1
|
Chen H, Zhao H, Jiang G, Chen J, Yi J, Zhou C, Luo D. The flavour of wheat gluten hydrolysate after Corynebacterium Glutamicum fermentation: Effect of degrees of hydrolysis and fermentation time. Food Chem 2024; 458:140238. [PMID: 38968705 DOI: 10.1016/j.foodchem.2024.140238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Corynebacterium glutamicum was used to ferment wheat gluten hydrolysates (WGHs) to prepare flavour base. This study investigated the effect of hydrolysis degrees (DHs) and fermentation time on flavour of WGHs. During fermentation, the contents of amino nitrogen, total acid and small peptides increased, while the protein and pH value decreased. Succinic acid, GMP, and Glu were the prominent umami substances in fermented WGHs. The aromas of WGHs with different DHs could be distinguished by electronic nose and GC-IMS. Based on OAV of GC-MS, hexanal was the main compound in WGHs, while phenylethyl alcohol and acetoin were dominant after fermentation. WGHs with high DHs accumulated more flavour metabolites. Correlation analysis showed that small peptides (<1 kDa) could promote the formation of flavour substances, and Asp was potentially relevant flavour precursor. This study indicated that fermented WGHs with different DHs can potentially be used in different food applications based on flavour profiles.
Collapse
Affiliation(s)
- Haowen Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Huiyan Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Guili Jiang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jiawen Yi
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China.
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Kumar V, Kumar P, Maity SK, Agrawal D, Narisetty V, Jacob S, Kumar G, Bhatia SK, Kumar D, Vivekanand V. Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:72. [PMID: 38811976 PMCID: PMC11137917 DOI: 10.1186/s13068-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Pankaj Kumar
- Department of Chemical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
3
|
Xie CY, Su RR, Wu B, Sun ZY, Tang YQ. Response mechanisms of different Saccharomyces cerevisiae strains to succinic acid. BMC Microbiol 2024; 24:158. [PMID: 38720268 PMCID: PMC11077785 DOI: 10.1186/s12866-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.
Collapse
Affiliation(s)
- Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Ran-Ran Su
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture, Renmin Rd. 4-13, Chengdu, 610041, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
4
|
Lee DS, Cho EJ, Nguyen DT, Song Y, Chang J, Bae HJ. Succinic acid production from softwood with genome-edited Corynebacterium glutamicum using the CRISPR-Cpf1 system. Biotechnol J 2024; 19:e2300309. [PMID: 38180273 DOI: 10.1002/biot.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Corynebacterium glutamicum is a useful microbe that can be used for producing succinic acid under anaerobic conditions. In this study, we generated a knock-out mutant of the lactate dehydrogenase 1 gene (ΔldhA-6) and co-expressed the succinic acid transporter (Psod:SucE- ΔldhA) using the CRISPR-Cpf1 genome editing system. The highly efficient HPAC (hydrogen peroxide and acetic acid) pretreatment method was employed for the enzymatic hydrolysis of softwood (Pinus densiflora) and subsequently utilized for production of succinic acid. Upon evaluating a 1%-5% hydrolysate concentration range, optimal succinic acid production with the ΔldhA mutant was achieved at a 4% hydrolysate concentration. This resulted in 14.82 g L-1 succinic acid production over 6 h. No production of acetic acid and lactic acid was detected during the fermentation. The co-expression transformant, [Psod:SucE-ΔldhA] produced 17.70 g L-1 succinic acid in 6 h. In the fed-batch system, 39.67 g L-1 succinic acid was produced over 48 h. During the fermentation, the strain consumed 100% and 73% of glucose and xylose, respectively. The yield of succinic acid from the sugars consumed was approximately 0.77 g succinic acid/g sugars. These results indicate that the production of succinic acid from softwood holds potential applications in alternative biochemical processes.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Jin Cho
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | | | - Younho Song
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Jihye Chang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
- School of Biotechology, Tan Tao University, Long An, Viet Nam
| |
Collapse
|
5
|
Tran VG, Mishra S, Bhagwat SS, Shafaei S, Shen Y, Allen JL, Crosly BA, Tan SI, Fatma Z, Rabinowitz JD, Guest JS, Singh V, Zhao H. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis. Nat Commun 2023; 14:6152. [PMID: 37788990 PMCID: PMC10547785 DOI: 10.1038/s41467-023-41616-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34-90% relative to fossil-based production processes. We expect I. orientalis can serve as a general industrial platform for production of organic acids.
Collapse
Affiliation(s)
- Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Somesh Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarang S Bhagwat
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Saman Shafaei
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihui Shen
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jayne L Allen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Crosly
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jeremy S Guest
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Vijay Singh
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Christmann J, Cao P, Becker J, Desiderato CK, Goldbeck O, Riedel CU, Kohlstedt M, Wittmann C. High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microb Cell Fact 2023; 22:41. [PMID: 36849884 PMCID: PMC9969654 DOI: 10.1186/s12934-023-02044-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.
Collapse
Affiliation(s)
- Jens Christmann
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Peng Cao
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christian K. Desiderato
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Oliver Goldbeck
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Christian U. Riedel
- grid.6582.90000 0004 1936 9748Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael Kohlstedt
- grid.11749.3a0000 0001 2167 7588Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
7
|
Tenhaef N, Hermann A, Müller MF, Görtz J, Marienhagen J, Oldiges M, Wiechert W, Bott M, Jupke A, Hartmann L, Herres-Pawlis S, Noack S. From Microbial Succinic Acid Production to Polybutylene Bio‐Succinate Synthesis. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Niklas Tenhaef
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
| | - Alina Hermann
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Institute of Inorganic Chemistry 52074 Aachen Germany
| | - Moritz Fabian Müller
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
| | - Jonas Görtz
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Aachener Verfahrenstechnik – Fluid Process Engineering (AVT.FVT) 52074 Aachen Germany
| | - Jan Marienhagen
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Institute of Biotechnology Worringer Weg 3 52074 Aachen Germany
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Institute of Biotechnology Worringer Weg 3 52074 Aachen Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Computational Systems Biotechnology (AVT.CSB) 52074 Aachen Germany
| | - Michael Bott
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
| | - Andreas Jupke
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Aachener Verfahrenstechnik – Fluid Process Engineering (AVT.FVT) 52074 Aachen Germany
| | - Laura Hartmann
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- Heinrich Heine University Düsseldorf Institute of Organic and Macromolecular Chemistry 40225 Düsseldorf Germany
| | - Sonja Herres-Pawlis
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
- RWTH Aachen University Institute of Inorganic Chemistry 52074 Aachen Germany
| | - Stephan Noack
- Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences, IBG-1: Biotechnology 52425 Jülich Germany
- Forschungszentrum Jülich GmbH Bioeconomy Science Center (BioSC) 52425 Jülich Germany
| |
Collapse
|
8
|
Xu JX, Yuan Y, Wu XF. Ethylene as a synthon in carbonylative synthesis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhou S, Zhang M, Zhu L, Zhao X, Chen J, Chen W, Chang C. Hydrolysis of lignocellulose to succinic acid: a review of treatment methods and succinic acid applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:1. [PMID: 36593503 PMCID: PMC9806916 DOI: 10.1186/s13068-022-02244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Succinic acid (SA) is an intermediate product of the tricarboxylic acid cycle (TCA) and is one of the most significant platform chemicals for the production of various derivatives with high added value. Due to the depletion of fossil raw materials and the demand for eco-friendly energy sources, SA biosynthesis from renewable energy sources is gaining attention for its environmental friendliness. This review comprehensively analyzes strategies for the bioconversion of lignocellulose to SA based on the lignocellulose pretreatment processes and cellulose hydrolysis and fermentation principles and highlights the research progress on acid production and SA utilization under different microbial culture conditions. In addition, the fermentation efficiency of different microbial strains for the production of SA and the main challenges were analyzed. The future application directions of SA derivatives were pointed out. It is expected that this research will provide a reference for the optimization of SA production from lignocellulose.
Collapse
Affiliation(s)
- Shuzhen Zhou
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Linying Zhu
- College of Management Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoling Zhao
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China.
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China.
| | - Junying Chen
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| | - Wei Chen
- Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang, China
| | - Chun Chang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| |
Collapse
|
10
|
Wang J, Wang S, Zhao S, Sun P, Zhang Z, Xu Q. Productivity enhancement in L-lysine fermentation using oxygen-enhanced bioreactor and oxygen vector. Front Bioeng Biotechnol 2023; 11:1181963. [PMID: 37200843 PMCID: PMC10187759 DOI: 10.3389/fbioe.2023.1181963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: L-lysine is a bulk product. In industrial production using high-biomass fermentation, the high density of bacteria and the intensity of production require sufficient cellular respiratory metabolism for support. Conventional bioreactors often have difficulty meeting the oxygen supply conditions for this fermentation process, which is not conducive to improving the sugar-amino acid conversion rate. In this study, we designed and developed an oxygen-enhanced bioreactor to address this problem. Methods: This bioreactor optimizes the aeration mix using an internal liquid flow guide and multiple propellers. Results: Compared with a conventional bioreactor, it improved the kLa from 367.57 to 875.64 h-1, an increase of 238.22%. The results show that the oxygen supply capacity of the oxygen-enhanced bioreactor is better than that of the conventional bioreactor. Its oxygenating effect increased the dissolved oxygen in the middle and late stages of fermentation by an average of 20%. The increased viability of Corynebacterium glutamicum LS260 in the mid to late stages of growth resulted in a yield of 185.3 g/L of L-lysine, 74.57% conversion of lysine from glucose, and productivity of 2.57 g/L/h, an increase of 11.0%, 6.01%, and 8.2%, respectively, over a conventional bioreactor. Oxygen vectors can further improve the production performance of lysine strains by increasing the oxygen uptake capacity of microorganisms. We compared the effects of different oxygen vectors on the production of L-lysine from LS260 fermentation and concluded that n-dodecane was the most suitable. Bacterial growth was smoother under these conditions, with a 2.78% increase in bacterial volume, a 6.53% increase in lysine production, and a 5.83% increase in conversion. The different addition times of the oxygen vectors also affected the final yield and conversion, with the addition of oxygen vectors at 0 h, 8 h, 16 h, and 24 h of fermentation increasing the yield by 6.31%, 12.44%, 9.93%, and 7.39%, respectively, compared to fermentation without the addition of oxygen vectors. The conversion rates increased by 5.83%, 8.73%, 7.13%, and 6.13%, respectively. The best results were achieved by adding oxygen vehicles at the 8th hour of fermentation, with a lysine yield of 208.36 g/L and a conversion rate of 83.3%. In addition, n-dodecane significantly reduced the amount of foam produced during fermentation, which is beneficial for fermentation control and equipment. Conclusion: The new oxygen-enhanced bioreactor improves oxygen transfer efficiency, and oxygen vectors enhance the ability of cells to take up oxygen, which effectively solves the problem of insufficient oxygen supply during lysine fermentation. This study provides a new bioreactor and production solution for lysine fermentation.
Collapse
Affiliation(s)
- Jinduo Wang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Siyu Zhao
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Pengjie Sun
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Qingyang Xu,
| |
Collapse
|
11
|
Son J, Sohn YJ, Baritugo KA, Jo SY, Song HM, Park SJ. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers. Biotechnol Adv 2023; 62:108070. [PMID: 36462631 DOI: 10.1016/j.biotechadv.2022.108070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
12
|
Kocks C, Wall D, Jupke A. Evaluation of a Prototype for Electrochemical pH-Shift Crystallization of Succinic Acid. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8412. [PMID: 36499913 PMCID: PMC9738731 DOI: 10.3390/ma15238412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Downstream processing of biotechnologically produced carboxylic acids, such as succinic acid, poses environmental and economic challenges. Conventional downstream processes cause large amounts of waste salts, which have to be purified or disposed of. Therefore, lean and waste-free downstream processes are necessary for the biotechnological production of succinic acid. Electrochemical downstream processes gain especially significant attention due to low chemical consumption and waste reduction. This work presents the pH-dependent solid-liquid equilibrium of succinic acid, a prototype for electrochemical pH-shift crystallization processes, and its characterization. Based on the supersaturation, energy consumption, and electrochemical protonation efficiency the proposed electrochemical pH-shift crystallization is evaluated. This evaluation highlights the potential of the proposed electrochemical crystallization processes as waste-free and economically attractive processes for bio-based succinic acid production.
Collapse
|
13
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Briki A, Olmos E, Delaunay S, Fournier F. Generalized modelling of effect of oxygenation and glucose concentration on Corynebacterium glutamicum growth and production kinetics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
16
|
Wang Y, Huang J, Liang X, Wei M, Liang F, Feng D, Xu C, Xian M, Zou H. Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit Rev Biotechnol 2022; 43:503-520. [PMID: 35430940 DOI: 10.1080/07388551.2022.2039590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.
Collapse
Affiliation(s)
- Yaqun Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiuhong Liang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Manman Wei
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
17
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
18
|
MacKinnon D, Zhao T, Becer CR. Tuneable
N
‐Substituted Polyamides with High Biomass Content via Ugi 4 Component Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel MacKinnon
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Tieshuai Zhao
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - C. Remzi Becer
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
19
|
Tafur Rangel AE, Oviedo AG, Mojica FC, Gómez JM, Gónzalez Barrios AF. Development of an integrating systems metabolic engineering and bioprocess modeling approach for rational strain improvement. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Thoma F, Schulze C, Gutierrez-Coto C, Hädrich M, Huber J, Gunkel C, Thoma R, Blombach B. Metabolic engineering of Vibrio natriegens for anaerobic succinate production. Microb Biotechnol 2021; 15:1671-1684. [PMID: 34843164 PMCID: PMC9151343 DOI: 10.1111/1751-7915.13983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
The biotechnological production of succinate bears serious potential to fully replace existing petrochemical approaches in the future. In order to establish an economically viable bioprocess, obtaining high titre, yield and productivity is of central importance. In this study, we present a straightforward engineering approach for anaerobic succinate production with Vibrio natriegens, consisting of essential metabolic engineering and optimization of process conditions. The final producer strain V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) yielded 1.46 mol of succinate per mol of glucose under anaerobic conditions (85% of the theoretical maximum) and revealed a particularly high biomass‐specific succinate production rate of 1.33 gSucc gCDW−1 h−1 compared with well‐established production systems. By applying carbon and redox balancing, we determined the intracellular flux distribution and show that under the tested conditions the reductive TCA as well as the oxidative TCA/glyoxylate pathway contributed to succinate formation. In a zero‐growth bioprocess using minimal medium devoid of complex additives and expensive supplements, we obtained a final titre of 60.4 gSucc l−1 with a maximum productivity of 20.8 gSucc l−1 h−1 and an overall volumetric productivity of 8.6 gSucc l−1 h−1 during the 7 h fermentation. The key performance indicators (titre, yield and productivity) of this first engineering approach in V. natriegens are encouraging and compete with costly tailored microbial production systems.
Collapse
Affiliation(s)
- Felix Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany.,SynBiofoundry@TUM, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, Straubing, 94315, Germany
| | - Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany
| | - Carolina Gutierrez-Coto
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany
| | - Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany
| | - Janine Huber
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany
| | - Christoph Gunkel
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany
| | - Rebecca Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstraße 53, Straubing, 94315, Germany.,SynBiofoundry@TUM, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, Straubing, 94315, Germany
| |
Collapse
|
21
|
Stylianou E, Pateraki C, Ladakis D, Damala C, Vlysidis A, Latorre-Sánchez M, Coll C, Lin CSK, Koutinas A. Bioprocess development using organic biowaste and sustainability assessment of succinic acid production with engineered Yarrowia lipolytica strain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Luo R, Qin Z, Zhou D, Wang D, Hu G, Su Z, Zhang S. Coupling the fermentation and membrane separation process for polyamides monomer cadaverine production from feedstock lysine. Eng Life Sci 2021; 21:623-629. [PMID: 34690633 PMCID: PMC8518567 DOI: 10.1002/elsc.202000099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
Nylon is a polyamide material with excellent performance used widely in the aviation and automobile industries, and other fields. Nylon monomers such as hexamethylene diamine and other monomers are in huge demand. Therefore, in order to expand the methods of nylon production, we tried to develop alternative bio-manufacturing processes which would make a positive contribution to the nylon industry. In this study, the engineered E. coli-overexpressing Lysine decarboxylases (LDCs) were used for the bioconversion of l-lysine to cadaverine. An integrated fermentation and microfiltration (MF) process for high-level cadaverine production by E. coli was established. Concentration was increased from 87 to 263.6 g/L cadaverine after six batch coupling with a productivity of 3.65 g/L-h. The cadaverine concentration was also increased significantly from 0.43 g cadaverine/g l-lysine to 0.88 g cadaverine/g l-lysine by repeated batch fermentation. These experimental results indicate that coupling the fermentation and membrane separation process could benefit the continuous production of cadaverine at high levels.
Collapse
Affiliation(s)
- Ruoshi Luo
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing UniversityChongqingP. R. China
- Department of Chemical EngineeringSchool of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
| | - Zhao Qin
- Department of Chemical EngineeringSchool of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
| | - Dan Zhou
- Department of Chemical EngineeringSchool of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
| | - Dan Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing UniversityChongqingP. R. China
- Department of Chemical EngineeringSchool of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
| | - Ge Hu
- Department of Chemical EngineeringSchool of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
| | - Zhiguo Su
- Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Suojiang Zhang
- Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
23
|
Burgardt A, Prell C, Wendisch VF. Utilization of a Wheat Sidestream for 5-Aminovalerate Production in Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 9:732271. [PMID: 34660554 PMCID: PMC8511785 DOI: 10.3389/fbioe.2021.732271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Production of plastics from petroleum-based raw materials extensively contributes to global pollution and CO2 emissions. Biotechnological production of functionalized monomers can reduce the environmental impact, in particular when using industrial sidestreams as feedstocks. Corynebacterium glutamicum, which is used in the million-ton-scale amino acid production, has been engineered for sustainable production of polyamide monomers. In this study, wheat sidestream concentrate (WSC) from industrial starch production was utilized for production of l-lysine-derived bifunctional monomers using metabolically engineered C. glutamicum strains. Growth of C. glutamicum on WSC was observed and could be improved by hydrolysis of WSC. By heterologous expression of the genes xylA Xc B Cg (xylA from Xanthomonas campestris) and araBAD Ec from E. coli, xylose, and arabinose in WSC hydrolysate (WSCH), in addition to glucose, could be consumed, and production of l-lysine could be increased. WSCH-based production of cadaverine and 5-aminovalerate (5AVA) was enabled. To this end, the lysine decarboxylase gene ldcC Ec from E. coli was expressed alone or for conversion to 5AVA cascaded either with putrescine transaminase and dehydrogenase genes patDA Ec from E. coli or with putrescine oxidase gene puo Rq from Rhodococcus qingshengii and patD Ec . Deletion of the l-glutamate dehydrogenase-encoding gene gdh reduced formation of l-glutamate as a side product for strains with either of the cascades. Since the former cascade (ldcC Ec -patDA Ec ) yields l-glutamate, 5AVA production is coupled to growth by flux enforcement resulting in the highest 5AVA titer obtained with WSCH-based media.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
24
|
Tsuge Y, Yamaguchi A. Physiological characteristics of Corynebacterium glutamicum as a cell factory under anaerobic conditions. Appl Microbiol Biotechnol 2021; 105:6173-6181. [PMID: 34402937 DOI: 10.1007/s00253-021-11474-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
Corynebacterium glutamicum, a gram-positive and facultative anaerobic bacterium, is widely used for the industrial production of amino acids, such as L-glutamate and L-lysine. C. glutamicum grows and produces amino acids under aerobic conditions. When restricted under anaerobic conditions, it produces organic acids, such as L-lactate and succinate, through metabolic shift. With the increasing threat of global warming, these organic acids have drawn considerable attention as bio-based plastic monomers. In addition to the organic acids, the anaerobic bioprocess is also used to produce other value-added compounds, including isobutanol, ethanol, 3-methyl-1-butanol, 2,3-butanediol, L-alanine, and L-valine. Therefore, C. glutamicum is now a versatile cell factory for producing a wide variety of useful chemicals under both aerobic and anaerobic conditions. The growth and metabolism of the bacterium depend on the oxygen levels, which modulate the rearrangement of the carbon flux by reprogramming gene expression patterns and intracellular redox states. Anaerobic cell growth and L-lysine production as well as aerobic succinate production have been demonstrated by engineering the metabolic pathways or supplying a terminal electron acceptor instead of oxygen. In this review, we discuss the physiological and metabolic changes in C. glutamicum associated with its application as a cell factory under different oxygen states. Physiological switching in bacteria is initiated with the sensing of oxygen availability. While such a sensor has not been identified in C. glutamicum yet, the molecular mechanism for oxygen sensing in related bacteria is also discussed. KEY POINTS: • C. glutamicum produces a wide variety of useful compounds under anaerobic conditions. • C. glutamicum is a versatile cell factory under both aerobic and anaerobic conditions. • Metabolic fate can be overcome by engineering metabolic pathways.
Collapse
Affiliation(s)
- Yota Tsuge
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Akira Yamaguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
25
|
Shin JH, Andersen AJC, Achterberg P, Olsson L. Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microb Cell Fact 2021; 20:155. [PMID: 34348702 PMCID: PMC8336102 DOI: 10.1186/s12934-021-01647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adipic acid, a six-carbon platform chemical mainly used in nylon production, can be produced via reverse β-oxidation in microbial systems. The advantages posed by Corynebacterium glutamicum as a model cell factory for implementing the pathway include: (1) availability of genetic tools, (2) excretion of succinate and acetate when the TCA cycle becomes overflown, (3) initiation of biosynthesis with succinyl-CoA and acetyl-CoA, and (4) established succinic acid production. Here, we implemented the reverse β-oxidation pathway in C. glutamicum and assessed its functionality for adipic acid biosynthesis. RESULTS To obtain a non-decarboxylative condensation product of acetyl-CoA and succinyl-CoA, and to subsequently remove CoA from the condensation product, we introduced heterologous 3-oxoadipyl-CoA thiolase and acyl-CoA thioesterase into C. glutamicum. No 3-oxoadipic acid could be detected in the cultivation broth, possibly due to its endogenous catabolism. To successfully biosynthesize and secrete 3-hydroxyadipic acid, 3-hydroxyadipyl-CoA dehydrogenase was introduced. Addition of 2,3-dehydroadipyl-CoA hydratase led to biosynthesis and excretion of trans-2-hexenedioic acid. Finally, trans-2-enoyl-CoA reductase was inserted to yield 37 µg/L of adipic acid. CONCLUSIONS In the present study, we engineered the reverse β-oxidation pathway in C. glutamicum and assessed its potential for producing adipic acid from glucose as starting material. The presence of adipic acid, albeit small amount, in the cultivation broth indicated that the synthetic genes were expressed and functional. Moreover, 2,3-dehydroadipyl-CoA hydratase and β-ketoadipyl-CoA thiolase were determined as potential target for further improvement of the pathway.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Puck Achterberg
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
26
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Prell C, Busche T, Rückert C, Nolte L, Brandenbusch C, Wendisch VF. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microb Cell Fact 2021; 20:97. [PMID: 33971881 PMCID: PMC8112011 DOI: 10.1186/s12934-021-01586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The demand for biobased polymers is increasing steadily worldwide. Microbial hosts for production of their monomeric precursors such as glutarate are developed. To meet the market demand, production hosts have to be improved constantly with respect to product titers and yields, but also shortening bioprocess duration is important. RESULTS In this study, adaptive laboratory evolution was used to improve a C. glutamicum strain engineered for production of the C5-dicarboxylic acid glutarate by flux enforcement. Deletion of the L-glutamic acid dehydrogenase gene gdh coupled growth to glutarate production since two transaminases in the glutarate pathway are crucial for nitrogen assimilation. The hypothesis that strains selected for faster glutarate-coupled growth by adaptive laboratory evolution show improved glutarate production was tested. A serial dilution growth experiment allowed isolating faster growing mutants with growth rates increasing from 0.10 h-1 by the parental strain to 0.17 h-1 by the fastest mutant. Indeed, the fastest growing mutant produced glutarate with a twofold higher volumetric productivity of 0.18 g L-1 h-1 than the parental strain. Genome sequencing of the evolved strain revealed candidate mutations for improved production. Reverse genetic engineering revealed that an amino acid exchange in the large subunit of L-glutamic acid-2-oxoglutarate aminotransferase was causal for accelerated glutarate production and its beneficial effect was dependent on flux enforcement due to deletion of gdh. Performance of the evolved mutant was stable at the 2 L bioreactor-scale operated in batch and fed-batch mode in a mineral salts medium and reached a titer of 22.7 g L-1, a yield of 0.23 g g-1 and a volumetric productivity of 0.35 g L-1 h-1. Reactive extraction of glutarate directly from the fermentation broth was optimized leading to yields of 58% and 99% in the reactive extraction and reactive re-extraction step, respectively. The fermentation medium was adapted according to the downstream processing results. CONCLUSION Flux enforcement to couple growth to operation of a product biosynthesis pathway provides a basis to select strains growing and producing faster by adaptive laboratory evolution. After identifying candidate mutations by genome sequencing causal mutations can be identified by reverse genetics. As exemplified here for glutarate production by C. glutamicum, this approach allowed deducing rational metabolic engineering strategies.
Collapse
Affiliation(s)
- Carina Prell
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Christian Rückert
- Technology Platform Genomics, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Lea Nolte
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Christoph Brandenbusch
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
28
|
Salma A, Djelal H, Abdallah R, Fourcade F, Amrane A. Platform molecule from sustainable raw materials; case study succinic acid. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Aleku GA, Roberts GW, Titchiner GR, Leys D. Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions. CHEMSUSCHEM 2021; 14:1781-1804. [PMID: 33631048 PMCID: PMC8252502 DOI: 10.1002/cssc.202100159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Indexed: 05/11/2023]
Abstract
In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO2 fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO2 to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO2 -fixation cascades.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - George W. Roberts
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Gabriel R. Titchiner
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of BiotechnologyDepartment of ChemistryUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
30
|
Toyoda K, Inui M. The ldhA Gene Encoding Fermentative l-Lactate Dehydrogenase in Corynebacterium Glutamicum Is Positively Regulated by the Global Regulator GlxR. Microorganisms 2021; 9:microorganisms9030550. [PMID: 33800875 PMCID: PMC7999487 DOI: 10.3390/microorganisms9030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial metabolism shifts from aerobic respiration to fermentation at the transition from exponential to stationary growth phases in response to limited oxygen availability. Corynebacterium glutamicum, a Gram-positive, facultative aerobic bacterium used for industrial amino acid production, excretes l-lactate, acetate, and succinate as fermentation products. The ldhA gene encoding l-lactate dehydrogenase is solely responsible for l-lactate production. Its expression is repressed at the exponential phase and prominently induced at the transition phase. ldhA is transcriptionally repressed by the sugar-phosphate-responsive regulator SugR and l-lactate-responsive regulator LldR. Although ldhA expression is derepressed even at the exponential phase in the sugR and lldR double deletion mutant, a further increase in its expression is still observed at the stationary phase, implicating the action of additional transcription regulators. In this study, involvement of the cAMP receptor protein-type global regulator GlxR in the regulation of ldhA expression was investigated. The GlxR-binding site found in the ldhA promoter was modified to inhibit or enhance binding of GlxR. The ldhA promoter activity and expression of ldhA were altered in proportion to the binding affinity of GlxR. Similarly, l-lactate production was also affected by the binding site modification. Thus, GlxR was demonstrated to act as a transcriptional activator of ldhA.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Correspondence:
| |
Collapse
|
31
|
Stanescu MD. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14253-14270. [PMID: 33515405 DOI: 10.1007/s11356-021-12416-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The textile industry is a large source of pollution due to the production of raw materials (natural and synthetic fibers), preparation and finishing processes, as well as due to textile waste, especially the post-consumer waste. This paper is an attempt to change the perception concerning such waste. In the context of circular economy, textile waste has to be conceived as a source for carbon and energy. A new attitude is compulsory due to the increase of post-consumer waste quantity since the volume of textile consumption has lately increased. Fast fashion cycle and cheaper textile products having a shorter lifetime led to an increase of the quantity of post-consumer textile waste. Demands for pollution reduction generated the concern to upcycle the textile waste in order to recover, at least partially, the materials as well as the energy consumed for their manufacture, reducing accordingly the carbon and water footprints of these products,. The scarcity of raw materials and of fossil fuels, the high environmental impact of the simple disposal of waste, imposed a new policy regarding the transformation of the linear economy which characterizes today's textile industry into a circular one, leading to a lower environmental impact. This involves the valorization of post-consumer waste by recycling or at least by a partial recovery of the materials and energy spent for the manufacture of these products. A good management of post-consumer textile waste is mandatory for attaining a zero waste target. Some good practices in the field are presented by this paper.
Collapse
Affiliation(s)
- Michaela Dina Stanescu
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University, Elena Dragoi str. 2-4, 310330, Arad, Romania.
| |
Collapse
|
32
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
33
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mizuno H, Tsuge Y. Elevated, non-proliferative temperatures change the profile of fermentation products in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 105:367-377. [PMID: 33242127 DOI: 10.1007/s00253-020-11024-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Although temperature is a crucial factor affecting enzymatic activity on biochemical and biofuel production, the reaction temperature for the generation of these products is usually set at the optimal growth temperature of the host strain, even under non-proliferative conditions. Given that the production of fermentation products only requires a fraction of the cell's metabolic pathways, the optimal temperatures for microbial growth and the fermentative production of a target compound may be different. Here, we investigated the effect of temperature on lactic and succinic acids production, and related enzymatic activities, in wild-type and succinic acid-overproducing strains of Corynebacterium glutamicum. Interestingly, fermentative production of lactic acid increased with the temperature in wild-type: production was 69% higher at 42.5 °C, a temperature that exceeded the upper limit for growth, than that at the optimal growth temperature (30 °C). Conversely, succinic acid production was decreased by 13% under the same conditions in wild-type. The specific activity of phosphoenolpyruvate carboxylase decreased with the increase in temperature. In contrast, the other glycolytic and reductive TCA cycle enzymes demonstrated increased or constant activity as the temperature was increased. When using a succinic acid over-producing strain, succinic acid production was increased by 34% at 42.5 °C. Our findings demonstrate that the profile of fermentation products is dependent upon temperature, which could be caused by the modulation of enzymatic activities. Moreover, we report that elevated temperatures, exceeding the upper limit for cell growth, can be used to increase the production of target compounds in C. glutamicum. KEY POINTS: • Lactate productivity was increased by temperature elevation. • Succinate productivity was increased by temperature elevation when lactate pathway was deleted. • Specific activity of phosphoenolpyruvate carboxylase was decreased by temperature elevation.
Collapse
Affiliation(s)
- Hikaru Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
35
|
Shen J, Chen J, Solem C, Jensen PR, Liu JM. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors. Appl Environ Microbiol 2020; 86:e02114-20. [PMID: 33036990 PMCID: PMC7688235 DOI: 10.1128/aem.02114-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/22/2023] Open
Abstract
Identifying and overcoming the limitations preventing efficient high-yield production of chemicals remain important tasks in metabolic engineering. In an attempt to rewire Corynebacterium glutamicum to produce ethanol, we attained a low yield (63% of the theoretical) when using resting cells on glucose, and large amounts of succinate and acetate were formed. To prevent the by-product formation, we knocked out the malate dehydrogenase and replaced the native E3 subunit of the pyruvate dehydrogenase complex (PDHc) with that from Escherichia coli, which is active only under aerobic conditions. However, this tampering resulted in a 10-times-reduced glycolytic flux as well as a greatly increased NADH/NAD+ ratio. When we replaced glucose with fructose, we found that the glycolytic flux was greatly enhanced, which led us to speculate whether the source of reducing power could be the pentose phosphate pathway (PPP) that is bypassed when fructose is metabolized. Indeed, after shutting down the PPP by deleting the zwf gene, encoding glucose-6-phosphate dehydrogenase, the ethanol yield on glucose increased significantly, to 92% of the theoretical. Based on that, we managed to rechannel the metabolism of C. glutamicum into d-lactate with high yield, 98%, which is the highest that has been reported. It is further demonstrated that the PPP-inactivated platform strain can offer high-yield production of valuable chemicals using lactose contained in dairy waste as feedstock, which paves a promising way for potentially turning dairy waste into a valuable product.IMPORTANCE The widely used industrial workhorse C. glutamicum possesses a complex anaerobic metabolism under nongrowing conditions, and we demonstrate here that the PPP in resting C. glutamicum is a source of reducing power that can interfere with otherwise redox-balanced metabolic pathways and reduce yields of desired products. By harnessing this physiological insight, we employed the PPP-inactivated platform strains to produce ethanol, d-lactate, and alanine using the dairy waste whey permeate as the feedstock. The production yield was high, and our results show that inactivation of the PPP flux in resting cells is a promising strategy when the aim is to use nongrowing C. glutamicum cells for producing valuable compounds. Overall, we describe the benefits of disrupting the oxidative PPP in nongrowing C. glutamicum and provide a feasible approach toward waste valorization.
Collapse
Affiliation(s)
- Jing Shen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jun Chen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jian-Ming Liu
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Zhao Z, Liu Z, Mao X. Biotechnological Advances in Lycopene β-Cyclases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11895-11907. [PMID: 33073992 DOI: 10.1021/acs.jafc.0c04814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lycopene β-cyclase is one of the key enzymes in the biosynthesis of carotenoids, which catalyzes the β-cyclization of both ends of lycopene to produce β-carotene. Lycopene β-cyclases are found in a wide range of sources, mainly plants and microorganisms. Lycopene β-cyclases have been extensively studied for their important catalytic activity, including for use in genetic engineering to modify plants and microorganisms, as a blocking target for lycopene industrial production strains, and for their genetic and physiological effects related to microorganic and plant biological traits. This review of lycopene β-cyclases summarizes the major studies on their basic classification, functional activity, metabolic engineering, and plant science.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
37
|
Xiberras J, Klein M, de Hulster E, Mans R, Nevoigt E. Engineering Saccharomyces cerevisiae for Succinic Acid Production From Glycerol and Carbon Dioxide. Front Bioeng Biotechnol 2020; 8:566. [PMID: 32671027 PMCID: PMC7332542 DOI: 10.3389/fbioe.2020.00566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, our lab replaced the endogenous FAD-dependent pathway for glycerol catabolism in S. cerevisiae by the synthetic NAD-dependent dihydroxyacetone (DHA) pathway. The respective modifications allow the full exploitation of glycerol’s higher reducing power (compared to sugars) for the production of the platform chemical succinic acid (SA) via a reductive, carbon dioxide fixing and redox-neutral pathway in a production host robust for organic acid production. Expression cassettes for three enzymes converting oxaloacetate to SA in the cytosol (“SA module”) were integrated into the genome of UBR2CBS-DHA, an optimized CEN.PK derivative. Together with the additional expression of the heterologous dicarboxylic acid transporter DCT-02 from Aspergillus niger, a maximum SA titer of 10.7 g/L and a yield of 0.22 ± 0.01 g/g glycerol was achieved in shake flask (batch) cultures. Characterization of the constructed strain under controlled conditions in a bioreactor supplying additional carbon dioxide revealed that the carbon balance was closed to 96%. Interestingly, the results of the current study indicate that the artificial “SA module” and endogenous pathways contribute to the SA production in a highly synergistic manner.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| |
Collapse
|
38
|
Uchikura H, Toyoda K, Matsuzawa H, Mizuno H, Ninomiya K, Takahashi K, Inui M, Tsuge Y. Anaerobic glucose consumption is accelerated at non-proliferating elevated temperatures through upregulation of a glucose transporter gene in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 104:6719-6729. [PMID: 32556410 DOI: 10.1007/s00253-020-10739-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022]
Abstract
Cell proliferation is achieved through numerous enzyme reactions. Temperature governs the activity of each enzyme, ultimately determining the optimal growth temperature. The synthesis of useful chemicals and fuels utilizes a fraction of available metabolic pathways, primarily central metabolic pathways including glycolysis and the tricarboxylic acid cycle. However, it remains unclear whether the optimal temperature for these pathways is correlated with that for cell proliferation. Here, we found that wild-type Corynebacterium glutamicum displayed increased glycolytic activity under non-growing anaerobic conditions at 42.5 °C, at which cells do not proliferate under aerobic conditions. At this temperature, glucose consumption was not inhibited and increased by 28% compared with that at the optimal growth temperature of 30 °C. Transcriptional analysis revealed that a gene encoding glucose transporter (iolT2) was upregulated by 12.3-fold compared with that at 30 °C, with concomitant upregulation of NCgl2954 encoding the iolT2-regulating transcription factor. Deletion of iolT2 decreased glucose consumption rate at 42.5 °C by 28%. Complementation of iolT2 restored glucose consumption rate, highlighting the involvement of iolT2 in the accelerating glucose consumption at an elevated temperature. This study shows that the optimal temperature for glucose metabolism in C. glutamicum under anaerobic conditions differs greatly from that for cell growth under aerobic conditions, being beyond the upper limit of the growth temperature. This is beneficial for fuel and chemical production not only in terms of increasing productivity but also for saving cooling costs. KEY POINTS: • C. glutamicum accelerated anaerobic glucose consumption at elevated temperature. • The optimal temperature for glucose consumption was above the upper limit for growth. • Gene expression involved in glucose transport was upregulated at elevated temperature. Graphical abstract.
Collapse
Affiliation(s)
- Hiroto Uchikura
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Koichi Toyoda
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Hiroki Matsuzawa
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hikaru Mizuno
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuaki Ninomiya
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Yota Tsuge
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
39
|
Szczerba H, Komoń-Janczara E, Dudziak K, Waśko A, Targoński Z. A novel biocatalyst, Enterobacter aerogenes LU2, for efficient production of succinic acid using whey permeate as a cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:96. [PMID: 32514308 PMCID: PMC7257193 DOI: 10.1186/s13068-020-01739-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Succinic acid (SA), a valuable chemical compound with a broad range of industrial uses, has become a subject of global interest in recent years. The bio-based production of SA by highly efficient microbial producers from renewable feedstock is significantly important, regarding the current trend of sustainable development. RESULTS In this study, a novel bacterial strain, LU2, was isolated from cow rumen and recognized as an efficient producer of SA from lactose. Proteomic and genetic identifications as well as phylogenetic analysis were performed, and strain LU2 was classified as an Enterobacter aerogenes species. The optimal conditions for SA production were 100 g/L lactose, 10 g/L yeast extract, and 20% inoculum at pH 7.0 and 34 °C. Under these conditions, approximately 51.35 g/L SA with a yield of 53% was produced when batch fermentation was conducted in a 3-L stirred bioreactor. When lactose was replaced with whey permeate, the highest SA concentration of 57.7 g/L was achieved with a yield and total productivity of 62% and 0.34 g/(L*h), respectively. The highest productivity of 0.67 g/(L*h) was observed from 48 to 72 h of batch fermentation, when E. aerogenes LU2 produced 16.23 g/L SA. CONCLUSIONS This study shows that the newly isolated strain E. aerogenes LU2 has great potential as a new biocatalyst for producing SA from whey permeate.
Collapse
Affiliation(s)
- Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Elwira Komoń-Janczara
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Zdzisław Targoński
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| |
Collapse
|
40
|
Meramo-Hurtado SI, Sanchez-Tuiran E, Ponce-Ortega JM, El-Halwagi MM, Ojeda-Delgado KA. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS OMEGA 2020; 5:9259-9275. [PMID: 32363277 PMCID: PMC7191568 DOI: 10.1021/acsomega.0c00114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/02/2020] [Indexed: 05/27/2023]
Abstract
Nowadays, green-chemistry principles offer an approach that fits to ensure chemical process sustainability by the use of low-cost renewable raw materials, waste prevention, inherent safer designs, among others. Based on this motivation, this study presents a novel methodology for sustainable process design that comprises the synthesis of a multifeedstock optimal biorefinery under simultaneous optimization of economic and environmental targets and further sustainability evaluation using the sustainability weighted return on investment metric (SWROIM). The first step of the proposed method is the formulation of an optimization model to generate the most suitable process alternatives. The model took into account various biomasses as available raw materials for production of ethanol, butanol, succinic acid, among others. Process technologies such as fermentation, anaerobic digestion, gasification, among others, were considered for biorefinery design. Once the model synthesizes the optimal biorefinery, we used environmental, safety, economic, and energy analyses to assess the process, which is a case study for north Colombia. Process simulation generated the data needed (extended mass and energy balances, property estimation, and modeling of downstream) to develop the process analysis stage via the Aspen Plus software. Results for the environmental and economic analyses showed that the assumption considered to solve the optimization problem was adequate, yielding promising environmental and economic outcomes. Finally, the overall sustainability evaluation showed a SWROIM of 27.29%, indicating that the case study showed higher weighted performance compared to the return on investment (ROI) metric of 14.33%.
Collapse
Affiliation(s)
- Samir I. Meramo-Hurtado
- Industrial
Engineering Program, Fundación Universitaria
Colombo Internacional, Av. Pedro Heredia Sector
Cuatro Vientos #31-50, Cartagena 13000, Colombia
| | - Eduardo Sanchez-Tuiran
- Process
Design and Biomass Utilization Research Group (IDAB), Chemical Engineering
Program, University of Cartagena, Campus Piedra de Bolívar,
Street 30 #48-152, Cartagena 13000, Colombia
| | - José María Ponce-Ortega
- Department
of Chemical Engineering, Universidad Michoacana
de San Nicolas de Hidalgo, Morelia, Michoacán 58060, México
| | - Mahmoud M. El-Halwagi
- Department
of Chemical Engineering, Texas A&M University, 3122 College Station, Texas 77843-3122, United States
| | - Karina Angélica Ojeda-Delgado
- Process
Design and Biomass Utilization Research Group (IDAB), Chemical Engineering
Program, University of Cartagena, Campus Piedra de Bolívar,
Street 30 #48-152, Cartagena 13000, Colombia
| |
Collapse
|
41
|
Abstract
With the transition to the bio-based economy, it is becoming increasingly important for the chemical industry to obtain basic chemicals from renewable raw materials. Succinic acid, one of the most important bio-based building block chemicals, is used in the food and pharmaceutical industries, as well as in the field of bio-based plastics. An alternative process for the bio-based production of succinic acid was the main objective of this study, focusing on the biotechnological production of succinic acid using a newly isolated organism. Pure glycerol compared to crude glycerol, at the lowest purity, directly from a biodiesel plant side stream, was successfully converted. A maximum final titer of 117 g L−1 succinic acid and a yield of 1.3 g g−1 were achieved using pure glycerol and 86.9 g L−1 succinic acid and a yield of 0.9 g g−1 using crude glycerol. Finally, the succinic acid was crystallized, achieving maximum yield of 95% and a purity of up to 99%.
Collapse
|
42
|
Briki A, Kaboré K, Olmos E, Bosselaar S, Blanchard F, Fick M, Guedon E, Fournier F, Delaunay S. Corynebacterium glutamicum, a natural overproducer of succinic acid? Eng Life Sci 2020; 20:205-215. [PMID: 32874184 PMCID: PMC7447883 DOI: 10.1002/elsc.201900141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/09/2023] Open
Abstract
Corynebacterium glutamicum is well known as an important industrial amino acid producer. For a few years, its ability to produce organic acids, under micro-aerobic or anaerobic conditions was demonstrated. This study is focused on the identification of the culture parameters influencing the organic acids production and, in particular, the succinate production, by this bacterium. Corynebacterium glutamicum 2262, used throughout this study, was a wild-type strain, which was not genetically designed for the production of succinate. The oxygenation level and the residual glucose concentration appeared as two critical parameters for the organic acids production. The maximal succinate concentration (4.9 g L-1) corresponded to the lower kLa value of 5 h-1. Above 5 h-1, a transient accumulation of the succinate was observed. Interestingly, the stop in the succinate production was concomitant with a lower threshold glucose concentration of 9 g L-1. Taking into account this threshold, a fed-batch culture was performed to optimize the succinate production with C. glutamicum 2262. The results showed that this wild-type strain was able to produce 93.6 g L-1 of succinate, which is one of the highest concentration reported in the literature.
Collapse
Affiliation(s)
- Amani Briki
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Karim Kaboré
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Eric Olmos
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Sabine Bosselaar
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Fabrice Blanchard
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Michel Fick
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Emmanuel Guedon
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Frantz Fournier
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| | - Stéphane Delaunay
- Laboratoire Réactions et Génie des ProcédésCNRSVandoeuvre CedexFrance
- Laboratoire Réactions et Génie des ProcédésUniversité de LorraineVandoeuvre CedexFrance
| |
Collapse
|
43
|
Uchikura H, Ninomiya K, Takahashi K, Tsuge Y. Requirement of de novo synthesis of pyruvate carboxylase in long-term succinic acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 104:4313-4320. [PMID: 32232530 DOI: 10.1007/s00253-020-10556-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022]
Abstract
Protein turnover through de novo synthesis is critical for sustainable cellular functions. We previously found that glucose consumption rate in Corynebacterium glutamicum under anaerobic conditions increased at temperature higher than the upper limit of growth temperature. Here, we showed that production of lactic and succinic acids increased at higher temperature for long-term (48 h) anaerobic reaction in metabolically engineered strains. At 42 °C, beyond the upper limit of growth temperature range, biomass-specific lactic acid production rate was 8% higher than that at 30 °C, the optimal growth temperature. In contrast, biomass-specific succinic acid production rate was highest at 36 °C, 28% higher than that at 30 °C, although the production at 42 °C was still 23% higher than that at 30 °C. As enzymes are usually unstable at high temperatures, we investigated whether protein turnover of metabolic enzymes is required for the production of lactic and succinic acids under these conditions. Interestingly, when de novo protein synthesis was inhibited by addition of chloramphenicol, after 6 h, only succinic acid production was inhibited. Because glycolytic enzymes are involved in both lactic and succinic acids synthesis, enzymes in the anaplerotic pathway and the tricarboxylic acid (TCA) cycle leading to succinic acid synthesis were likely to be responsible for its decreased production. Among the five enzymes examined, the specific activity of only pyruvate carboxylase was drastically decreased after 48 h at 42 °C. Thus, the de novo synthesis of pyruvate carboxylase is required for long-term production of succinic acid. Graphical abstract KEY POINTS: • Long-term reaction for organic acids can be improved at temperature beyond ideal growth conditions. • De novo synthesis of pyruvate carboxylase is required for long-term succinic acid production.
Collapse
Affiliation(s)
- Hiroto Uchikura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuaki Ninomiya
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
44
|
Abstract
In an oxygenic environment, poorly soluble Fe3+ must be reduced to meet the cellular Fe2+ demand. This study demonstrates that elevated CO2/HCO3− levels accelerate chemical Fe3+ reduction through phenolic compounds, thus increasing intracellular Fe2+ availability. A number of biological environments are characterized by the presence of phenolic compounds and elevated HCO3− levels and include soil habitats and the human body. Fe2+ availability is of particular interest in the latter, as it controls the infectiousness of pathogens. Since the effect postulated here is abiotic, it generally affects the Fe2+ distribution in nature. Iron is a vital mineral for almost all living organisms and has a pivotal role in central metabolism. Despite its great abundance on earth, the accessibility for microorganisms is often limited, because poorly soluble ferric iron (Fe3+) is the predominant oxidation state in an aerobic environment. Hence, the reduction of Fe3+ is of essential importance to meet the cellular demand of ferrous iron (Fe2+) but might become detrimental as excessive amounts of intracellular Fe2+ tend to undergo the cytotoxic Fenton reaction in the presence of hydrogen peroxide. We demonstrate that the complex formation rate of Fe3+ and phenolic compounds like protocatechuic acid was increased by 46% in the presence of HCO3− and thus accelerated the subsequent redox reaction, yielding reduced Fe2+. Consequently, elevated CO2/HCO3− levels increased the intracellular Fe2+ availability, which resulted in at least 50% higher biomass-specific fluorescence of a DtxR-based Corynebacterium glutamicum reporter strain, and stimulated growth. Since the increased Fe2+ availability was attributed to the interaction of HCO3− and chemical iron reduction, the abiotic effect postulated in this study is of general relevance in geochemical and biological environments.
Collapse
|
45
|
Nakagawa Y, Kasumi T, Ogihara J, Tamura M, Arai T, Tomishige K. Erythritol: Another C4 Platform Chemical in Biomass Refinery. ACS OMEGA 2020; 5:2520-2530. [PMID: 32095676 PMCID: PMC7033684 DOI: 10.1021/acsomega.9b04046] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 05/08/2023]
Abstract
The potential of erythritol as a platform chemical in biomass refinery is discussed in terms of erythritol production and utilization. Regarding erythritol production, fermentation of sugar or starch has been already commercialized. The shift of the carbon source from glucose to inexpensive inedible waste glycerol is being investigated, which will decrease the price of erythritol. The carbon-based yield of erythritol from glycerol is comparable to or even higher than that from glucose. The metabolic pathway of erythritol biosynthesis has become clarified: erythrose-4-phosphate, which is one of the intermediates in the pentose phosphate pathway, is dephosphorylated and reduced to erythritol. The information about the metabolic pathway may give insights to improve the productivity by bleeding. Regarding erythritol utilization, chemical conversions of erythritol, especially deoxygenation, have been investigated in these days. Erythritol is easily dehydrated to 1,4-anhydroerythritol, which can be also used as the substrate for production of useful C4 chemicals. C-O hydrogenolysis and deoxydehydration using heterogeneous catalysts are effective reactions for erythritol/1,4-anhydroerythritol conversion.
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Takafumi Kasumi
- Applied
Microbiology and Biotechnology Laboratory, College of Bioresource
Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Jun Ogihara
- Applied
Microbiology and Biotechnology Laboratory, College of Bioresource
Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Masazumi Tamura
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Takashi Arai
- Daicel
Corporation, 1-8-23,
Konan, Minato-ku, Tokyo 108-8230, Japan
- Industry-Academia
Collaborative Research Laboratory, Kanazawa
University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Keiichi Tomishige
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
46
|
Development of glutaric acid production consortium system with α-ketoglutaric acid regeneration by glutamate oxidase in Escherichia coli. Enzyme Microb Technol 2020; 133:109446. [DOI: 10.1016/j.enzmictec.2019.109446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/10/2019] [Accepted: 10/07/2019] [Indexed: 01/28/2023]
|
47
|
Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00338j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medium-chain dicarboxylic acids (MDCAs) are widely used in the production of nylon materials, and among which, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids are particularly important for that purpose.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Dixuan Huang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| |
Collapse
|
48
|
Kocks C, Görtz J, Holtz A, Gausmann M, Jupke A. Electrochemical Crystallization Concept for Succinic Acid Reduces Waste Salt Production. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201900088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christian Kocks
- RWTH Aachen UniversityAVT – Fluid Process Engineering Forckenbeckstraße 51 52074 Aachen Germany
- Forschungszentrum JülichBioeconomy Science Center (BioSC) 52425 Jülich Germany
| | - Jonas Görtz
- RWTH Aachen UniversityAVT – Fluid Process Engineering Forckenbeckstraße 51 52074 Aachen Germany
- Forschungszentrum JülichBioeconomy Science Center (BioSC) 52425 Jülich Germany
| | - Arne Holtz
- RWTH Aachen UniversityAVT – Fluid Process Engineering Forckenbeckstraße 51 52074 Aachen Germany
- Forschungszentrum JülichBioeconomy Science Center (BioSC) 52425 Jülich Germany
| | - Marcel Gausmann
- RWTH Aachen UniversityAVT – Fluid Process Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen UniversityAVT – Fluid Process Engineering Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
49
|
A New Strategy for Effective Succinic Acid Production by Enterobacter sp. LU1 Using a Medium Based on Crude Glycerol and Whey Permeate. Molecules 2019; 24:molecules24244543. [PMID: 31842291 PMCID: PMC6943790 DOI: 10.3390/molecules24244543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
The newly-isolated strain Enterobacter sp. LU1, which has previously been shown to be an effective producer of succinic acid on glycerol with the addition of lactose, was used for further intensive works aimed at improving the production parameters of the said process. The introduction of an initial stage of gentle culture aeration allowed almost 47 g/L of succinic acid to be obtained after 168 h of incubation, which is almost two times faster than the time previously taken to obtain this amount. Furthermore, the replacement of glycerol with crude glycerin and the replacement of lactose with whey permeate allowed the final concentration of succinic acid to be increased to 54 g/L. Considering the high content of yeast extract (YE) in the culture medium, tests were also performed with a reduced YE content via its partial substitution with urea. Although this substitution led to a deterioration of the kinetic parameters of the production process, using the fed-batch strategy, it allowed a succinic acid concentration of 69 g/L to be obtained in the culture medium, the highest concentration ever achieved using this process. Furthermore, the use of microaerophilic conditions meant that the addition of lactose to the medium was not required, with 37 g/L of succinic acid being produced on crude glycerol alone.
Collapse
|
50
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|