1
|
Li Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front Microbiol 2021; 12:674345. [PMID: 34248885 PMCID: PMC8260994 DOI: 10.3389/fmicb.2021.674345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinases belong to a class of proteases that are able to degrade keratins into amino acids. Microbial keratinases play important roles in turning keratin-containing wastes into value-added products by participating in the degradation of keratin. Keratin is found in human and animal hard tissues, and its complicated structures make it resistant to degradation by common proteases. Although breaking disulfide bonds are involved in keratin degradation, keratinase is responsible for the cleavage of peptides, making it attractive in pharmaceutical and feather industries. Keratinase can serve as an important tool to convert keratin-rich wastes such as feathers from poultry industry into diverse products applicable to many fields. Despite of some progress made in isolating keratinase-producing microorganisms, structural studies of keratinases, and biochemical characterization of these enzymes, effort is still required to expand the biotechnological application of keratinase in diverse fields by identifying more keratinases, understanding the mechanism of action and constructing more active enzymes through molecular biology and protein engineering. Herein, this review covers structures, applications, biochemistry of microbial keratinases, and strategies to improve its efficiency in keratin degradation.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Wang J, Hao C, Cao L, Yao Y, Ding Y, Yang Y, Tang XF, Tang B. Enhancing extracellular production of recombinant proteins in Escherichia coli by co-expressing with a haloarchaeal protein containing a putative LolA-like domain. Appl Microbiol Biotechnol 2021; 105:4609-4620. [PMID: 34043081 DOI: 10.1007/s00253-021-11352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Escherichia coli represents one of the most widely used hosts for recombinant protein production, but its limited capacity for producing extracellular proteins is often cited as a drawback. NJ7G_0991 is an extracellular protein of the haloarchaeon Natrinema sp. J7-2 and comprises a signal peptide, a putative LolA-like domain, and a C-terminal domain of unknown function. Here, we found that the full-length (0991) and the C-terminal domain-deletion variant (0991ΔC) of NJ7G_0991, but not its signal peptide-deletion variant (0991ΔS), were efficiently released into the culture supernatant of E. coli without extensive cell lysis as determined by β-galactosidase activity assay. After lysozyme treatment, E. coli cells producing 0991 or 0991ΔC, but not 0991ΔS, were converted from rod-shaped forms to spheres, suggesting that the secretion of 0991 or 0991ΔC into the periplasm leads to an increase of outer membrane permeability of E. coli. A pelB signal peptide was fused to the N-terminus of the LolA-like domain, and the resulting variant PelB-0991ΔC could be released into the culture supernatant of E. coli more efficiently than 0991ΔC. By using PelB-0991ΔC as a co-expression partner, the extracellular production level of a recombinant thermostable subtilase WF146 could be enhanced by up to 14-fold, and the extracellular concentration of an active site variant of WF146 (WF146-SA) reached up to 129 mg/l. To the best of our knowledge, this is the first report on archaeal protein-based co-expression system for extracellular production of recombinant proteins in E. coli. KEY POINTS: • The haloarchaeal protein NJ7G_0991 can be efficiently released into the culture supernatant of E. coli. • The recombinant NJ7G_0991 increases the outer membrane permeability of E. coli. • The LolA-like domain of NJ7G_0991 can be used as a co-expression partner to improve extracellular production of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yitong Yao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yidi Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yong Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, 430072, China.
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, 430072, China.
| |
Collapse
|
3
|
Peng Z, Zhang J, Song Y, Guo R, Du G, Chen J. Engineered pro-peptide enhances the catalytic activity of keratinase to improve the conversion ability of feather waste. Biotechnol Bioeng 2021; 118:2559-2571. [PMID: 33788275 DOI: 10.1002/bit.27771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 01/28/2023]
Abstract
Keratinase is an attractive industrial enzyme that can specifically catalyze keratin waste to obtain value-added products. A challenge to the application of keratinase is improving catalytic capacity to achieve efficient hydrolysis. In this study, we effectively expressed the keratinase gene from Bacillus licheniformis BBE11-1 in Bacillus subtilis WB600 based on pro-peptide engineering. Partial deletion of the pro-peptide sequence and the substitution of amino acid at the pro-peptide cleavage site (P1) suggested that the "chaperone effect" and "cleavage efficiency" of the pro-peptide determine the activity of the mature enzyme. Subsequently, seven target sites that can increase the activity of the mature enzyme by 16%-66% were obtained through the multiple sequence alignment of pro-peptides and site-directed mutation. We further performed combinatorial mutations at six sites based on the design principle of three-codon saturation mutations and obtained mutant 2-D12 (236.8 KU/mg) with a mature enzyme activity of 186% of the original (127.6 KU/mg). Finally, continuous fermentation was carried out in a 5-L bioreactor for 22 h, and the activity of the 2-D12 mature enzyme was increased to 391.6 KU/mg. Most importantly, 2-D12 could degrade more than 90% of feather waste into amino acids and peptides within 12 h with the aid of sulfite.
Collapse
Affiliation(s)
- Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Rong Guo
- Wuhan Institute of Industrial Control Technology Co., Ltd., Wuhan, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Bahun M, Hartman K, Poklar Ulrih N. Periplasmic production of pernisine in Escherichia coli and determinants for its high thermostability. Appl Microbiol Biotechnol 2020; 104:7867-7878. [PMID: 32734388 DOI: 10.1007/s00253-020-10791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
Abstract
Pernisine is a subtilisin-like serine proteinase secreted by the hyperthermophilic archaeon Aeropyrum pernix. The significant properties of this proteinase are remarkable stability and ability to degrade the infectious prion proteins. Here we show the production of pernisine in the periplasm of Escherichia coli. This strategy prevented the aggregation of pernisine in the cytoplasm and increased the purity of the isolated pernisine. The thermostability of this recombinant pernisine was significantly increased compared with previous studies. In addition, several truncated pernisine variants were constructed and expressed in E. coli to identify the minimally active domain. The catalytic domain of pernisine consists of the αẞα structurally similar core flanked by the N-terminal and C-terminal outer regions. The deletion of the C-terminal α helix did not affect the pernisine activity at 90 °C. However, the complete deletion of the C-terminal outer region resulted in loss of proteolytic activity. The pernisine variant, in which the N-terminal outer region was deleted, had a reduced activity at 90 °C. These results underline the importance of the Ca2+ binding sites predicted in these outer regions for stability and activity of pernisine. KEY POINTS: • Aggregation of produced pernisine was prevented by translocation into periplasm. • Thermostability of mature pernisine was increased. • The outer regions of the catalytic core are required for pernisine thermostability.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kevin Hartman
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia. .,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia.
| |
Collapse
|
5
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Li Q. Progress in Microbial Degradation of Feather Waste. Front Microbiol 2019; 10:2717. [PMID: 31866957 PMCID: PMC6906142 DOI: 10.3389/fmicb.2019.02717] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Feathers are a major by-product of the poultry industry. They are mainly composed of keratins which have wide applications in different fields. Due to the increasing production of feathers from poultry industries, the untreated feathers could become pollutants because of their resistance to protease degradation. Feathers are rich in amino acids, which makes them a valuable source for fertilizer and animal feeds. Numerous bacteria and fungi exhibited capabilities to degrade chicken feathers by secreting enzymes such as keratinases, and accumulated evidence shows that feather-containing wastes can be converted into value-added products. This review summarizes recent progress in microbial degradation of feathers, structures of keratinases, feather application, and microorganisms that are able to secrete keratinase. In addition, the enzymes critical for keratin degradation and their mechanism of action are discussed. We also proposed the strategy that can be utilized for feather degradation. Based on the accumulated studies, microbial degradation of feathers has great potential to convert them into various products such as biofertilizer and animal feeds.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Su C, Gong JS, Sun YX, Qin J, Zhai S, Li H, Li H, Lu ZM, Xu ZH, Shi JS. Combining Pro-peptide Engineering and Multisite Saturation Mutagenesis To Improve the Catalytic Potential of Keratinase. ACS Synth Biol 2019; 8:425-433. [PMID: 30668109 DOI: 10.1021/acssynbio.8b00442] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keratinases are becoming biotechnologically important since they have shown potential in hydrolysis of recalcitrant keratins with highly rigid and strongly cross-linked structures. However, the large-scale application of keratinases has been limited by the inefficient expression level and low enzyme activity. In this work, we employed pro-peptide engineering and saturation mutagenesis to construct excellent keratinase variants with improved activities. It turned out that amino acid substitutions at the pro-peptide cleavage site (P1) could accelerate the release of active mature enzymes, resulting in a 3-fold activity increase. Eighteen sites of the pro-peptide area were targeted for codon mutagenesis, and a multisite saturation mutagenesis library of the six potential sites was generated, achieving a significant improvement of keratinase activity from 179 to 1114 units/mL. Also, the mutants exhibited alterant catalytic properties. Finally, fermentation for keratinase production in a 15 L fermenter was carried out, and the enzyme activity reached up to over 3000 units/mL. Our results demonstrated that pro-peptide engineering played a crucial role in high expression and engineering of proteases. This study provides a universal route toward improvement of industrial enzymes that were first synthesized as precursors in the form of pre-pro-protein.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Yu-Xin Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Shen Zhai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen-Ming Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Li Y, Liu J, Wang Y, Liu B, Xie X, Jia R, Li C, Li Z. A two-stage temperature control strategy enhances extracellular secretion of recombinant α-cyclodextrin glucosyltransferase in Escherichia coli. AMB Express 2017; 7:165. [PMID: 28831769 PMCID: PMC5567581 DOI: 10.1186/s13568-017-0465-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
The effects of temperature on extracellular secretion of the α-cyclodextrin glucosyltransferase (α-CGTase) from Paenibacillus macerans JFB05-01 by Escherichia coli were investigated. When protein expression was induced at constant temperature, the greatest amount of extracellular recombinant α-CGTase was produced at 25 °C. Higher or lower induction temperatures were not conducive to extracellular secretion of recombinant α-CGTase. To enhance extracellular secretion of α-CGTase by E. coli, a two-stage temperature control strategy was adopted. When expression was induced at 25 °C for 32 h, and then the temperature was shifted to 30 °C, the extracellular α-CGTase activity at 90 h was 45% higher than that observed when induction was performed at a constant temperature of 25 °C. Further experiments suggested that raising the induction temperature can benefit the transport of recombinant enzyme and compensate for the decreased rate of recombinant enzyme synthesis during the later stage of expression. This report provides a new method of optimizing the secretory expression of recombinant enzymes by E. coli.
Collapse
Affiliation(s)
- Yang Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jia Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yinglan Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Bingjie Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xiaofang Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Rui Jia
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Cui Y, Meng Y, Zhang J, Cheng B, Yin H, Gao C, Xu P, Yang C. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expr Purif 2017; 129:69-74. [DOI: 10.1016/j.pep.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
10
|
Improving the Thermostability and Activity of a Thermophilic Subtilase by Incorporating Structural Elements of Its Psychrophilic Counterpart. Appl Environ Microbiol 2015; 81:6302-13. [PMID: 26150464 DOI: 10.1128/aem.01478-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022] Open
Abstract
The incorporation of the structural elements of thermostable enzymes into their less stable counterparts is generally used to improve enzyme thermostability. However, the process of engineering enzymes with both high thermostability and high activity remains an important challenge. Here, we report that the thermostability and activity of a thermophilic subtilase were simultaneously improved by incorporating structural elements of a psychrophilic subtilase. There were 64 variable regions/residues (VRs) in the alignment of the thermophilic WF146 protease, mesophilic sphericase, and psychrophilic S41. The WF146 protease was subjected to systematic mutagenesis, in which each of its VRs was replaced with those from S41 and sphericase. After successive rounds of combination and screening, we constructed the variant PBL5X with eight amino acid residues from S41. The half-life of PBL5X at 85°C (57.1 min) was approximately 9-fold longer than that of the wild-type (WT) WF146 protease (6.3 min). The substitutions also led to an increase in the apparent thermal denaturation midpoint temperature (Tm) of the enzyme by 5.5°C, as determined by differential scanning calorimetry. Compared to the WT, PBL5X exhibited high caseinolytic activity (25 to 95°C) and high values of Km and kcat (25 to 80°C). Our study may provide a rational basis for developing highly stable and active enzymes, which are highly desired in industrial applications.
Collapse
|
11
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
12
|
Auto-induction-based Rapid Evaluation of Extracellular Enzyme Expression from Lac Operator-involved Recombinant Escherichia coli. Appl Biochem Biotechnol 2014; 174:2516-26. [DOI: 10.1007/s12010-014-1201-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022]
|
13
|
Liu B, Zhang J, Fang Z, Du G, Chen J, Liao X. Functional analysis of the C-terminal propeptide of keratinase from Bacillus licheniformis BBE11-1 and its effect on the production of keratinase in Bacillus subtilis. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Zhu H, Xu BL, Liang X, Yang YR, Tang XF, Tang B. Molecular basis for auto- and hetero-catalytic maturation of a thermostable subtilase from thermophilic Bacillus sp. WF146. J Biol Chem 2013; 288:34826-38. [PMID: 24145031 DOI: 10.1074/jbc.m113.498774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proform of the WF146 protease, an extracellular subtilase produced by thermophilic Bacillus sp. WF146, matures efficiently at high temperatures. Here we report that the proform, which contains an N-terminal propeptide composed of a core domain (N*) and a linker peptide, is intrinsically able to mature via multiple pathways. One autocatalytic pathway is initiated by cis-processing of N* to generate an autoprocessed complex N*-I(WT), and this step is followed by truncation of the linker peptide and degradation of N*. Another autocatalytic pathway is initiated by trans-processing of the linker peptide followed by degradation of N*. Unlike most reported subtilases, the maturation of the WF146 protease occurs not only autocatalytically but also hetero-catalytically whereby heterogeneous proteases accelerate the maturation of the WF146 protease via trans-processing of the proform and N*-I(WT). Although N* acts as an intramolecular chaperone and an inhibitor of the mature enzyme, the linker peptide is susceptible to proteolysis, allowing the trans-processing reaction to occur auto- and hetero-catalytically. These studies also demonstrate that the WF146 protease undergoes subtle structural adjustments during the maturation process and that the binding of Ca(2+) is required for routing the proform to mature properly at high temperatures. Interestingly, under Ca(2+)-free conditions, the proform is cis-processed into a unique propeptide-intermediate complex (N*-I(E)) capable of re-synthesis of the proform. Based on the basic catalytic principle of serine proteases and these experimental results, a mechanism for the cis-processing/re-synthesis equilibrium of the proform and the role of the linker peptide in regulation of this equilibrium has been proposed.
Collapse
Affiliation(s)
- Hui Zhu
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
15
|
Chen WB, Nie Y, Xu Y, Xiao R. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control. Bioprocess Biosyst Eng 2013; 37:601-8. [DOI: 10.1007/s00449-013-1026-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
|
16
|
Altered secretary efficiency of Streptomyces hygroscopicus transglutaminase in Escherichia coli by the pro-peptide modification. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Chen K, Liu S, Wang G, Zhang D, Du G, Chen J, Shi Z. Enhancement of Streptomyces transglutaminase activity and pro-peptide cleavage efficiency by introducing linker peptide in the C-terminus of the pro-peptide. ACTA ACUST UNITED AC 2013; 40:317-25. [DOI: 10.1007/s10295-012-1221-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/30/2012] [Indexed: 01/05/2023]
Abstract
Abstract
Streptomyces transglutaminase (TGase) has been widely used in food, pharmaceutical and textile industries. Streptomyces TGase is naturally synthesized as zymogen (pro-TGase), which is then processed to produce active enzyme by removing its N-terminal pro-peptide. Although the pro-peptide is essential for TGase folding and secretion, few studies have been reported on improving the properties of TGase by pro-peptide engineering. In this study, we developed a new approach to improve the properties of TGase based on pro-peptide engineering. When the α-helix37G−42S in pro-peptide was substituted with three glycines and three alanines respectively, the mutants exhibited higher specific activity and the efficiency of pro-peptide cleavage was enhanced. To further improve the properties of TGase, relevant mutations were constructed by introducing linker peptides in the C-terminus of the pro-peptide. Mutants with GS (GGGGS) and PT (PTPPTTPT) linker peptide exhibited 1.28 fold and 1.5 fold higher specific activity than the wild-type enzyme, respectively. This new method could be used to improve the properties of TGase by pro-peptide modification, which is a promising technology for creating unique TGase with various beneficial properties.
Collapse
Affiliation(s)
- Kangkang Chen
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi China
| | - Song Liu
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi China
| | - Guangsheng Wang
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Dongxu Zhang
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Guocheng Du
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi China
| | - Jian Chen
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University Wuxi China
| | - Zhongping Shi
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi China
| |
Collapse
|
18
|
Low KO, Muhammad Mahadi N, Md. Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97:3811-26. [DOI: 10.1007/s00253-013-4831-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
19
|
Improvement of expression level of keratinase Sfp2 from Streptomyces fradiae by site-directed mutagenesis of its N-terminal pro-sequence. Biotechnol Lett 2013; 35:743-9. [DOI: 10.1007/s10529-013-1139-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
20
|
Jonet MA, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Rahim RA, Low KO, Illias RM. Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. J Mol Microbiol Biotechnol 2012; 22:48-58. [PMID: 22456489 DOI: 10.1159/000336524] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A heterologous signal peptide (SP) from Bacillus sp. G1 was optimized for secretion of recombinant cyclodextrin glucanotransferase (CGTase) to the periplasmic and, eventually, extracellular space of Escherichia coli. Eight mutant SPs were constructed using site-directed mutagenesis to improve the secretion of recombinant CGTase. M5 is a mutated SP in which replacement of an isoleucine residue in the h-region to glycine created a helix-breaking or G-turn motif with decreased hydrophobicity. The mutant SP resulted in 110 and 94% increases in periplasmic and extracellular recombinant CGTase, respectively, compared to the wild-type SP at a similar level of cell lysis. The formation of intracellular inclusion bodies was also reduced, as determined by sodium dodecyl sulfate-polyacrylamyde gel electrophoresis, when this mutated SP was used. The addition of as low as 0.08% glycine at the beginning of cell growth improved cell viability of the E. coli host. Secretory production of other proteins, such as mannosidase, also showed similar improvement, as demonstrated by CGTase production, suggesting that the combination of an optimized SP and a suitable chemical additive leads to significant improvements of extracellular recombinant protein production and cell viability. These findings will be valuable for the extracellular production of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mohd Anuar Jonet
- Department of Bioprocess Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rodríguez-Carmona E, Cano-Garrido O, Dragosits M, Maurer M, Mader A, Kunert R, Mattanovich D, Villaverde A, Vázquez F. Recombinant Fab expression and secretion in Escherichia coli continuous culture at medium cell densities: Influence of temperature. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Liu S, Zhang D, Wang M, Cui W, Chen K, Liu Y, Du G, Chen J, Zhou Z. The pro-region of Streptomyces hygroscopicus transglutaminase affects its secretion by Escherichia coli. FEMS Microbiol Lett 2011; 324:98-105. [DOI: 10.1111/j.1574-6968.2011.02387.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/23/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Song Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Dongxu Zhang
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | | | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Kangkang Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Yi Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi; China
| |
Collapse
|
23
|
Ismail NF, Hamdan S, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Klappa P, Illias RM. A mutant L-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli. Biotechnol Lett 2011; 33:999-1005. [PMID: 21234789 DOI: 10.1007/s10529-011-0517-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/06/2011] [Indexed: 11/26/2022]
Abstract
L-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS-PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Noor Faizah Ismail
- Department of Biology Sciences, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|