1
|
Qian H, Li Y. Nandina domestica Thunb.: a review of traditional uses, phytochemistry, pharmacology, and toxicology. Front Pharmacol 2024; 15:1407140. [PMID: 39045046 PMCID: PMC11263726 DOI: 10.3389/fphar.2024.1407140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Nandina domestica: Thunb. is a traditional Chinese herbal drug that has long been used in China and Japan for the treatment of colds, fevers, asthma, chronic bronchitis, conjunctivitis, whooping cough, pharyngeal tumors, etc. Published data have reported at least 366 constituents from N. domestica, including alkaloids, flavonoids, lignans, terpenoids, phenolic acids and their derivatives, fatty acids, and others. Of these, the isoquinoline alkaloids are considered characteristic markers for N. domestica. These alkaloids also showed the most promising bioactivities. The crude extracts or semi-purified constituents of N. domestica exhibit a variety of activities, including antitumor, dermatological, anti-inflammatory, antioxidant, antimicrobial, and detoxification activities, as well as effects on respiratory system, etc. The fruit is considered poisonous when eaten raw, with nausea, vomiting, diarrhea, and abdominal pain as side effects after ingestion. Most traditional uses are supported by biological activities demonstrated in modern experimental studies, suggesting a potential medicinal value of N. domestica. However, more information is needed on its mechanisms of activity, pharmacokinetic profile of the constituents, and its safety and efficacy profile in humans.
Collapse
Affiliation(s)
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Paosupap J, Basit A, Sajomsang W, Nalinbejapun S, Sripetthong S, Ovatlarnporn C. Evaluation of the antifungal properties of nanoliposomes containing rhinacanthin-C isolated from the leaves of Rhinacanthus nasutus. World J Microbiol Biotechnol 2024; 40:129. [PMID: 38459287 DOI: 10.1007/s11274-024-03916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Fungal infections represent a challenging threat to the human health. Microsporum gypseum and Trichophyton rubrum are pathogenic fungi causing various topical mycoses in humans. The globally emerging issue of resistance to fungi demands the development of novel therapeutic strategies. In this context, the application of nanoliposomes as vehicles for carrying active therapeutic agents can be a suitable alternative. In this study, rhinacanthin-C was isolated from Rhinacanthus naustus and encapsulated in nano-liposomal formulations, which were prepared by the modified ethanol injection method. The two best formulations composed of soybean phosphatidylcholine (SPC), cholesterol (CHL), and tween 80 (T80) in a molar ratio of 1:1:0 (F1) and 1:1:0.5 (F2) were proceeded for experimentation. The physical characteristics and antifungal activities were performed and compared with solutions of rhinacanthin-C. The rhinacanthin-C encapsulating efficiencies in F1 and F2 were 94.69 ± 1.20% and 84.94 ± 1.32%, respectively. The particle sizes were found to be about 221.4 ± 13.76 nm (F1) and 115.8 ± 23.33 nm (F2), and zeta potential values of -38.16 mV (F1) and -40.98 mV (F2). Similarly, the stability studies of rhinacanthin-C in liposomes demonstrated that rhinacanthin-C in both formulations was more stable in mediums with pH of 4.0 and 6.6 than pure rhinacanthin-C when stored at the same conditions. Rhinacanthin-C in F1 was slightly more stable than F2 when stored in mediums with a pH of 10.0 after three months of storage. However, rhinacanthin-C in both formulations was less stable than pure rhinacanthin-C in a basic medium of pH 10.0. The antifungal potential was evaluated against M. gypsum and T. rubrum. The findings revealed a comparatively higher zone of inhibition for F1. In the MIC study, SPC: CHL: T80 showed higher inhibition against M. gypseum and a slightly higher inhibition against T. rubrum compared to free rhinacanthin-C solution. Moreover, rhinacanthin-C showed significant interaction against 14α-demethylase in in silico study. Overall, this study demonstrates that nanoliposomes containing rhinacanthin-C can improve the stability and antifungal potential of rhinacanthin-C with sustained and prolonged duration of action and could be a promising vehicle for delivery of active ingredients for targeting various fungal infections.
Collapse
Affiliation(s)
- Jirasak Paosupap
- Department of Research and Development, Able Medical Company Limited, Chiang Yuen, Mahasarakham 44160, Thailand
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Warayuth Sajomsang
- Nano-Encapsulation Units, National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Sirinporn Nalinbejapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
3
|
Vanitha PR, Somashekaraiah R, Divyashree S, Pan I, Sreenivasa MY. Antifungal activity of probiotic strain Lactiplantibacillus plantarum MYSN7 against Trichophyton tonsurans. Front Microbiol 2023; 14:1192449. [PMID: 37389341 PMCID: PMC10303898 DOI: 10.3389/fmicb.2023.1192449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
The primary objective of this study was to assess the probiotic attributes and antifungal activity of lactic acid bacteria (LAB) against the fungus, Trichophyton tonsurans. Among the 20 isolates screened for their antifungal attributes, isolate MYSN7 showed strong antifungal activity and was selected for further analysis. The isolate MYSN7 exhibited potential probiotic characteristics, having 75 and 70% survival percentages in pH3 and pH2, respectively, 68.73% tolerance to bile, a moderate cell surface hydrophobicity of 48.87%, and an auto-aggregation percentage of 80.62%. The cell-free supernatant (CFS) of MYSN7 also showed effective antibacterial activity against common pathogens. Furthermore, the isolate MYSN7 was identified as Lactiplantibacillus plantarum by 16S rRNA sequencing. Both L. plantarum MYSN7 and its CFS exhibited significant anti-Trichophyton activity in which the biomass of the fungal pathogen was negligible after 14 days of incubation with the active cells of probiotic culture (106 CFU/ml) and at 6% concentration of the CFS. In addition, the CFS inhibited the germination of conidia even after 72 h of incubation. The minimum inhibitory concentration of the lyophilized crude extract of the CFS was observed to be 8 mg/ml. Preliminary characterization of the CFS showed that the active component would be organic acids in nature responsible for antifungal activity. Organic acid profiling of the CFS using LC-MS revealed that it was a mixture of 11 different acids, and among these, succinic acid (9,793.60 μg/ml) and lactic acid (2,077.86 μg/ml) were predominant. Additionally, a scanning electron microscopic study revealed that CFS disrupted fungal hyphal structure significantly, which showed scanty branching and bulged terminus. The study indicates the potential of L. plantarum MYSN7 and its CFS to control the growth of T. tonsurans. Furthermore, in vivo studies need to be conducted to explore its possible applications on skin infections.
Collapse
Affiliation(s)
- P. R. Vanitha
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
- Maharani's Science College for Women, Mysuru, India
| | | | - S. Divyashree
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - Indranil Pan
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
4
|
Inhibitory impacts of essential oil (Zanthoxylum schinifolium Sieb. et Zucc) on the growth of Staphylococcus epidermidis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Pir M, Budak F, Metiner K. In vitro antifungal activity of heterocyclic organoboron compounds against Trichophyton mentagrophytes and Microsporum canis obtained from clinical isolates. Braz J Microbiol 2022; 53:1297-1303. [PMID: 35697970 DOI: 10.1007/s42770-022-00777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the in vitro activity of thirty-eight heterocyclic organoboron compounds (1a-o, 2a-j, 3a-m) against clinically isolated dermatophytes Trichophyton mentagrophytes and Microsporum canis. Minimum inhibitory concentrations (MICs) of compounds (1a-o, 2a-j, 3a-m) were determined according to published protocol Clinical and Laboratory Standards Institute (CLSI) M38-A2 broth microdilution method. The minimum fungicidal concentrations (MFCs) for both T. mentagrophytes and M. canis were found by subculturing each fungal suspension on potato dextrose agar. According to the results, heterocyclic organoboron compounds (1a-o, 2a-j, 3a-m) were found to be more effective against dermatophyte M. canis (MIC = 3.12-25 µg/ml) than T. mentagrophytes (MIC = 12.5-100 µg/ml). Our findings showed that 7-membered heterocyclic organoboron compounds (3a-m) (MIC = 12.5-50 µg/ml) have stronger in vitro antifungal activity against T. mentagrophytes than 5-membered heterocyclic organoboron compounds (1a-o, 2a-j) (MIC = 25-100 µg/ml). The MFC values for all compounds ranged from 6.25 to 200 µg/ml. The limited number of systemic antifungal agents used in the treatment of dermatophyte infections and the presence of side effects have led to the search for new treatment resources in recent years. Therefore, investigation of the effect of heterocyclic organoboron compounds against dermatophytes will be promising for the discovery of new antifungal compounds that have gained great importance today.
Collapse
Affiliation(s)
- Meryem Pir
- Chemistry and Chemical Processing Technology, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Fatma Budak
- Department of Microbiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Kemal Metiner
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
Hassan N, El-Hawary SS, Emam M, Rabeh MA, Abdelmohsen UR, Selim NM. Potential Inhibitors of CYP51 Enzyme in Dermatophytes by Red Sea Soft Coral Nephthea sp.: In Silico and Molecular Networking Studies. ACS OMEGA 2022; 7:13808-13817. [PMID: 35559152 PMCID: PMC9088928 DOI: 10.1021/acsomega.2c00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/30/2022] [Indexed: 05/02/2023]
Abstract
In this study, the n-hexane fraction of soft coral Nephthea sp. gathered from the Red Sea was evaluated for its antidermatophyte activity. The antidermatophyte activity was performed versus different fungi, including Microsporum canis, Trichophyton gypseum, and Microsporum mentagrophytes, using a broth microdilution method. The n-hexane fraction showed minimum inhibitory concentrations (MICs) against the tested dermatophytes of 104.2 ± 20.8, 125 ± 0.0, and 83.33 ± 20.83 μg/mL respectively. The chemical constitution of the lipoidal matter (n-hexane fraction) was characterized by gas chromatography coupled with a mass spectrometer (GC-MS). The unsaponifiable fraction (USAP) of Nephthea sp. showed relative percentages of hydrocarbons and vitamins of 69.61% and 3.26%, respectively. Moreover, the percentages of saturated and unsaturated fatty acids were 53.67% and 42.05%, respectively. In addition, a molecular networking study (MN) of the GC-MS analysis performed using the Global Natural Products Social Molecular Networking (GNPS) platform was described. The molecular docking study illustrated that the highest binding energy score for spathulenol toward the CYP51 enzyme was -8.3674 kcal/mol, which predicted the mode of action of the antifungal activity, and then the results were confirmed by the inhibitory effect of Nephthea sp. against CYP51 with an IC50 value of 12.23 μg/mL. Our results highlighted the antifungal potential of Nephthea sp. metabolites.
Collapse
Affiliation(s)
- Nevine
H. Hassan
- Pharmacognosy
Department, Faculty of Pharmacy, Modern
University for Technology and Information, Cairo 11571, Egypt
| | - Seham S. El-Hawary
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Mahmoud Emam
- Phytochemistry
and Plant Systematics Department, National
Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed A. Rabeh
- Pharmacognosy
Department, Faculty of Pharmacy, Modern
University for Technology and Information, Cairo 11571, Egypt
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Usama Ramadan Abdelmohsen
- Pharmacognosy
Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
- Pharmacognosy
Department, Faculty of Pharmacy, Deraya
University, 61111 New Minia, Egypt
- Email for U.R.A.:
| | - Nabil M. Selim
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
- Email for N.M.S.:
| |
Collapse
|
7
|
Natural Antifungal Products: Another Option for Antifungal Resistance. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Lopes AI, Tavaria FK, Pintado ME. Conventional and natural compounds for the treatment of dermatophytosis. Med Mycol 2021; 58:707-720. [PMID: 31773153 DOI: 10.1093/mmy/myz116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/16/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
Dermatophytes are a group of pathogenic fungi that exclusively infect the stratum corneum of the skin, nails, and hair, causing dermatophytosis. Superficial skin infections caused by dermatophytes have increased in the last decades. There are conventional antifungals that treat these infections, such as terbinafine, fluconazole, and others. However, the limitations of these treatments (resistance, side effects and toxicity) along with the increasing over-prescription, the misuse of these antifungals and the high treatment costs led to the search for new, alternative, natural-based antifungal drugs. These have multiple mechanisms of action, which works to their advantage, making it difficult for a fungus to create resistance mechanisms against all of them at the same time. The main objective of this work is to provide a state-of-the-art review on dermatophytes, dermatophytosis, and the existing treatments, both conventional and natural, such as chitosan and essential oils.
Collapse
Affiliation(s)
- Ana I Lopes
- Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Freni K Tavaria
- Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| |
Collapse
|
9
|
Tran HNH, Graham L, Adukwu EC. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl Microbiol Biotechnol 2020; 104:8911-8924. [PMID: 32880694 PMCID: PMC7502450 DOI: 10.1007/s00253-020-10829-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
Candida infections are a significant source of patient morbidity and mortality. Candida albicans is the most common pathogen causing Candida infections. Candida auris is a newly described pathogen that is associated with multi-drug-resistant candidiasis and candidaemia in humans. The antifungal effects of various essential oils and plant compounds have been demonstrated against human pathogenic fungi. In this study, the effect of cinnamon leaf and bark essential oils (CEOs) was determined against both C. albicans and C. auris. The disc diffusion (direct and vapour) and broth microdilution method was used to determine antifungal activity of the EOs against selected strains (C. albicans ATCC 10231, C. albicans ATCC 2091 and C. auris NCPF 8971) whilst the mode of action and haemolysin activity of the CEOs were determined using electron microscopy and light microscopy. Direct and vapour diffusion assays showed greater inhibitory activity of bark CEO in comparison with leaf CEO. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of bark CEO for all tested strains was below 0.03% (v/v), which was lower than the MICs of the leaf CEO (0.06–0.13%, v/v) dependent on the strain and the MFCs at 0.25% (v/v). In the morphological interference assays, damage to the cell membrane was observed and both CEOs inhibited hyphae formation. The haemolysin production assay showed that CEOs can reduce the haemolytic activity in the tested C. albicans and C. auris strains. At low concentrations, CEOs have potent antifungal and antihaemolytic activities in vitro against C. albicans and C. auris. Key points • Essential oils from Cinnamomum zeylanicum Blume bark and leaf (CBEO and CLEO) demonstrated fungicidal properties at very low concentrations. • The antifungal activity of CBEO was greater than that of CLEO consistent with other recent published literature. • The mode of action of CBEO and CLEO was damage to the membrane of C. albicans and C. auris. • Both CBEO and CLEO inhibited the formation of hyphae and reduced haemolysin production in C. albicans and C. auris. ![]()
Collapse
Affiliation(s)
- Hoang N H Tran
- Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TH, UK
| | - Lee Graham
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Emmanuel C Adukwu
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
10
|
Kulshreshtha G, Ahmed TAE, Wu L, Diep T, Hincke MT. A novel eco-friendly green approach to produce particalized eggshell membrane (PEM) for skin health applications. Biomater Sci 2020; 8:5346-5361. [PMID: 32857070 DOI: 10.1039/d0bm01110j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The eggshell membrane (ESM) is a natural bioactive material, which is increasingly utilized for various biomedical applications. However, the poor solubility of ESM limits the bioavailability of its constituents and reduces the expression of their potential bioactivity. In this study, we utilized an innovative green strategy to separate ESM from shell, and processed ESM for size reduction by cryo-grinding and homogenization to produce particalized eggshell membrane (PEM) approaching submicron dimensions, with enhanced anti-inflammatory activity and increased antimicrobial activity against skin associated pathogens. Gram-positive Staphylococcus aureus (log10 reduction = 4.5 ± 0.3) was more sensitive to PEM as compared to Gram-negative Pseudomonas aeruginosa (log10 reduction = 2.1 ± 0.3). PEM elicited a dose-dependent reduction in NO accumulation in LPS-induced RAW 264.7 macrophages, suggesting an anti-inflammatory response to ESM particles. These findings suggest that processed PEM possesses great potential as a topical ingredient in skincare applications to maintain skin health by reducing bacterial infections and inflammation.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | | | |
Collapse
|
11
|
Jo A, Yoo HJ, Lee M. Robustaflavone Isolated from Nandina domestica Using Bioactivity-Guided Fractionation Downregulates Inflammatory Mediators. Molecules 2019; 24:molecules24091789. [PMID: 31072069 PMCID: PMC6540067 DOI: 10.3390/molecules24091789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Nandina domestica (Berberidaceae) has been used in traditional medicine for the treatment of cough. This plant is distributed in Korea, Japan, China, and India This study aimed to investigate the anti-inflammatory phytochemicals obtained from the N. domestica fruits. We isolated a biflavonoid-type phytochemical, robustaflavone (R), from N. domestica fruits through bioactivity-guided fractionation based on its capacity to inhibit inflammation. The anti-inflammatory mechanism of R isolated from N. domestica has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of R using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that R reduces the production of nitric oxide (NO), pro-inflammatory cytokine interleukin-1 beta (IL-1β), and IL-6. Western blot analysis showed that R suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and downregulates the expression of LPS-induced nuclear factor-kappa B (NF-κB) and the phosphorylation of extracellular-regulated kinases (pERK 1/2). Moreover, R inhibited IL-8 release in LPS-induced human colonic epithelial cells (HT-29). These results suggest that R could be a potential therapeutic candidate for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Ara Jo
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Hyun Ji Yoo
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Jeonnam, Korea.
| |
Collapse
|
12
|
Formulation and Characterization of Potential Antifungal Oleogel with Essential Oil of Thyme. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9431819. [PMID: 29849737 PMCID: PMC5933022 DOI: 10.1155/2018/9431819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/15/2018] [Indexed: 01/19/2023]
Abstract
The aim of this research was to formulate oleogel with thyme essential oil with potential antimicrobial activity, design optimal formulation, and evaluate the influence of ingredients on texture parameters of preparation. Central composite design was applied to statistical optimization of colloidal silica and paraffin oil mixture for the modeling of oleogel delivery system. The influence of designed formulations on response variables (texture parameters), firmness, cohesiveness, consistency, and index of viscosity, was evaluated. Quality of essential oil of thyme was assessed by determinate concentration of thymol and carvacrol using gas chromatography with flame ionization detection (GC-FID). Microbiological tests have shown that oleogel with thyme essential oil affects Candida albicans microorganism when thyme essential oil's concentration is 0,05% in oleogel mixture.
Collapse
|
13
|
Antibacterial Effects of Leaf Extract of Nandina domestica and the Underlined Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8298151. [PMID: 29576801 PMCID: PMC5822912 DOI: 10.1155/2018/8298151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Aim The study was conducted to investigate the antibacterial and antiasthmatic effects of Nandina domestica leaf extract, to find out its active components, and to assess its safety issue. Methods (1) Solid-phase agar dilution method was used for antibacterial activity test of nandina leaf extract and the change of bacterial morphology after treatment was observed under the transmission microscope; (2) guinea pig model of asthma was used to test the asthma prevention effect of nandina leaf extract; (3) alkaloids and flavones were separated from nandina leaf extract and were further analyzed with HPLC-MS; (4) mice model was used to assessment of the safety issue of nandina leaf extract. Results (1) Nandina leaf extract inhibited the growth of bacteria and destroyed bacterial membrane; (2) nandina leaf extract alleviated animal allergy and asthma; (3) the components reextracted by ethyl acetate were active, in which alkaloids inhibited Gram-positive bacteria and prevented asthma and flavones inhibited Gram-negative bacteria; (4) nandina leaf extract had no toxic effect on mice. Conclusion Nandina leaves inhibit bacterial growth and prevent asthma through alkaloids and flavones, which had integrated function against chronic bronchitis. This study provided theoretical basement for producing new Chinese medicine against chronic bronchitis.
Collapse
|
14
|
Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4517971. [PMID: 28546822 PMCID: PMC5435909 DOI: 10.1155/2017/4517971] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/09/2016] [Indexed: 01/22/2023]
Abstract
Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils.
Collapse
|
15
|
Lopes G, Pinto E, Salgueiro L. Natural Products: An Alternative to Conventional Therapy for Dermatophytosis? Mycopathologia 2016; 182:143-167. [PMID: 27771883 DOI: 10.1007/s11046-016-0081-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022]
Abstract
The increased incidence of fungal infections, associated with the widespread use of antifungal drugs, has resulted in the development of resistance, making it necessary to discover new therapeutic alternatives. Among fungal infections, dermatophytoses constitute a serious public health problem, affecting 20-25 % of the world population. Medicinal plants represent an endless source of bioactive molecules, and their volatile and non-volatile extracts are clearly recognized for being the historical basis of therapeutic health care. Because of this, the research on natural products with antifungal activity against dermatophytes has considerably increased in recent years. However, despite the recognized anti-dermatophytic potential of natural products, often advantageous face to commercial drugs, there is still a long way to go until their use in therapeutics. This review attempts to summarize the current status of anti-dermatophytic natural products, focusing on their mechanism of action, the developed pharmaceutical formulations and their effectiveness in human and animal models of infection.
Collapse
Affiliation(s)
- Graciliana Lopes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Eugénia Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal. .,Microbiology Service, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Lígia Salgueiro
- CNC.IBILI/Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354, Coimbra, Portugal
| |
Collapse
|
16
|
Uma K, Huang X, Kumar BA. Antifungal effect of plant extract and essential oil. Chin J Integr Med 2016; 23:233-239. [PMID: 27590142 DOI: 10.1007/s11655-016-2524-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 11/30/2022]
Abstract
The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products including plant extract and essential oils. These products have been widely used around the world since ancient times for the treatment of various disorders such as diabetes, hypertension, peptic ulcer disease, microbial infection, sexual disorder and many more. Its popularity in the modern system of medicine is mainly due to their availability and fewer adverse reactions compared to synthetic drugs. Various scientifific investigations have been conducted to look for the potential of the extract from the plant or isolated compounds for the continued use of these products in the treatment and prevention of various kinds of human diseases. It is evident from the available literature and scientifific investigations that many plant species possess potential for use as a benefificial therapeutic remedy with multiple pharmacological actions such as analgesic, anti-inflflammatory, antipyretic, hypoglycemic, hypotensive, antimicrobial, antiulcer and anticonvulsant activities. The present review aims to provide relevant updated information about certain plant products, its composition, preparation and its fungicidal or fungistatic effects on different species of fungus as evaluated by studies done in the past. It introduces six medicinal plants that have been studied for their antifungal property and are found to be effective. The overall objective is to provide comprehensive information about the use of plant extract and essential oil for treating fungal infections and to explore the evidence supporting its effectiveness in treating fungal diseases without causing any serious adverse reactions.
Collapse
Affiliation(s)
- Keyal Uma
- Department of Dermatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xin Huang
- Department of Dermatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Bhatta Anil Kumar
- Department of Dermatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| |
Collapse
|
17
|
Cornejo-Garrido J, Salinas-Sandoval M, Díaz-López A, Jácquez-Ríos P, Arriaga-Alba M, Ordaz-Pichardo C. In vitro and in vivo antifungal activity, liver profile test, and mutagenic activity of five plants used in traditional Mexican medicine. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Marek Gołębiewski W, Cyrta M, Michalczyk A. Synthesis and fungistatic activity of aryl aldoxime derivatives. J Mycol Med 2014; 25:50-6. [PMID: 25499806 DOI: 10.1016/j.mycmed.2014.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/09/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The antifungal activity of 13 arylaldoxime ester and ether derivatives was tested against 4 dermatophytes Trichophyton mentagrophytes (TM), Microsporum canis (MC); M. cookei, and M. gypseum. MATERIALS AND METHODS Structures of all new compounds prepared from aryl aldehydes were established by spectral means. The tests were performed on the Sabouraud Dextrose Agar (SDA) substrate. The sensitivity of the dermatophyte strains towards oxime derivatives was established by determining MIC and MFC values. RESULTS The tested compounds showed a moderate fungicidal activity reaching 100% inhibition rate at 1% concentration. The activity against M. canis of 4 derivatives was higher than the activity of a reference drug clotrimazole. CONCLUSION A novel group of biologically active compounds was introduced. Simple aldoxime derivatives can be developed into a new class of antifungals.
Collapse
Affiliation(s)
- W Marek Gołębiewski
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland.
| | - M Cyrta
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
| | - A Michalczyk
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
| |
Collapse
|
19
|
Li WR, Shi QS, Liang Q, Xie XB, Huang XM, Chen YB. Antibacterial activity and kinetics of Litsea cubeba oil on Escherichia coli. PLoS One 2014; 9:e110983. [PMID: 25372706 PMCID: PMC4220960 DOI: 10.1371/journal.pone.0110983] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Litsea cubeba oil is extracted from the fresh fruits of Litsea cubeba by distillation. In this study, its chemical constituents, antibacterial activity, kinetics and effects against Escherichia coli were studied. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 0.125% (v/v) by toxic food method. Moreover, the antibacterial kinetic curves indicated 0.0625% (v/v) of litsea cubeba oil was able to prolong the growth lag phase of E. coli cells to approximate 12 hours while 0.125% (v/v) of litsea cubeba oil was able to kill the cells completely. Furthermore, transmission electron microscope (TEM) observation showed most E. coli cells treated with 0.125% (v/v) of litsea cubeba oil were killed or destroyed severely within 2 hours. The litsea cubeba oil might penetrate and destroy the outer and inner membrane of E. coli cells. Thus many holes and gaps were observed on the damaged cells, which led to their death eventually. The antibacterial effects of litsea cubeba oil mainly attributed to the presence of aldehydes, which accounted for approximately 70% in its whole components analyzed by GC/MS. Based on the antimicrobial properties, litsea cubeba oil would have a broad application in the antimicrobial industry.
Collapse
Affiliation(s)
- Wen-Ru Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
- * E-mail:
| | - Qing Liang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiao-Bao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiao-Mo Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yi-Ben Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
20
|
Zeng H, Chen X, Liang J. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J Med Microbiol 2014; 64:93-103. [PMID: 25351709 DOI: 10.1099/jmm.0.077768-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent.
Collapse
Affiliation(s)
- Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources, College of Life Science, Tarim University, Alar, 843300, Xinjiang, PR China
| | - Xinping Chen
- Key Laboratory of Protection and Utilization of Biological Resources, College of Life Science, Tarim University, Alar, 843300, Xinjiang, PR China
| | - Jingnan Liang
- Instrument Center, Institute of Microbiology, Chinese Academy of Sciences, 100000 Beijing, PR China
| |
Collapse
|
21
|
Khan MSA, Ahmad I, Cameotra SS. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz J Microbiol 2014; 45:523-31. [PMID: 25242937 PMCID: PMC4166278 DOI: 10.1590/s1517-83822014000200021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/09/2013] [Indexed: 12/02/2022] Open
Abstract
Emergence of drug-resistant strains has demanded for alternative means of combating fungal infections. Oils of Carum copticum and Thymus vulgaris have long been used in ethnomedicine for ailments of various fungal infections. Since their activity has not been reported in particular against drug-resistant fungi, this study was aimed to evaluate the effects of oils of C. copticum and T. vulgaris on the growth and virulence of drug-resistant strains of Aspergillus spp. and Trichophyton rubrum. The gas chromatography-mass spectrometry analysis revealed thymol constituting 44.71% and 22.82% of T. vulgaris and C. copticum, respectively. Inhibition of mycelial growth by essential oils was recorded in the order of thymol > T. vulgaris > C. copticum against the tested strains. RBC lysis assay showed no tested oils to be toxic even up to concentration two folds higher than their respective MFCs. Thymol exhibited highest synergy in combination with fluconazole against Aspergillus fumigatus MTCC2550 (FICI value 0.187) and T. rubrum IOA9 (0.156) as determined by checkerboard method. Thymol and T. vulgaris essential oil were equally effective against both the macro and arthroconidia growth (MIC 72 μg/mL). A > 80% reduction in elastase activity was recorded for A. fumigatus MTCC2550 by C. copticum, T. vulgaris oils and thymol. The effectiveness of these oils against arthroconidia and synergistic interaction of thymol and T. vulgaris with fluconazole can be exploited to potentiate the antifungal effects of fluconazole against drug-resistant strains of T. rubrum and Aspergillus spp.
Collapse
Affiliation(s)
- Mohd Sajjad Ahmad Khan
- Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhIndiaDepartment of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India.
- Institute of Microbial TechnologyChandigarhIndiaInstitute of Microbial Technology, Chandigarh, India.
| | - Iqbal Ahmad
- Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhIndiaDepartment of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India.
| | - Swaranjit Singh Cameotra
- Institute of Microbial TechnologyChandigarhIndiaInstitute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
22
|
Early state research on antifungal natural products. Molecules 2014; 19:2925-56. [PMID: 24609016 PMCID: PMC6271505 DOI: 10.3390/molecules19032925] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/01/2014] [Accepted: 01/09/2014] [Indexed: 01/20/2023] Open
Abstract
Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.
Collapse
|
23
|
Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. ScientificWorldJournal 2014; 2014:492138. [PMID: 24600325 PMCID: PMC3926400 DOI: 10.1155/2014/492138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/17/2013] [Indexed: 11/17/2022] Open
Abstract
Corymbia citriodora and Cymbopogon nardus essential oils samples were analyzed by GC and GC-MS and their qualitative and quantitative compositions established. The main component of essential oils of C. citriodora and C. nardus was citronellal, at 61.78% and 36.6%, respectively. The essential oils and citronellal were tested for their fumigant antifungal activity against Pyricularia (Magnaporthe) grisea, Aspergillus spp., and Colletotrichum musae. The minimum inhibitory concentration (MIC) ranged from 100 to 200 ppm for the essential oils and 25 to 50 mg · mL(-1) for citronellal. The contact assay using the essential oils and citronellal showed growth inhibition of the three fungal species. However, a concentration of 1.47 mg · mL(-1) only reduced the inhibition of Aspergillus growth to 90% at 14 days of exposure. For the fumigant assay, 0.05, 0.11, and 0.23 mg · mL(-1) of essential oils and citronellal drastically affected growth of P. grisea, Aspergillus spp., and C. musae. Harmful effects on the sporulation and germination of the three fungi were seen, and there was complete inhibition at 0.15 mg · mL(-1) with both oils and citronellal. This showed that the crude component of essential oils of C. citriodora and C. nardus markedly suppressed spore production, germination, and growth inhibition of P. grisea, Aspergillus spp., and Colletotrichum musae.
Collapse
|
24
|
Korenblum E, Regina de Vasconcelos Goulart F, de Almeida Rodrigues I, Abreu F, Lins U, Alves PB, Blank AF, Valoni É, Sebastián GV, Alviano DS, Alviano CS, Seldin L. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express 2013; 3:44. [PMID: 23938023 PMCID: PMC3751693 DOI: 10.1186/2191-0855-3-44] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries.
Collapse
Affiliation(s)
- Elisa Korenblum
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Igor de Almeida Rodrigues
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulysses Lins
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Péricles Barreto Alves
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, Aracajú, SE, Brazil
| | - Arie Fitzgerald Blank
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, Aracajú, SE, Brazil
| | - Érika Valoni
- CENPES, Petrobras, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | - Daniela Sales Alviano
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celuta Sales Alviano
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucy Seldin
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Costa DCM, Vermelho AB, Almeida CA, Dias EPDS, Cedrola SML, Arrigoni-Blank MDF, Blank AF, Alviano CS, Alviano DS. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. J Enzyme Inhib Med Chem 2013; 29:12-7. [DOI: 10.3109/14756366.2012.743537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Alane Beatriz Vermelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| | - Catia Amancio Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| | | | | | | | - Arie Fitzgerald Blank
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe
SergipeBrazil
| | - Celuta Sales Alviano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| | - Daniela Sales Alviano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| |
Collapse
|
26
|
Li WR, Shi QS, Ouyang YS, Chen YB, Duan SS. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404. Appl Microbiol Biotechnol 2012; 97:7483-92. [DOI: 10.1007/s00253-012-4460-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/14/2012] [Accepted: 09/20/2012] [Indexed: 11/29/2022]
|
27
|
Chen Y, Dai G. Antifungal activity of plant extracts against Colletotrichum lagenarium, the causal agent of anthracnose in cucumber. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:1937-1943. [PMID: 22246784 DOI: 10.1002/jsfa.5565] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/25/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Colletotrichum lagenarium is an important plant-pathogenic fungus that causes anthracnose of cucumber, a disease that is widespread under both greenhouse and field cultivation. To find a promising method for the control of this disease, extracts of eight plants from China were screened in the study presented here. RESULTS The results showed that the extract of Cinnamomum camphora (L.) Presl had significantly greater inhibitory activity against C. lagenarium than the other seven plant extracts tested in vitro. At 5 days after inoculation in a potted seedling experiment, C. camphora extract demonstrated 95% control of C. lagenarium at a concentration of 16 mg mL⁻¹, and the MIC₅₀ was 2.596 mg mL⁻¹. Microscopic observation showed that this extract had a significant impact on the morphology of the fungus, leading to shorter hyphae that were more branched; this observation was associated with the inhibition of mycelial growth. Stability assays revealed that the extract was relatively stable at 80 °C, under acidic conditions and when exposed to light and short periods of UV radiation. CONCLUSION These results demonstrated that the extract from C. camphora could be used as a potent phytochemical fungicide.
Collapse
Affiliation(s)
- Yijuan Chen
- Plant Health and Natural Products Laboratory, Key Laboratory of Urban Agriculture-South, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | |
Collapse
|
28
|
Guo J, Brosnan B, Furey A, Arendt E, Murphy P, Coffey A. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng Bugs 2012; 3:104-13. [PMID: 22539027 DOI: 10.4161/bbug.19624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A total of 220 lactic acid bacteria isolates were screened for antifungal activity using Aspergillus fumigatus and Aspergillus niger as the target strains. Four Lactobacillus strains exhibited strong inhibitory activity on agar surfaces. All four were also identified as having strong inhibitory activity against the human pathogenic fungi Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. One of the four lactobacilli, namely Lb. reuteri ee1p exhibited the most inhibition against dermatophytes. Cell-free culture supernatants of Lb. reuteri ee1p and of the non-antifungal Lb. reuteri M13 were freeze-dried and used to access and compare antifungal activity in agar plate assays and microtiter plate assays. Addition of the Lb. reuteri ee1p freeze-dried cell-free supernatant powder into the agar medium at concentrations greater than 2% inhibited all fungal colony growth. Addition of the powder at 5% to liquid cultures caused complete inhibition of fungal growth on the basis of turbidity. Freeze-dried supernatant of the non-antifungal Lb. reuteri M13 at the same concentrations had a much lesser effect. As Lb. reuteri M13 is very similar to the antifungal strain ee1p in terms of growth rate and final pH in liquid culture, and as it has little antifungal activity, it is clear that other antifungal compounds must be specifically produced (or produced at higher levels) by the anti-dermatophyte strain Lb. reuteri ee1p. Reuterin was undetectable in all four antifungal strains. The cell free supernatant of Lb. reuteri ee1p was analyzed by LC-FTMS using an Accela LC coupled to an LTQ Orbitrap XL mass spectrometer. The high mass accuracy spectrum produced by compounds in the Lb. reuteri ee1p strain was compared with both a multianalyte chromatogram and individual spectra of standard anti-fungal compounds, which are known to be produced by lactic acid bacteria. Ten antifungal metabolites were detected.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
29
|
Khan MSA, Ahmad I. In vitro antifungal, anti-elastase and anti-keratinase activity of essential oils of Cinnamomum-, Syzygium- and Cymbopogon-species against Aspergillus fumigatus and Trichophyton rubrum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 19:48-55. [PMID: 21893402 DOI: 10.1016/j.phymed.2011.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/13/2011] [Accepted: 07/26/2011] [Indexed: 05/20/2023]
Abstract
This study was aimed to evaluate effects of certain essential oils namely Cinnamomum verum, Syzygium aromaticum, Cymbopogon citratus, Cymbopogon martini and their major components cinnamaldehyde, eugenol, citral and geraniol respectively, on growth, hyphal ultrastructure and virulence factors of Aspergillus fumigatus and Trichophyton rubrum. The antifungal activity of essential oils and their major constituents was in the order of cinnamaldehyde>eugenol>geraniol=C. verum>citral>S. aromaticum>C. citratus>C. martini, both in liquid and solid media against T. rubrum and A. fumigatus. Based on promising antifungal activity of eugenol and cinnamaldehyde, these oils were further tested for their inhibitory activity against ungerminated and germinated conidia in test fungi. Cinnamaldehyde was found to be more active than eugenol. To assess the possible mode of action of cinnamaldehyde, electron microscopic studies were conducted. The observations revealed multiple sites of action of cinnamaldehyde mainly on cell membranes and endomembranous structures of the fungal cell. Further, test oils were also tested for their anti-virulence activity. More than 70% reduction in elastase activity was recorded in A. fumigatus by the oils of C. verum, C. martini, eugenol, cinnamaldehyde and geraniol. Similar reduction in keratinase activity in A. niger was recorded for the oils of C. martini and geraniol. Maximum reduction (96.56%) in elastase activity was produced by cinnamaldehyde whereas; geraniol caused maximum inhibition (97.31%) of keratinase activity. Our findings highlight anti-elastase and anti-keratinase activity of above mentioned essential oils as a novel property to be exploited in controlling invasive and superficial mycoses.
Collapse
Affiliation(s)
- Mohd Sajjad Ahmad Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
30
|
Lang G, Buchbauer G. A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2082] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gudrun Lang
- Faculty of Life Sciences, Clinical Pharmacy & Diagnostics; University of Vienna; Vienna; Austria
| | - Gerhard Buchbauer
- Faculty of Life Sciences, Clinical Pharmacy & Diagnostics; University of Vienna; Vienna; Austria
| |
Collapse
|
31
|
Guo J, Mauch A, Galle S, Murphy P, Arendt EK, Coffey A. Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri. J Appl Microbiol 2011; 111:474-83. [PMID: 21645181 DOI: 10.1111/j.1365-2672.2011.05032.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM The aims of this study were to identify antifungal lactic acid bacteria (LAB) and characterize their activity against the dermatophyte Trichophyton tonsurans. METHODS AND RESULTS A total of 165 different LAB were isolated and initially screened for anti-Penicillium expansum activity. Five strains, which exhibited strong inhibitory activity, were then tested against the dermatophyte T. tonsurans DSM12285, where they also caused inhibition as observed by large fungal clearing on agar surface. The strongest inhibition was seen with Lactobacillus reuteri R2. When freeze-dried cell-free supernatant powder from this strain was incorporated in culture medium at concentrations >1%, growth of fungal colony was inhibited. Conidia germination was also inhibited under these conditions as determined by microscopy. The anti-T. tonsurans activity of Lact. reuteri R2 was not affected neither by heat treatment nor by proteolytic treatment using pronase E and proteinase K, indicating that the responsible agent(s) were nonproteinaceous in nature. CONCLUSIONS Lactobacillus reuteri R2 was identified as having strong inhibitory activity against the dermatophyte T. tonsurans DSMZ12285. SIGNIFICANCE AND IMPACT OF THE STUDY LAB are naturally associated with many foods and are well recognized for their biopreservative properties. The use of these and/or their products may well provide alternative safe approaches for the inhibition of dermatophytic fungi.
Collapse
Affiliation(s)
- J Guo
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
32
|
Khan MSA, Ahmad I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl Microbiol Biotechnol 2011; 90:1083-94. [DOI: 10.1007/s00253-011-3152-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 01/18/2011] [Accepted: 01/23/2011] [Indexed: 11/28/2022]
|
33
|
Ljaljevic-Grbic M, Stupar M, Vukojevic J, Grubisic D. In vitro antifungal and demelanizing activity of Nepeta rtanjensis essential oil against the human pathogen Bipolaris spicifera. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1103897g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The antifungal activity of Nepeta rtanjensis Diklic & Milojevic essential oil
was tested against the human pathogenic fungus Bipolaris spicifera (Bainier)
Subramanian via mycelial growth assay and conidia germination assay. The
minimally inhibitory concentration (MIC) of the oil was determined at 1.0 ?g
ml-1, while the MIC for the antifungal drug Bifonazole in a positive control
was determined at 10.0 ?g ml-1. The maximum of conidia germination inhibition
was accomplished at 0.6 ?g ml-1. In addition, at 0.6 ?g ml-1 and 0.8 ?g ml-1
the oil was able to cause morphophysiological changes in B. spicifera. The
most significant result is the bleaching effect of the melanized conidial
apparatus of the test fungi, since the melanin is the virulence factor in
human pathogenic fungi. These results showed the strong antifungal properties
of N. rtanjensis essential oil, supporting its possible rational use as an
alternative source of new antifungal compounds.
Collapse
Affiliation(s)
| | - M. Stupar
- Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade
| | - Jelena Vukojevic
- Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade
| | - D. Grubisic
- Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Belgrade
| |
Collapse
|