists to address these topics. This Review aims at introducing the limits of current physiology evaluation techniques, the principles of new fluorescence technologies and examples of their use in this field of research for evaluating the physiological state of cells in model media, biofilms or tissue environments. Perspectives on new imaging technologies, such as super-resolution imaging and non-linear highly sensitive Raman microscopy, are also discussed. This review also serves as a reference to those wishing to explore how fluorescence technologies can be used to understand basic cell physiology in microbial systems.
Collapse
Affiliation(s)
- Yann Roche
- Laboratory GPMA, IFR92, Université de Bourgogne & AgroSup Dijon, Dijon, France.
| | | | | | | |
Collapse
|
20
|
|
21
|
Lacticin Q-mediated selective toxicity depending on physicochemical features of membrane components. Antimicrob Agents Chemother 2011; 55:2446-50. [PMID: 21282423 DOI: 10.1128/aac.00808-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lacticin Q, a lactococcal pore-forming bacteriocin, shows activity toward Gram-positive bacteria but not Gram-negative bacteria. Lacticin Q did not induce permeability of the outer membrane of Gram-negative bacteria. Experiments using model membranes containing outer membrane components suggested that lacticin Q binds to the outer membrane of Gram-negative bacteria but is unable to penetrate it. The lack of activity of lacticin Q was attributed to physicochemical features of the outer membrane components.
Collapse
|
22
|
Yang J, Hou X, Mir PS, McAllister TA. Anti-Escherichia coli O157:H7 activity of free fatty acids under varying pH. Can J Microbiol 2010; 56:263-7. [PMID: 20453913 DOI: 10.1139/w09-127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following screening of 4 strains of Escherichia coli O157:H7 (E32511, E318N, H4420N, and R508N) for acid tolerance, strain H4420N was selected for further study into the influence of pH on bactericidal activity of 6 fatty acids (capric, lauric, palmitic, oleic, linoleic, and linolenic). Strain H4420N was cultured for 6 h in Luria-Bertani broth amended with individual fatty acids at 20 mmol/L, with pH adjusted to 7.0, 4.3, or 2.5. None of the fatty acids exhibited bactericidal activity at pH 7.0 (p >0.05). At pH 4.3, only capric, lauric, and linoleic acids reduced viability of H4420N (p < 0.05). At pH 2.5, oleic (C18:1) and linolenic (C18:3) acids had modest effects on H4420N viability, whereas capric (C10:0), lauric (C12:0), and linoleic (C18:2) acids resulted in a reduction > or =5 log10 colony-forming units (CFU)/mL (p < 0.05). Capric and lauric acids were examined further at pH 2.5 over a range of concentrations (0.15-20 mmol/L). After 10 min of exposure, 5 log10 CFU/mL reductions (p < 0.05) were achieved by lauric acid at 2.5 mmol/L and by capric acid at 0.31 mmol/L. Acid stress increased the sensitivity of acid-tolerant E. coli O157:H7 strain H4420N to fatty acids. Including sources of these fatty acids in diets for cattle might impair the ability of this zoonotic pathogen to survive passage through the stomach, possibly reducing the potential for its colonization in the lower gut.
Collapse
Affiliation(s)
- Jinli Yang
- Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, P R China
| | | | | | | |
Collapse
|
23
|
Cao-Hoang L, Dumont F, Marechal PA, Gervais P. Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Arch Microbiol 2010; 192:299-305. [PMID: 20191264 DOI: 10.1007/s00203-010-0555-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/22/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
The relationship between membrane permeabilization and loss of viability by chilling depending on the chilling rate was investigated in two bacterial models: one Gram-positive bacterium, Lactobacillus plantarum, and one Gram-negative bacterium, Escherichia coli. Cells were cold shocked slowly (2 degrees C/min) or rapidly (2,000 degrees C/min) from physiological temperature to 0 degrees C and maintained at this temperature for up to 1 week. Loss of membrane integrity was assessed by the uptake of the fluorescent dye propidium iodide (PI). Cell death was found to be strongly dependent on the rate of temperature downshift to 0 degrees C. Prolonged incubation of cells after the chilling emphasized the effect of treatment on the cells, as the amount of cell death increased with the length of exposure to low temperature, particularly when cells were rapidly chilled. More than 5 and 3-log reductions in cell population were obtained with L. plantarum and E. coli after the rapid cold shock followed by 7-day storage, respectively. A correlation between cell inactivation and membrane permeabilization was demonstrated with both bacterial strains. Thus, loss of membrane integrity due to the chilling treatments was directly involved in the inactivation of vegetative bacterial cells.
Collapse
Affiliation(s)
- L Cao-Hoang
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires, AgroSup Dijon, France.
| | | | | | | |
Collapse
|
24
|
Comparison of nisin and monensin effects on ciliate and selected bacterial populations in artificial rumen. Folia Microbiol (Praha) 2010; 54:527-32. [PMID: 20140721 DOI: 10.1007/s12223-009-0076-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 08/19/2009] [Indexed: 10/19/2022]
Abstract
The effect of daily supplementation of nisin (2 mg/L), monensin (5.88 mg/L) and nisin and monensin (2 + 5.88 mg/L) on ovine ruminal ciliates and bacteria was investigated using the artificial rumen RUSITEC. Major groups in RUSITEC were Entodinium spp. and Dasytricha ruminantium. The supplementation of nisin significantly increased the population of both major ciliate groups. The supplementation of monensin significantly decreased the population of both groups. The combined effect of nisin and monensin was similar to the effect of monensin. Monensin had strong antiprotozoic effects in contrast to the stimulatory effects of nisin. D. ruminantium followed by Entodinium spp. appeared more resistant to tested compounds than other rumen ciliates. Tested additives did not significantly influence the presence and growth of amylolytic streptococci and enterococci but nisin showed a tendency to decreasing the concentration of Escherichia coli and lactobacilli.
Collapse
|
25
|
Engineering of Bacillus subtilis 168 for increased nisin resistance. Appl Environ Microbiol 2009; 75:6688-95. [PMID: 19749059 DOI: 10.1128/aem.00943-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin is a natural bacteriocin produced commercially by Lactococcus lactis and widely used in the food industry as a preservative because of its broad host spectrum. Despite the low productivity and troublesome fermentation of L. lactis, no alternative cost-effective host has yet been found. Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied transcriptome and proteome analyses of B. subtilis and identified eight genes upregulated in the presence of nisin. We demonstrated that the overexpression of some of these genes boosts the natural defenses of B. subtilis, which allows it to sustain higher levels of nisin in the medium. We also attempted to overcome the nisin sensitivity of B. subtilis by introducing the nisin resistance genes nisFEG and nisI from L. lactis under the control of a synthetic promoter library.
Collapse
|
26
|
Cao‐Hoang L, Marechal P, Lê‐Thanh M, Gervais P, Waché Y. Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: A guide for prokaryotic and eukaryotic investigation. Biotechnol J 2008; 3:890-903. [DOI: 10.1002/biot.200700206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|