1
|
Cowie AE, Pereira JH, DeGiovanni A, McAndrew RP, Palayam M, Peek JO, Muchlinski AJ, Yoshikuni Y, Shabek N, Adams PD, Zerbe P. The crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase reveals active site features controlling catalytic specificity. J Biol Chem 2024:107921. [PMID: 39454950 DOI: 10.1016/j.jbc.2024.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Diterpenoid natural products serve critical functions in plant development and ecological adaptation and many diterpenoids have economic value as bioproducts. The family of class II diterpene synthases catalyzes the committed reactions in diterpenoid biosynthesis, converting a common geranylgeranyl diphosphate precursor into different bicyclic prenyl diphosphate scaffolds. Enzymatic rearrangement and modification of these precursors generates the diversity of bioactive diterpenoids. We report the crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase, GrTPS2, at 2.1 Å of resolution. GrTPS2 catalyzes the committed reaction in the biosynthesis of grindelic acid, which represents the signature metabolite in species of gumweed (Grindelia spp., Asteraceae). Grindelic acid has been explored as a potential source for drug leads and biofuel production. The GrTPS2 crystal structure adopts the conserved three-domain fold of class II diterpene synthases featuring a functional active site in the γβ-domain and a vestigial ɑ-domain. Substrate docking into the active site of the GrTPS2 apo protein structure predicted catalytic amino acids. Biochemical characterization of protein variants identified residues with impact on enzyme activity and catalytic specificity. Specifically, mutagenesis of Y457 provided mechanistic insight into the position-specific deprotonation of the intermediary carbocation to form the characteristic 7,13 double bond of 7,13-copalyl diphosphate.
Collapse
Affiliation(s)
- Anna E Cowie
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Jose H Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Malathy Palayam
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Jedidiah O Peek
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Andrew J Muchlinski
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yasuo Yoshikuni
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Nitzan Shabek
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Wu TJ, Lin CC, Ma LT, Yang CK, Ho CL, Wang SY, Chu FH. Functional identification of specialized diterpene synthases from Chamaecyparis obtusa and C. obtusa var. formosana to illustrate the putative evolution of diterpene synthases in Cupressaceae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112080. [PMID: 38582272 DOI: 10.1016/j.plantsci.2024.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Chamaecyparis obtusa and C. obtusa var. formosana of the Cupressaceae family are well known for their fragrance and excellent physical properties. To investigate the biosynthesis of unique diterpenoid compounds, diterpene synthase genes for specialized metabolite synthesis were cloned from C. obtusa and C. obtusa var. formosana. Using an Escherichia coli co-expression system, eight diterpene synthases (diTPSs) were characterized. CoCPS and CovfCPS are class II monofunctional (+)-copalyl diphosphate synthases [(+)-CPSs]. Class I monofunctional CoLS and CovfLS convert (+)-copalyl diphosphate [(+)-CPP] to levopimaradiene, CoBRS, CovfBRS1, and CovfBRS3 convert (+)-CPP to (-)-beyerene, and CovfSDS converts (+)-CPP to (-)-sandaracopimaradiene. These enzymes are all monofunctional diterpene syntheses in Cupressaceae family of gymnosperm, and differ from those in Pinaceae. The discovery of the enzyme responsible for the biosynthesis of tetracyclic diterpene (-)-beyerene was characterized for the first time. Diterpene synthases with different catalytic functions exist in closely related species within the Cupressaceae family, indicating that this group of monofunctional diterpene synthases is particularly prone to the evolution of new functions and development of species-specific specialized diterpenoid constituents.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Chi-Chun Lin
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Ma
- Academy of Circular Economy, National Chung-Hsing University, Taichung, Taiwan
| | - Chih-Kai Yang
- Department of Forestry, National Pingtung University of Science and Technology, Taipei, Taiwan
| | - Chen-Lung Ho
- Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Xie WL, Zhang MF, Huang ZY, Xu M, Li CX, Xu JH. Enhancing the biosynthesis of taxadien-5α-yl-acetate in Escherichia coli by combinatorial metabolic engineering approaches. BIORESOUR BIOPROCESS 2024; 11:50. [PMID: 38753083 PMCID: PMC11098985 DOI: 10.1186/s40643-024-00762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Biosynthesis of paclitaxel (Taxol™) is a hot topic with extensive and durable interests for decades. However, it is severely hindered due to the very low titers of intermediates. In this study, Escherichia coli was employed to de novo synthesize a key intermediate of paclitaxel, taxadien-5α-yl-acetate (T5OAc). Plasmid-based pathway reconstruction and optimization were conducted for T5OAc production. The endogenous methylerythritol phosphate pathway was enhanced to increase the precursor supply. Three taxadien-5α-ol O-acetyltransferases were tested to obtain the best enzyme for the acetylation step. Metabolic burden was relieved to restore cell growth and promote production through optimizing the plasmid production system. In order to achieve metabolic balance, the biosynthesis pathway was regulated precisely by multivariate-modular metabolic engineering. Finally, in a 5-L bioreactor, the T5OAc titer was enhanced to reach 10.9 mg/L. This represents an approximately 272-fold increase in production compared to the original strain, marking the highest yield of T5OAc ever documented in E. coli, which is believed to be helpful for promoting the progress of paclitaxel biosynthesis.
Collapse
Affiliation(s)
- Wen-Liang Xie
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mei-Fang Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Zheng-Yu Huang
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Man Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
4
|
Jiang F, Liu D, Dai J, Yang T, Zhang J, Che D, Fan J. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne'). Mol Biotechnol 2024; 66:56-67. [PMID: 37014586 DOI: 10.1007/s12033-023-00729-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.
Collapse
Affiliation(s)
- Fan Jiang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jingqi Dai
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Ogonkov A, Brosius PE, Zeng Q, Sasso S, Nagel R. Not All Acidovorax Are Created Equal: Gibberellin Biosynthesis in the Turfgrass Pathogen Acidovorax avenae subsp. avenae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:647-655. [PMID: 37227226 DOI: 10.1094/mpmi-02-23-0017-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent years Acidovorax avenae subsp. avenae was identified as a major cause of bacterial etiolation and decline (BED) in turfgrasses and has become a growing economical concern for the turfgrass industry. The symptoms of BED resemble those of "bakanae," or foolish seedling disease, of rice (Oryzae sativa), in which the gibberellins produced by the infecting fungus, Fusarium fujikuroi, contribute to the symptom development. Additionally, an operon coding for the enzymes necessary for bacterial gibberellin production was recently characterized in plant-pathogenic bacteria belonging to the γ-proteobacteria. We therefore investigated whether this gibberellin operon might be present in A. avenae subsp. avenae. A homolog of the operon has been identified in two turfgrass-infecting A. avenae subsp. avenae phylogenetic groups but not in closely related phylogenetic groups or strains infecting other plants. Moreover, even within these two phylogenetic groups, the operon presence is not uniform. For that reason, the functionality of the operon was examined in one strain of each turfgrass-infecting phylogenetic group (A. avenae subsp. avenae strains KL3 and MD5). All nine operon genes were functionally characterized through heterologous expression in Escherichia coli and enzymatic activities were analyzed by liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. All enzymes were functional in both investigated strains, thus demonstrating the ability of phytopathogenic β-proteobacteria to produce biologically active GA4. This additional gibberellin produced by A. avenae subsp. avenae could disrupt phytohormonal balance and be a leading factor contributing to the pathogenicity on turf grasses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Andrei Ogonkov
- Department of Plant Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Paula Emily Brosius
- Department of Plant Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, U.S.A
| | - Severin Sasso
- Department of Plant Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Tian M, Jin B, Chen L, Ma R, Ma Q, Li X, Chen T, Guo J, Ge H, Zhao X, Lai C, Tang J, Cui G, Huang L. Functional diversity of diterpene synthases in Aconitum plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107968. [PMID: 37619270 DOI: 10.1016/j.plaphy.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Members of the Aconitum genus within the Ranunculaceae family are known to accumulate a broad array of medicinal and toxic diterpenoid alkaloids (DAs). Historically, ent-copalyl diphosphate (ent-CPP) was considered the sole precursor in DAs biosynthesis. However, the recent discovery of ent-8,13-CPP synthase in A. gymnandrum Maxim., which participates in ent-atiserene biosynthesis, raises the question of whether this gene is conserved throughout the Aconitum genus. In this study, RNA sequencing and PacBio Iso-sequencing were employed to identify diterpene synthases (diTPSs) in four additional Aconitum species with distinct DA compositions. In vitro and in vivo analyses functionally characterized a diverse array of 10 class II and 9 class I diTPSs. In addition to the identification of seven class II diTPSs as ent-CPP synthases, three other synthases generating ent-8,13-CPP, 8,13-CPP, and 8α-hydroxy-CPP were also discovered. Four class I kaurene synthases-like (KSLs) were observed to react with ent-CPP to yield ent-kaurene. Three KSLs not only reacted with ent-CPP but also ent-8,13-CPP to produce ent-atiserene. AsiKSL2-1 was found to react with 8α-hydroxy-CPP to produce Z-abienol and AsiKSL2-2 exhibited no activity with any of the four intermediates. This research delineates the known diterpene biosynthesis pathways in six Aconitum species and explores the highly divergent diterpene synthases within the genus, which are consistent with their phylogeny and may be responsible for the differential distribution of diterpenoid alkaloids in root and aerial parts. These findings contribute valuable insights into the diversification of diterpene biosynthesis and establish a solid foundation for future investigation into DA biosynthetic pathways in Aconitum.
Collapse
Affiliation(s)
- Mei Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingli Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Traditional Chinese Medicine, Anhui Food and Drug Inspection and Research Institute, Hefei, 230051, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, Henan, 450046, China
| | - Qing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Ge
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Xin Zhao
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Li C, Wang S, Yin X, Guo A, Xie K, Chen D, Sui S, Han Y, Liu J, Chen R, Dai J. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane-Type Diterpenoids. Angew Chem Int Ed Engl 2023; 62:e202306020. [PMID: 37326357 DOI: 10.1002/anie.202306020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
CsCTS, a new diterpene synthase from Cephalotaxus sinensis responsible for forming cephalotene, the core skeleton of cephalotane-type diterpenoids with a highly rigid 6/6/5/7 tetracyclic ring system, was functionally characterized. The stepwise cyclization mechanism is proposed mainly based on structural investigation of its derailment products, and further demonstrated through isotopic labeling experiments and density functional theory calculations. Homology modeling and molecular dynamics simulation combined with site-directed mutagenesis revealed the critical amino acid residues for the unique carbocation-driven cascade cyclization mechanism of CsCTS. Altogether, this study reports the discovery of the diterpene synthase that catalyzes the first committed step of cephalotane-type diterpenoid biosynthesis and delineates its cyclization mechanism, laying the foundation to decipher and artificially construct the complete biosynthetic pathway of this type diterpenoids.
Collapse
Affiliation(s)
- Changkang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Xinxin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aobo Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaotian Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Zhang J, Gong X, Gan Q, Yan Y. Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis. BIOSENSORS 2023; 13:633. [PMID: 37366998 DOI: 10.3390/bios13060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Plant natural products (PNPs) have shown various pharmaceutical activities, possessing great potential in global markets. Microbial cell factories (MCFs) provide an economical and sustainable alternative for the synthesis of valuable PNPs compared with traditional approaches. However, the heterologous synthetic pathways always lack native regulatory systems, bringing extra burden to PNPs production. To overcome the challenges, biosensors have been exploited and engineered as powerful tools for establishing artificial regulatory networks to control enzyme expression in response to environments. Here, we reviewed the recent progress involved in the application of biosensors that are responsive to PNPs and their precursors. Specifically, the key roles these biosensors played in PNP synthesis pathways, including isoprenoids, flavonoids, stilbenoids and alkaloids, were discussed in detail.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Murphy KM, Dowd T, Khalil A, Char SN, Yang B, Endelman BJ, Shih PM, Topp C, Schmelz EA, Zerbe P. A dolabralexin-deficient mutant provides insight into specialized diterpenoid metabolism in maize. PLANT PHYSIOLOGY 2023; 192:1338-1358. [PMID: 36896653 PMCID: PMC10231366 DOI: 10.1093/plphys/kiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.
Collapse
Affiliation(s)
- Katherine M Murphy
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Tyler Dowd
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Ahmed Khalil
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin J Endelman
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Patrick M Shih
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Zhao L, Oyagbenro R, Feng Y, Xu M, Peters RJ. Oryzalexin S biosynthesis: a cross-stitched disappearing pathway. ABIOTECH 2023; 4:1-7. [PMID: 37220540 PMCID: PMC10199973 DOI: 10.1007/s42994-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/25/2023]
Abstract
Rice produces many diterpenoid phytoalexins and, reflecting the importance of these natural products in this important cereal crop plant, its genome contains three biosynthetic gene clusters (BGCs) for such metabolism. The chromosome 4 BGC (c4BGC) is largely associated with momilactone production, in part due to the presence of the initiating syn-copalyl diphosphate (CPP) synthase gene (OsCPS4). Oryzalexin S is also derived from syn-CPP. However, the relevant subsequently acting syn-stemarene synthase gene (OsKSL8) is not located in the c4BGC. Production of oryzalexin S further requires hydroxylation at carbons 2 and 19 (C2 and C19), presumably catalyzed by cytochrome P450 (CYP) monooxygenases. Here it is reported the closely related CYP99A2 and CYP99A3, whose genes are also found in the c4BGC catalyze the necessary C19-hydroxylation, while the closely related CYP71Z21 and CYP71Z22, whose genes are found in the recently reported chromosome 7 BGC (c7BGC), catalyze subsequent hydroxylation at C2α. Thus, oryzalexin S biosynthesis utilizes two distinct BGCs, in a pathway cross-stitched together by OsKSL8. Notably, in contrast to the widely conserved c4BGC, the c7BGC is subspecies (ssp.) specific, being prevalent in ssp. japonica and only rarely found in the other major ssp. indica. Moreover, while the closely related syn-stemodene synthase OsKSL11 was originally considered to be distinct from OsKSL8, it has now been reported to be a ssp. indica derived allele at the same genetic loci. Intriguingly, more detailed analysis indicates that OsKSL8(j) is being replaced by OsKSL11 (OsKSL8i), suggesting introgression from ssp. indica to (sub)tropical japonica, with concurrent disappearance of oryzalexin S production. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00092-3.
Collapse
Affiliation(s)
- Le Zhao
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Richard Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Yiling Feng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
11
|
Sarkar A, Foderaro T, Kramer L, Markley AL, Lee J, Traylor MJ, Fox JM. Evolution-Guided Biosynthesis of Terpenoid Inhibitors. ACS Synth Biol 2022; 11:3015-3027. [PMID: 35984356 DOI: 10.1021/acssynbio.2c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Terpenoids, the largest and most structurally diverse group of natural products, include a striking variety of biologically active compounds, from flavors to medicines. Despite their well-documented biochemical versatility, the evolutionary processes that generate new functional terpenoids are poorly understood and difficult to recapitulate in engineered systems. This study uses a synthetic biochemical objective─a transcriptional system that links the inhibition of protein tyrosine phosphatase 1B (PTP1B), a human drug target, to the expression of a gene for antibiotic resistance in Escherichia coli (E. coli)─to evolve a terpene synthase to produce enzyme inhibitors. Site saturation mutagenesis of poorly conserved residues on γ-humulene synthase (GHS), a promicuous enzyme, yielded mutants that improved fitness (i.e., the antibiotic resistance of E. coli) by reducing GHS toxicity and/or by increasing inhibitor production. Intriguingly, a combination of two mutations enhanced the titer of a minority product─a terpene alcohol that inhibits PTP1B─by over 50-fold, and a comparison of similar mutants enabled the identification of a site where mutations permit efficient hydroxylation. Findings suggest that the plasticity of terpene synthases enables an efficient sampling of structurally distinct starting points for building new functional molecules and provide an experimental framework for exploiting this plasticity in activity-guided screens.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Tom Foderaro
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Levi Kramer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Andrew L Markley
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jessica Lee
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Matthew J Traylor
- Think Bioscience, Inc., A1B43 MCDB, 1945 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
12
|
Facile Biosynthesis of Taxadiene by a Newly Constructed Escherichia coli Strain Fusing Enzymes Taxadiene Synthase and Geranylgeranyl Pyrophosphate Synthase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sun Y, Xin Y, Zhang L, Wang Y, Liu R, Li X, Zhou C, Zhang L, Han J. Enhancement of violaxanthin accumulation in Nannochloropsis oceanica by overexpressing a carotenoid isomerase gene from Phaeodactylum tricornutum. Front Microbiol 2022; 13:942883. [PMID: 36118188 PMCID: PMC9471142 DOI: 10.3389/fmicb.2022.942883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Nannochloropsis has been considered as a promising feedstock for the industrial production of violaxanthin. However, a rational breeding strategy for the enhancement of violaxanthin content in this microalga is still vacant, thereby limiting its industrial application. All-trans-lycopene locates in the first branch point of carotenogenesis. The carotenoid isomerase (CRTISO), catalyzing the lycopene formation, is thus regarded as a key enzyme for carotenogenesis. Phaeodactylum tricornutum can accumulate high-level carotenoids under optimal conditions. Therefore, it is feasible to improve violaxanthin level in Nannochloropsis by overexpression of PtCRTISO. Protein targeting analysis of seven PtCRTISO candidates (PtCRTISO1–6 and PtCRTISO-like) demonstrated that PtCRTISO4 was most likely the carotenoid isomerase of P. tricornutum. Moreover, the transcriptional pattern of PtCRTISO4 at different cultivation periods was quite similar to other known carotenogenesis genes. Thus, PtCRTISO4 was transformed into N. oceanica. Compared to the wild type (WT), all three transgenic lines (T1–T3) of N. oceanica exhibited higher levels of total carotenoid and violaxanthin. Notably, T3 exhibited the peak violaxanthin content of 4.48 mg g–1 dry cell weight (DCW), which was 1.68-folds higher than WT. Interestingly, qRT-polymerase chain reaction (PCR) results demonstrated that phytoene synthase (NoPSY) rather than ζ-carotene desaturase (NoZDS) and lycopene β-cyclase (NoLCYB) exhibited the highest upregulation, suggesting that PtCRTISO4 played an additional regulatory role in terms of carotenoid accumulation. Moreover, PtCRTISO4 overexpression increased C18:1n-9 but decreased C16:1n-7, implying that C18:1 may serve as a main feedstock for xanthophyll esterification in Nannochloropsis. Our results will provide valuable information for the violaxanthin production from Nannochloropsis.
Collapse
Affiliation(s)
- Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yi Xin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Luyao Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ying Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ruolan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education of China, School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Lin Zhang,
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Jichang Han,
| |
Collapse
|
14
|
Wang J, Mao Y, Ma Y, Yang J, Jin B, Lin H, Tang J, Zeng W, Zhao Y, Gao W, Peters RJ, Guo J, Cui G, Huang L. Diterpene synthases from Leonurus japonicus elucidate epoxy-bridge formation of spiro-labdane diterpenoids. PLANT PHYSIOLOGY 2022; 189:99-111. [PMID: 35157086 PMCID: PMC9070827 DOI: 10.1093/plphys/kiac056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoids. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaping Mao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Lin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Zeng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Shahi A, Yu H, Mafu S. Diterpene Biosynthesis in Rice Blast Fungus Magnaporthe. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:869823. [PMID: 37746177 PMCID: PMC10512213 DOI: 10.3389/ffunb.2022.869823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 09/26/2023]
Abstract
Plant-pathogenic fungi harbor various specialized metabolites including diterpenoids that function as hormones and virulence factors. The fungus Magnaporthe oryzae is the causal agent of rice blast disease and can infect over fifty grass species. We demonstrate that rice blast fungi encode two diterpene synthases that produce normal pimara-8,15-diene and manoyl oxide scaffolds. Phylogenetic analysis of diterpene synthases among rice blast pathotypes showed functional conservation of these two core diterpene synthases amongst all pathotypes and suggests further expansion in those infecting select grass species. These insights into the blast fungal terpenome may inform efforts to counteract deleterious phytopathogens in crucial food crops.
Collapse
Affiliation(s)
- Ayousha Shahi
- Plant Biology Graduate Program, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Houlin Yu
- Plant Biology Graduate Program, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Sibongile Mafu
- Plant Biology Graduate Program, University of Massachusetts-Amherst, Amherst, MA, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA, United States
| |
Collapse
|
16
|
Zhu P, Chen Y, Wu F, Meng M, Ji K. Expression and promoter analysis of MEP pathway enzyme-encoding genes in Pinus massoniana Lamb. PeerJ 2022; 10:e13266. [PMID: 35433125 PMCID: PMC9012177 DOI: 10.7717/peerj.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
The methylerythritol phosphate (MEP) pathway provides the universal basic blocks for the biosynthesis of terpenoids and plays a critical role in the growth and development of higher plants. Pinus massoniana is the most valuable oleoresin producer tree with an extensive terrestrial range. It has the potential to produce more oleoresin with commercial value, while being resistant to pine wood nematode (PWN) disease. For this study, eleven MEP pathway associated enzyme-encoding genes and ten promoters were isolated from P. massoniana. Three PmDXS and two PmHDR existed as multi-copy genes, whereas the other six genes existed as single copies. All eleven of these MEP enzymes exhibited chloroplast localization with transient expression. Most of the MEP genes showed higher expression in the needles, while PmDXS2, PmDXS3, and PmHDR1 had high expression in the roots. The expressions of a few MEP genes could be induced under exogenous elicitor conditions. The functional complementation in a dxs-mutant Escherichia coli strain showed the DXS enzymatic activities of the three PmDXSs. High throughput TAIL PCR was employed to obtain the upstream sequences of the genes encoding for enzymes in the MEP pathway, whereby abundant light responsive cis-elements and transcription factor (TF) binding sites were identified within the ten promoters. This study provides a theoretical basis for research on the functionality and transcriptional regulation of MEP enzymes, as well as a potential strategy for high-resin generation and improved genetic resistance in P. massoniana.
Collapse
|
17
|
Liang J, Merrill AT, Laconsay CJ, Hou A, Pu Q, Dickschat JS, Tantillo DJ, Wang Q, Peters RJ. Deceptive Complexity in Formation of Cleistantha-8,12-diene. Org Lett 2022; 24:2646-2649. [PMID: 35385666 PMCID: PMC9040526 DOI: 10.1021/acs.orglett.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A barley diterpene synthase (HvKSL4) was found to produce (14S)-cleistantha-8,12-diene (1). Formation of the nearly planar cyclohexa-1,4-diene configuration leaves the ring poised for aromatization, but necessitates a deceptively complicated series of rearrangements steered through a complex energetic landscape, as elucidated here through quantum chemical calculations and labeling studies.
Collapse
Affiliation(s)
- Jin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Amy T Merrill
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms Universität Bonn, 53121 Bonn, Germany
| | - Qingyu Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms Universität Bonn, 53121 Bonn, Germany
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
19
|
Movahedi A, Wei H, Pucker B, Ghaderi-Zefrehei M, Rasouli F, Kiani-Pouya A, Jiang T, Zhuge Q, Yang L, Zhou X. Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:968780. [PMID: 36247639 PMCID: PMC9562105 DOI: 10.3389/fpls.2022.968780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
It is critical to develop plant isoprenoid production when dealing with human-demanded industries such as flavoring, aroma, pigment, pharmaceuticals, and biomass used for biofuels. The methylerythritol phosphate (MEP) and mevalonic acid (MVA) plant pathways contribute to the dynamic production of isoprenoid compounds. Still, the cross-talk between MVA and MEP in isoprenoid biosynthesis is not quite recognized. Regarding the rate-limiting steps in the MEP pathway through catalyzing 1-deoxy-D-xylulose5-phosphate synthase and 1-deoxy-D-xylulose5-phosphate reductoisomerase (DXR) and also the rate-limiting step in the MVA pathway through catalyzing 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the characterization and function of HMGR from Populus trichocarpa (PtHMGR) were analyzed. The results indicated that PtHMGR overexpressors (OEs) displayed various MEP and MVA-related gene expressions compared to NT poplars. The overexpression of PtDXR upregulated MEP-related genes and downregulated MVA-related genes. The overexpression of PtDXR and PtHMGR affected the isoprenoid production involved in both MVA and MEP pathways. Here, results illustrated that the PtHMGR and PtDXR play significant roles in regulating MEP and MVA-related genes and derived isoprenoids. This study clarifies cross-talk between MVA and MEP pathways. It demonstrates the key functions of HMGR and DXR in this cross-talk, which significantly contribute to regulate isoprenoid biosynthesis in poplars.
Collapse
Affiliation(s)
- Ali Movahedi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Boas Pucker
- Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | | | - Fatemeh Rasouli
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Ali Kiani-Pouya
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Qiang Zhuge,
| | - Liming Yang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Liming Yang,
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Xiaohong Zhou,
| |
Collapse
|
20
|
Muchlinski A, Jia M, Tiedge K, Fell JS, Pelot KA, Chew L, Davisson D, Chen Y, Siegel J, Lovell JT, Zerbe P. Cytochrome P450-catalyzed biosynthesis of furanoditerpenoids in the bioenergy crop switchgrass (Panicum virgatum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1053-1068. [PMID: 34514645 PMCID: PMC9292899 DOI: 10.1111/tpj.15492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Specialized diterpenoid metabolites are important mediators of plant-environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25-CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass). Combinatorial pathway reconstruction showed that CYP71Z25-CYP71Z29 catalyze furan ring addition directly to primary diterpene alcohol intermediates derived from distinct class II diterpene synthase products. Transcriptional co-expression patterns and the presence of select diterpenoids in switchgrass roots support the occurrence of P450-derived furanoditerpenoids in planta. Integrating molecular dynamics, structural analysis and targeted mutagenesis identified active site determinants that contribute to the distinct catalytic specificities underlying the broad substrate promiscuity of CYP71Z25-CYP71Z29 for native and non-native diterpenoids.
Collapse
Affiliation(s)
- Andrew Muchlinski
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
- Present address:
Firmenich Inc.4767 Nexus Center Dr.San DiegoCalifornia9212USA
| | - Meirong Jia
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
- Present address:
State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural ProductsInstitute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Kira Tiedge
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
| | - Jason S. Fell
- Genome CenterUniversity of California – DavisDavisCalifornia95616USA
| | - Kyle A. Pelot
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
| | - Lisl Chew
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
| | - Danielle Davisson
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
| | - Yuxuan Chen
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
| | - Justin Siegel
- Genome CenterUniversity of California – DavisDavisCalifornia95616USA
- Department of ChemistryUniversity of California – DavisDavisCalifornia95616USA
- Department of Biochemistry & Molecular MedicineUniversity of California – DavisDavisCalifornia95616USA
| | - John T. Lovell
- Genome Sequencing CenterHudson Alpha Institute for BiotechnologyHuntsvilleAlabama35806USA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California – DavisDavisCalifornia95616USA
| |
Collapse
|
21
|
Liang J, An T, Zhu JX, Chen S, Zhu JH, Peters RJ, Yu R, Zi J. Mining of the Catharanthus roseus Genome Leads to Identification of a Biosynthetic Gene Cluster for Fungicidal Sesquiterpenes. JOURNAL OF NATURAL PRODUCTS 2021; 84:2709-2716. [PMID: 34644092 PMCID: PMC8627374 DOI: 10.1021/acs.jnatprod.1c00588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Characterization of cryptic biosynthetic gene clusters (BGCs) from microbial genomes has been proven to be a powerful approach to the discovery of new natural products. However, such a genome mining approach to the discovery of bioactive plant metabolites has been muted. The plant BGCs characterized to date encode pathways for antibiotics important in plant defense against microbial pathogens, providing a means to discover such phytoalexins by mining plant genomes. Here is reported the discovery and characterization of a minimal BGC from the medicinal plant Catharanthus roseus, consisting of an adjacent pair of genes encoding a terpene synthase (CrTPS18) and cytochrome P450 (CYP71D349). These two enzymes act sequentially, with CrTPS18 acting as a sesquiterpene synthase, producing 5-epi-jinkoheremol (1), which CYP71D349 further hydroxylates to debneyol (2). Infection studies with maize revealed that 1 and 2 exhibit more potent fungicidal activity than validamycin. Accordingly, this study demonstrates that characterization of such cryptic plant BGCs is a promising strategy for the discovery of potential agrochemical leads. Moreover, despite the observed absence of 1 and 2 in C. roseus, the observed transcriptional regulation is consistent with their differential fungicidal activity, suggesting that such conditional coexpression may be sufficient to drive BGC assembly in plants.
Collapse
Affiliation(s)
- Jincai Liang
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Tianyue An
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Jian-Xun Zhu
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Shan Chen
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Jian-Hua Zhu
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics, Molecular Biology, Iowa State University, Ames, IA 50011, United States
- Jiachen Zi – Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China; ; Rongmin Yu – Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China; ; Reuben J. Peters – Roy J. Carver Department of Biochemistry, Biophysics, Molecular Biology, Iowa State University, Ames, IA 50011, United States;
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
- Jiachen Zi – Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China; ; Rongmin Yu – Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China; ; Reuben J. Peters – Roy J. Carver Department of Biochemistry, Biophysics, Molecular Biology, Iowa State University, Ames, IA 50011, United States;
| | - Jiachen Zi
- Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China
- Jiachen Zi – Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China; ; Rongmin Yu – Biotechnological Institute of Chinese Materia Medic, Jinan University, Guangzhou 510632, China; ; Reuben J. Peters – Roy J. Carver Department of Biochemistry, Biophysics, Molecular Biology, Iowa State University, Ames, IA 50011, United States;
| |
Collapse
|
22
|
Mao L, Jin B, Chen L, Tian M, Ma R, Yin B, Zhang H, Guo J, Tang J, Chen T, Lai C, Cui G, Huang L. Functional identification of the terpene synthase family involved in diterpenoid alkaloids biosynthesis in Aconitum carmichaelii. Acta Pharm Sin B 2021; 11:3310-3321. [PMID: 34729318 PMCID: PMC8546855 DOI: 10.1016/j.apsb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Aconitum carmichaelii is a high-value medicinal herb widely used across China, Japan, and other Asian countries. Aconitine-type diterpene alkaloids (DAs) are the characteristic compounds in Aconitum. Although six transcriptomes, based on short-read next generation sequencing technology, have been reported from the Aconitum species, the terpene synthase (TPS) corresponding to DAs biosynthesis remains unidentified. We apply a combination of Pacbio isoform sequencing and RNA sequencing to provide a comprehensive view of the A. carmichaelii transcriptome. Nineteen TPSs and five alternative splicing isoforms belonging to TPS-b, TPS-c, and TPS-e/f subfamilies were identified. In vitro enzyme reaction analysis functional identified two sesqui-TPSs and twelve diTPSs. Seven of the TPS-c subfamily genes reacted with GGPP to produce the intermediate ent-copalyl diphosphate. Five AcKSLs separately reacted with ent-CPP to produce ent-kaurene, ent-atiserene, and ent-13-epi-sandaracopimaradie: a new diterpene found in Aconitum. AcTPSs gene expression in conjunction DAs content analysis in different tissues validated that ent-CPP is the sole precursor to all DAs biosynthesis, with AcKSL1, AcKSL2s and AcKSL3-1 responsible for C20 atisine and napelline type DAs biosynthesis, respectively. These data clarified the molecular basis for the C20-DAs biosynthetic pathway in A. carmichaelii and pave the way for further exploration of C19-DAs biosynthesis in the Aconitum species.
Collapse
Affiliation(s)
- Liuying Mao
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingli Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Biwei Yin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
23
|
Zhu J, Liu L, Wu M, Xia G, Lin P, Zi J. Characterization of a Sesquiterpene Synthase Catalyzing Formation of Cedrol and Two Diastereoisomers of Tricho-Acorenol from Euphorbia fischeriana. JOURNAL OF NATURAL PRODUCTS 2021; 84:1780-1786. [PMID: 34014675 DOI: 10.1021/acs.jnatprod.1c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A sesquiterpene synthase gene was identified from the transcriptome of Euphorbia fischeriana Steud, and the function of its product EfTPS12 was characterized by in vitro biochemical experiments and synthetic biology approaches. EfTPS12 catalyzed conversion of farnesyl diphosphate into three products, including cedrol (1) and eupho-acorenols A (2) and B (3) (two diastereoisomers of tricho-acorenol), thereby being named EfCAS herein. The structures of 2 and 3 were determined by spectroscopic methods and comparison of experimental and calculated electronic circular dichroism spectra. EfCAS is the first example of a plant-derived sesquiterpene synthase that is capable of synthesizing acorane-type alcohols. This study also documents that synthetic biology approaches enable large-scale preparation of volatile terpenes and thereby substantially facilitate characterization of corresponding terpene synthases and elucidation of the structures of their products.
Collapse
Affiliation(s)
- Jianxun Zhu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Maobo Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Pengcheng Lin
- College of Pharmacy, Qinghai Nationalities University, Xining 810007, People's Republic of China
| | - Jiachen Zi
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
24
|
Sarkar A, Kim EY, Jang T, Hongdusit A, Kim H, Choi JM, Fox JM. Microbially Guided Discovery and Biosynthesis of Biologically Active Natural Products. ACS Synth Biol 2021; 10:1505-1519. [PMID: 33988973 DOI: 10.1021/acssynbio.1c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The design of small molecules that inhibit disease-relevant proteins represents a longstanding challenge of medicinal chemistry. Here, we describe an approach for encoding this challenge-the inhibition of a human drug target-into a microbial host and using it to guide the discovery and biosynthesis of targeted, biologically active natural products. This approach identified two previously unknown terpenoid inhibitors of protein tyrosine phosphatase 1B (PTP1B), an elusive therapeutic target for the treatment of diabetes and cancer. Both inhibitors appear to target an allosteric site, which confers selectivity, and can inhibit PTP1B in living cells. A screen of 24 uncharacterized terpene synthases from a pool of 4464 genes uncovered additional hits, demonstrating a scalable discovery approach, and the incorporation of different PTPs into the microbial host yielded alternative PTP-specific detection systems. Findings illustrate the potential for using microbes to discover and build natural products that exhibit precisely defined biochemical activities yet possess unanticipated structures and/or binding sites.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Edward Y. Kim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Taehwan Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
25
|
Ntana F, Bhat WW, Johnson SR, Jørgensen HJL, Collinge DB, Jensen B, Hamberger B. A Sesquiterpene Synthase from the Endophytic Fungus Serendipita indica Catalyzes Formation of Viridiflorol. Biomolecules 2021; 11:biom11060898. [PMID: 34208762 PMCID: PMC8234273 DOI: 10.3390/biom11060898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
26
|
Chen R, Bu Y, Ren J, Pelot KA, Hu X, Diao Y, Chen W, Zerbe P, Zhang L. Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in Artemisia annua. THE NEW PHYTOLOGIST 2021; 230:2387-2403. [PMID: 33740256 DOI: 10.1111/nph.17351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/11/2021] [Indexed: 05/27/2023]
Abstract
Plants synthesize diverse diterpenoids with numerous functions in organ development and stress resistance. However, the role of diterpenoids in glandular trichome (GT) development and GT-localized biosynthesis in plants remains unknown. Here, the identification of 10 diterpene synthases (diTPSs) revealed the diversity of diterpenoid biosynthesis in Artemisia annua. Protein-protein interactions (PPIs) between AaKSL1 and AaCPS2 in the plastids highlighted their potential functions in modulating metabolic flux to gibberellins (GAs) or ent-isopimara-7,15-diene-derived metabolites (IDMs) through metabolic engineering. A phenotypic analysis of transgenic plants suggested a complex repertoire of diterpenoids in Artemisia annua with important roles in GT formation, artemisinin accumulation and stress resilience. Metabolic engineering of diterpenoids simultaneously increased the artemisinin yield and stress resistance. Transcriptome and metabolic profiling suggested that bioactive GA4 /GA1 promote GT formation. Collectively, these results expand our knowledge of diterpenoids and show the potential of diterpenoids to simultaneously improve both the GT-localized metabolite yield and stress resistance, in planta.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuejuan Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Junze Ren
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kyle A Pelot
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, 362021, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
27
|
Ju H, Zhang C, Lu W. Progress in heterologous biosynthesis of forskolin. J Ind Microbiol Biotechnol 2021; 48:kuab009. [PMID: 33928347 PMCID: PMC9113163 DOI: 10.1093/jimb/kuab009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022]
Abstract
Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihypertensive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic biological technology, analyzes the current challenges, and proposes corresponding strategies.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
- Key Laboratory of System Bioengineering (Tianjin University),
Ministry of Education, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of
Chemical Science and Engineering (Tianjin), Tianjin
300350, P. R. China
| |
Collapse
|
28
|
Ma LT, Wang CH, Hon CY, Lee YR, Chu FH. Discovery and characterization of diterpene synthases in Chamaecyparis formosensis Matsum. which participated in an unprecedented diterpenoid biosynthesis route in conifer. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110790. [PMID: 33568294 DOI: 10.1016/j.plantsci.2020.110790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Chamaecyparis formosensis Matsum. is an endemic and precious coniferous species of Taiwan, and is known for a high abundance of specialized metabolites, which contributes to the excellent timber durability. Several terpenoids were identified and isolated from C. formosensis wood and needles, and exhibit anti-fungal and anti-bacterial bioactivities, which may participate in plant defense against pathogens. In various identified compounds, not only cadinene and ferruginol, were identified in C. formosensis extracts but also unique diterpenoids, which include pisferal, totarol, and derivates of isoabienol. To understand the biosynthesis of these specific diterpenoids, we conducted a series of functional characterization of the C. formosensis diterpene synthases (CfdiTPSs), which participate in skeleton formation and differentiation of diterpenes. In this study, we identified eight diTPSs from C. formosensis transcriptome, and they all contain either class I or class II motif, which indicates they are all monofunctional enzymes. These candidates consist of three class II diTPSs and five class I diTPSs, and after conducting in vivo and in vitro assays, class II diTPS CfCPS1 was characterized as a (+)-copalyl diphosphate synthase ((+)-CPS), and class I diTPSs CfKSL1 could further convert (+)-copalyl diphosphate ((+)-CPP) to levopimaradiene. Meanwhile, CfKSL1 also accepted labda-13-en-8-ol diphosphate (LPP) as substrate and formed monoyl oxide. Another class I diTPS, CfKSL4, exhibits a strong enzymatic ability of isoabienol synthase, which is firstly reported in conifer. This finding provides potential participants in the biosynthesis of unique diterpenoids, and with this knowledge, we can further expand our understanding of diterpenoid metabolism in Cupressaceae and their potential role in plant defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Hsin Wang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Chong-Yao Hon
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
29
|
Wang L, Liang J, Xie X, Liu J, Shen Q, Li L, Wang Q. Direct formation of the sesquiterpeonid ether liguloxide by a terpene synthase in Senecio scandens. PLANT MOLECULAR BIOLOGY 2021; 105:55-64. [PMID: 32915351 DOI: 10.1007/s11103-020-01068-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
SsLOS directly catalyzed formation of the sesquiterpenoid ether liguloxide in the medicinal plant Senecio scandens. Terpene synthases determine the diversity of terpene skeletons and corresponding terpenoid natural products. Oxygenated groups introduced in catalysis of terpene synthases are important for solubility, potential bioactivity and further elaboration of terpenoids. Here we identified one terpene synthase, SsLOS, in the Chinese medicinal plant Senecio scandens. SsLOS acted as the sesquiterpene synthase and utilized (E,E)-farnesyl diphosphate as the substrate to produce a blend of sesquiterpenoids. GC-MS analysis and NMR structure identification demonstrated that SsLOS directly produced the sesquiterpenoid ether, liguloxide, as well as its alcoholic isomer, 6-epi-guaia-2(3)-en-11-ol. Homology modeling and site-directed mutagenesis were combined to explore the catalytic mechanism of SsLOS. A few key residues were identified in the active site and hedycaryol was identified as the neutral intermediate of SsLOS catalysis. The plausible catalytic mechanism was proposed as well. Altogether, SsLOS was identified and characterized as the sesquiterpenoid ether synthase, which is the second terpenoid ether synthase after 1,8-cineol synthase, suggesting some insights for the universal mechanism of terpene synthases using the water molecule in the catalytic cavity.
Collapse
Affiliation(s)
- Liping Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Xie
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| |
Collapse
|
30
|
Grenade NL, Howe GW, Ross AC. The convergence of bacterial natural products from evolutionarily distinct pathways. Curr Opin Biotechnol 2020; 69:17-25. [PMID: 33296737 DOI: 10.1016/j.copbio.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 10/22/2022]
Abstract
As bacteria readily convert simple starting materials into a diverse array of complex molecules with useful bioactivities, these microorganisms and their biosynthetic machinery represent attractive alternatives to traditional chemical syntheses. While the well-documented divergent evolution of biosynthesis has allowed bacteria to explore wide swaths of natural product chemical space, the convergent evolution of these pathways remains a comparably rare phenomenon. The emergence of similar phenotypes within disparate genetic contexts provides a unique opportunity to probe the limitations of natural selection and the predictability and reproducibility of evolution under different constraints. Here, we report several recent examples of functional and structural convergence of bacterial natural products, as well as intra- and inter-domain convergence of bacterial biosynthetic machinery. While the genetic underpinnings of biosynthetic pathway evolution are of fundamental interest, the evolutionary constraints exemplified by phenotypic convergence also have immediate implications for efforts to engineer microorganisms for therapeutic small molecule production.
Collapse
Affiliation(s)
- Neil L Grenade
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
31
|
Miller GP, Bhat WW, Lanier ER, Johnson SR, Mathieu DT, Hamberger B. The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:693-705. [PMID: 32777127 PMCID: PMC7649979 DOI: 10.1111/tpj.14957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.
Collapse
Affiliation(s)
- Garret P. Miller
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Wajid Waheed Bhat
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Emily R. Lanier
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Sean R. Johnson
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Davis T. Mathieu
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Björn Hamberger
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
32
|
Changxing L, Galani S, Hassan FU, Rashid Z, Naveed M, Fang D, Ashraf A, Qi W, Arif A, Saeed M, Chishti AA, Jianhua L. Biotechnological approaches to the production of plant-derived promising anticancer agents: An update and overview. Biomed Pharmacother 2020; 132:110918. [PMID: 33254434 DOI: 10.1016/j.biopha.2020.110918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a rich source of bioactive compounds, many of which have been used since pre-history for their therapeutic properties to treat a range of illnesses. These metabolites have recently attracted attention to their antineoplastic activities to treat various cancers relying on different mechanisms. Some of these molecules are glycosides, which have proven useful as anti-cancer agents, namely podophyllotoxin (PPT) anaryltetralin lignan or alkaloids. There are three primary forms of alkaloids, such as indole alkaloids (vincristine and vinblastine from Catharanthus roseus), quinoline alkaloid (camptothecin from Camptotheca acuminata), and diterpenoid alkaloid (taxol and it's analogous from Taxus and Corylus species). This review considers various plant biotechnology approaches used to enhance the production of these anticancer molecules in different species. In this regard, many in vitro culture techniques such as stimulation of suspension culture and hairy roots are being used to investigate the effects of plant growth regulators and elicitors on various explants.
Collapse
Affiliation(s)
- Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China; College of Animal Science and Technology, Northwest A & F University, Yangling, Shanxi Province,712100, P.R China
| | - Saddia Galani
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Zubia Rashid
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, P.R China
| | - Daidong Fang
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China
| | - Asma Ashraf
- Department of Zoology, G. C. University, Faisalabad, Pakistan
| | - Wang Qi
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China
| | - Afsheen Arif
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Arif Ali Chishti
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Li Jianhua
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China.
| |
Collapse
|
33
|
Tasnim S, Gries R, Mattsson J. Identification of Three Monofunctional Diterpene Synthases with Specific Enzyme Activities Expressed during Heartwood Formation in Western Redcedar ( Thuja plicata) Trees. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1018. [PMID: 32806789 PMCID: PMC7464036 DOI: 10.3390/plants9081018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 11/28/2022]
Abstract
Upon harvest, Western redcedar (WRC; Thuja plicata) trees have a high incidence and extent of heartwood rot. While monoterpenoids and lignans have been linked to rot resistance in this species, other specialized metabolites, such as diterpenes, are likely to contribute to rot resistance. Here we report the cloning and functional assessment of three putative diterpene synthase (TpdiTPS) genes expressed during heartwood formation in WRC. The predicted proteins of the three genes lack either of the two catalytically independent active sites typical of most diTPS, indicating monofunctional rather than bifunctional activity. To identify potential catalytic activities of these proteins, we expressed them in genetically engineered Escherichia coli strains that produce four potential substrates, geranylgeranyl diphosphate (GGDP), ent, syn, and normal stereoisomers of copalyl diphosphate (CDP). We found that TpdiTPS3 used GGDP to produce CDP. TpdiTPS2 used normal CDP to produce levopimaradiene. TpdiTPS1 showed stereoselectivity as it used normal CDP to produce sandaracopimaradiene and syn-CDP to produce syn-stemod-13(17)-ene. These genes and protein enzymatic activities have not been previously reported in WRC and provide an opportunity to assess their potential roles in heartwood rot resistance in this economically important species.
Collapse
Affiliation(s)
| | | | - Jim Mattsson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; (S.T.); (R.G.)
| |
Collapse
|
34
|
Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P. The foxtail millet (Setaria italica) terpene synthase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:781-800. [PMID: 32282967 PMCID: PMC7497057 DOI: 10.1111/tpj.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - David I. Berrios
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Sadira Wang
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - John Davis
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Tong Shen
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| |
Collapse
|
35
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Zhang J, Zhang Y, Xing J, Yu H, Zhang R, Chen Y, Zhang D, Yin P, Tian X, Wang Q, Duan L, Zhang M, Peters RJ, Li Z. Introducing selective agrochemical manipulation of gibberellin metabolism into a cereal crop. NATURE PLANTS 2020; 6:67-72. [PMID: 32015514 PMCID: PMC7194013 DOI: 10.1038/s41477-019-0582-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/17/2019] [Indexed: 05/26/2023]
Abstract
Use of growth retardants enables post-planting optimization of vegetative growth, which is particularly important given ongoing climate change. Mepiquat chloride is an economical and safe retardant widely applied in cotton farming, but it is not uniformly effective. Here, identification of its molecular target as the ent-copalyl diphosphate synthase that initiates gibberellin biosynthesis enabled the introduction of selective agrochemical inhibition, leaving intact more specialized metabolism important for resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yushi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haiyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yiyao Chen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agriculture University, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agriculture University, Wuhan, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
- College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, China.
| |
Collapse
|
37
|
Ma LT, Lee YR, Tsao NW, Wang SY, Zerbe P, Chu FH. Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1254-1272. [PMID: 31448467 DOI: 10.1111/tpj.14513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Philipp Zerbe
- Department of Plant Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
38
|
Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis. Microb Cell Fact 2019; 18:192. [PMID: 31690314 PMCID: PMC6833178 DOI: 10.1186/s12934-019-1235-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terpenoids are of high interest as chemical building blocks and pharmaceuticals. In microbes, terpenoids can be synthesized via the methylerythritol phosphate (MEP) or mevalonate (MVA) pathways. Although the MEP pathway has a higher theoretical yield, metabolic engineering has met with little success because the regulation of the pathway is poorly understood. RESULTS We applied metabolic control analysis to the MEP pathway in Escherichia coli expressing a heterologous isoprene synthase gene (ispS). The expression of ispS led to the accumulation of isopentenyl pyrophosphate (IPP)/dimethylallyl pyrophosphate (DMAPP) and severely impaired bacterial growth, but the coexpression of ispS and isopentenyl diphosphate isomerase (idi) restored normal growth and wild-type IPP/DMAPP levels. Targeted proteomics and metabolomics analysis provided a quantitative description of the pathway, which was perturbed by randomizing the ribosome binding site in the gene encoding 1-deoxyxylulose 5-phosphate synthase (Dxs). Dxs has a flux control coefficient of 0.35 (i.e., a 1% increase in Dxs activity resulted in a 0.35% increase in pathway flux) in the isoprene-producing strain and therefore exerted significant control over the flux though the MEP pathway. At higher dxs expression levels, the intracellular concentration of 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) increased substantially in contrast to the other MEP pathway intermediates, which were linearly dependent on the abundance of Dxs. This indicates that 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (IspG), which consumes MEcPP, became saturated and therefore limited the flux towards isoprene. The higher intracellular concentrations of MEcPP led to the efflux of this intermediate into the growth medium. DISCUSSION These findings show the importance of Dxs, Idi and IspG and metabolite export for metabolic engineering of the MEP pathway and will facilitate further approaches for the microbial production of valuable isoprenoids.
Collapse
|
39
|
Ding Y, Murphy KM, Poretsky E, Mafu S, Yang B, Char SN, Christensen SA, Saldivar E, Wu M, Wang Q, Ji L, Schmitz RJ, Kremling KA, Buckler ES, Shen Z, Briggs SP, Bohlmann J, Sher A, Castro-Falcon G, Hughes CC, Huffaker A, Zerbe P, Schmelz EA. Multiple genes recruited from hormone pathways partition maize diterpenoid defences. NATURE PLANTS 2019; 5:1043-1056. [PMID: 31527844 DOI: 10.1038/s41477-019-0509-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Duplication and divergence of primary pathway genes underlie the evolution of plant specialized metabolism; however, mechanisms partitioning parallel hormone and defence pathways are often speculative. For example, the primary pathway intermediate ent-kaurene is essential for gibberellin biosynthesis and is also a proposed precursor for maize antibiotics. By integrating transcriptional coregulation patterns, genome-wide association studies, combinatorial enzyme assays, proteomics and targeted mutant analyses, we show that maize kauralexin biosynthesis proceeds via the positional isomer ent-isokaurene formed by a diterpene synthase pair recruited from gibberellin metabolism. The oxygenation and subsequent desaturation of ent-isokaurene by three promiscuous cytochrome P450s and a new steroid 5α reductase indirectly yields predominant ent-kaurene-associated antibiotics required for Fusarium stalk rot resistance. The divergence and differential expression of pathway branches derived from multiple duplicated hormone-metabolic genes minimizes dysregulation of primary metabolism via the circuitous biosynthesis of ent-kaurene-related antibiotics without the production of growth hormone precursors during defence.
Collapse
Affiliation(s)
- Yezhang Ding
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Katherine M Murphy
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Elly Poretsky
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Sibongile Mafu
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Si Nian Char
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Evan Saldivar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Mengxi Wu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Karl A Kremling
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Sher
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Castro-Falcon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
40
|
Conserved bases for the initial cyclase in gibberellin biosynthesis: from bacteria to plants. Biochem J 2019; 476:2607-2621. [PMID: 31484677 DOI: 10.1042/bcj20190479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
All land plants contain at least one class II diterpene cyclase (DTC), which utilize an acid-base catalytic mechanism, for the requisite production of ent-copalyl diphosphate (ent-CPP) in gibberellin A (GA) phytohormone biosynthesis. These ent-CPP synthases (CPSs) are hypothesized to be derived from ancient bacterial origins and, in turn, to have given rise to the frequently observed additional DTCs utilized in more specialized plant metabolism. However, such gene duplication and neo-functionalization has occurred repeatedly, reducing the utility of phylogenetic analyses. Support for evolutionary scenarios can be found in more specific conservation of key enzymatic features. While DTCs generally utilize a DxDD motif as the catalytic acid, the identity of the catalytic base seems to vary depending, at least in part, on product outcome. The CPS from Arabidopsis thaliana has been found to utilize a histidine-asparagine dyad to ligate a water molecule that serves as the catalytic base, with alanine substitution leading to the production of 8β-hydroxy-ent-CPP. Here this dyad and effect of Ala substitution is shown to be specifically conserved in plant CPSs involved in GA biosynthesis, providing insight into plant DTC evolution and assisting functional assignment. Even more strikingly, while GA biosynthesis arose independently in plant-associated bacteria and fungi, the catalytic base dyad also is specifically found in the relevant bacterial, but not fungal, CPSs. This suggests functional conservation of CPSs from bacteria to plants, presumably reflecting an early role for derived diterpenoids in both plant development and plant-microbe interactions, eventually leading to GA, and a speculative evolutionary scenario is presented.
Collapse
|
41
|
Tan H, Chen X, Liang N, Chen R, Chen J, Hu C, Li Q, Li Q, Pei W, Xiao W, Yuan Y, Chen W, Zhang L. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4819-4834. [PMID: 31056664 DOI: 10.1093/jxb/erz211] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Crocus sativus is generally considered the source of saffron spice which is rich in apo-carotenoid compounds such as crocins, crocetin, picrocrocin, and safranal, which possess effective pharmacological activities. However, little is known about the exact genes involved in apo-carotenoid biosynthesis in saffron and the potential mechanism of specific accumulation in the stigma. In this study, we integrated stigmas at different developmental stages to perform in-depth transcriptome and dynamic metabolomic analyses to discover the potential key catalytic steps involved in apo-carotenoid biosynthesis in saffron. A total of 61 202 unigenes were obtained, and 28 regulators and 32 putative carotenogenic genes were captured after the co-expression network analysis. Moreover, 15 candidate genes were predicted to be closely related to safranal and crocin production, in which one aldehyde dehydrogenase (CsALDH3) was validated to oxidize crocetin dialdehyde into crocetin and a crocetin-producing yeast strain was created. In addition, a new branch pathway that catalyses the conversion of geranyl-geranyl pyrophosphate to copalol and ent-kaurene by the class II diterpene synthase CsCPS1 and three class I diterpene synthases CsEKL1/2/3 were investigated for the first time. Such gene to apo-carotenoid landscapes illuminate the synthetic charactersistics and regulators of apo-carotenoid biosynthesis, laying the foundation for a deep understanding of the biosynthesis mechanism and metabolic engineering of apo-carotenoids in plants or microbes.
Collapse
Affiliation(s)
- Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xianghui Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Nan Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Junfeng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chaoyang Hu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Li
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weizhong Pei
- Shanghai Traditional Chinese Medicine Co., Ltd, Shanghai, China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Xu C, Wei H, Movahedi A, Sun W, Ma X, Li D, Yin T, Zhuge Q. Evaluation, characterization, expression profiling, and functional analysis of DXS and DXR genes of Populus trichocarpa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:94-105. [PMID: 31279136 DOI: 10.1016/j.plaphy.2019.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 05/27/2023]
Abstract
1-Deoxy-D-xylulose-5-phosphate synthasse (DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) are key enzymes in terpenoid biosynthesis. DXS catalyzes the formation of 1-deoxy-D-xylulose 5-phosphate (DXP) from pyruvate and D-glyceraldehyde-3-phosphate. DXR catalyzes the formation of 2-C-methyl-D-erythritol 4-phosphate (MEP) from DXP. Previous studies of the DXS and DXR genes have focused on herbs, such as Arabidopsis thaliana, Salvia miltiorrhiza, and Amomum villosum, but few studies have been conducted on woody plants. For that reason, we chose Populus trichocarpa as a model woody plant for investigating the DXS and DXR genes. PtDXS exhibited the highest expression level in leaves and the lowest expression in roots. PtDXR showed maximum expression in young leaves, and the lowest expression in mature leaves. The expression profiles revealed by RT-PCR following different elicitor treatments such as abscisic acid, NaCl, PEG6000, H2O2, and cold stress showed that PtDXS and PtDXR were elicitor-responsive genes. Our results showed that the PtDXS gene exhibited diurnal changes, but PtDXR did not. Moreover, overexpression of PtDXR in transgenic poplars improved tolerance to abiotic and biotic stresses. Those results showed that the PtDXR encoded a functional protein, and widely participates in plant growth and development, stress physiological process.
Collapse
Affiliation(s)
- Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China; Nanjing Key Laboratory of Quality and Safety of Agricultural Products, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China
| | - Xiaoxing Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University. Nanjing, 210037, China.
| |
Collapse
|
43
|
Shen Q, Pu Q, Liang J, Mao H, Liu J, Wang Q. CYP71Z18 overexpression confers elevated blast resistance in transgenic rice. PLANT MOLECULAR BIOLOGY 2019; 100:579-589. [PMID: 31093900 DOI: 10.1007/s11103-019-00881-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
CYP71Z18 exhibited plastic substrate specificity to catalyze oxidation of multiple rice diterpenes and elevated chemical defense against the blast fungus in transgenic rice. Diversified plant specialized metabolism relies on corresponding biosynthetic enzymes with differential substrate specificity. CYP71Z18 catalyzed formation of maize phytoalexins including zealexin A1, the sesquiterpenoid phytoalexin, and diterpenoid phytoalexin dolabralexin, indicating catalytic promiscuity on different terpene substrates. Here substrate specificity of CYP71Z18 was further explored through microbial metabolic engineering and it was identified to accept multiple rice diterpenes as substrates for oxidation. One CYP71Z18 enzymatic product derived from syn-pimaradiene was identified as 15,16-epoxy-syn-pimaradiene by NMR analysis, which was further elaborated by CYP99A3 to generate C19 hydroxylated product. 15,16-epoxy-syn-pimaradien-19-ol exhibited inhibitory effect on spore germination and appressorium formation of the blast pathogen Magnaporthe oryzae. Overexpression of CYP71Z18 in rice resulted in accumulation of several new diterpenoids, indicating promiscuous activity in planta. Transgenic rice also showed stronger resistance against M. oryzae infection, suggesting elevated chemical defense through changed diterpenoid metabolism by CYP71Z18 overexpression. This investigation sheds light on plant metabolic engineering using plastic substrate specificity of P450s to strengthen disease resistance and potentially provide abundant lead compounds.
Collapse
Affiliation(s)
- Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingyu Pu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjie Mao
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
44
|
Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol 2019; 103:5501-5516. [PMID: 31129740 PMCID: PMC6597603 DOI: 10.1007/s00253-019-09892-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
More than 70,000 different terpenoid structures are known so far; many of them offer highly interesting applications as pharmaceuticals, flavors and fragrances, or biofuels. Extraction of these compounds from their natural sources or chemical synthesis is-in many cases-technically challenging with low or moderate yields while wasting valuable resources. Microbial production of terpenoids offers a sustainable and environment-friendly alternative starting from simple carbon sources and, frequently, safeguards high product specificity. Here, we provide an overview on employing recombinant bacteria and yeasts for heterologous de novo production of terpenoids. Currently, Escherichia coli and Saccharomyces cerevisiae are the two best-established production hosts for terpenoids. An increasing number of studies have been successful in engineering alternative microorganisms for terpenoid biosynthesis, which we intend to highlight in this review. Moreover, we discuss the specific engineering challenges as well as recent advances for microbial production of different classes of terpenoids. Rationalizing the current stages of development for different terpenoid production hosts as well as future prospects shall provide a valuable decision basis for the selection and engineering of the cell factory(ies) for industrial production of terpenoid target molecules.
Collapse
Affiliation(s)
- Sandra Moser
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Graz University of Technology, Petersgasse 14/2, 8010, Graz, Austria.
| |
Collapse
|
45
|
Johnson SR, Bhat WW, Sadre R, Miller GP, Garcia AS, Hamberger B. Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution. THE NEW PHYTOLOGIST 2019; 223:323-335. [PMID: 30843212 PMCID: PMC6593445 DOI: 10.1111/nph.15778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these. We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS-a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS-a enzymes from Lamiaceae were cytosolic and reported to act on the 15-carbon farnesyl diphosphate. Plastidial TPS-a enzymes using the 20-carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family. All four new enzymes were found to be active on multiple prenyl-diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11-hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins. We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification.
Collapse
Affiliation(s)
- Sean R. Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Wajid Waheed Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| | - Radin Sadre
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Garret P. Miller
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Alekzander Sky Garcia
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
46
|
Jia M, Mishra SK, Tufts S, Jernigan RL, Peters RJ. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases. Metab Eng 2019; 55:44-58. [PMID: 31220664 DOI: 10.1016/j.ymben.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 02/04/2023]
Abstract
Terpene synthases are capable of mediating complex reactions, but fundamentally simply catalyze lysis of allylic diphosphate esters with subsequent deprotonation. Even with the initially generated tertiary carbocation this offers a variety of product outcomes, and deprotonation further can be preceded by the addition of water. This is particularly evident with labdane-related diterpenes (LRDs) where such lysis follows bicyclization catalyzed by class II diterpene cyclases (DTCs) that generates preceding structural variation. Previous investigation revealed that two diterpene synthases (DTSs), one bacterial and the other plant-derived, exhibit extreme substrate promiscuity, but yet still typically produce exo-ene or tertiary alcohol LRD derivatives, respectively (i.e., demonstrating high catalytic specificity), enabling rational combinatorial biosynthesis. Here two DTSs that produce either cis or trans endo-ene LRD derivatives, also plant and bacterial (respectively), were examined for their potential analogous utility. Only the bacterial trans-endo-ene forming DTS was found to exhibit significant substrate promiscuity (with moderate catalytic specificity). This further led to investigation of the basis for substrate promiscuity, which was found to be more closely correlated with phylogenetic origin than reaction complexity. Specifically, bacterial DTSs exhibited significantly more substrate promiscuity than those from plants, presumably reflecting their distinct evolutionary context. In particular, plants typically have heavily elaborated LRD metabolism, in contrast to the rarity of such natural products in bacteria, and the lack of potential substrates presumably alleviates selective pressure against such promiscuity. Regardless of such speculation, this work provides novel biosynthetic access to almost 19 LRDs, demonstrating the power of the combinatorial approach taken here.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sambit K Mishra
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Samuel Tufts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
47
|
A Wheat β-Patchoulene Synthase Confers Resistance Against Herbivory in Transgenic Arabidopsis. Genes (Basel) 2019; 10:genes10060441. [PMID: 31185680 PMCID: PMC6628343 DOI: 10.3390/genes10060441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Terpenoids play important roles in plant defense. Although some terpene synthases have been characterized, terpenoids and their biosynthesis in wheat (Triticum aestivum L.) still remain largely unknown. Here, we describe the identification of a terpene synthase gene in wheat. It encodes a sesquiterpene synthase that catalyzes β-patchoulene formation with E,E-farnesyl diphosphate (FPP) as the substrate, thus named as TaPS. TaPS exhibits inducible expression in wheat in response to various elicitations. Particularly, alamethicin treatment strongly induces TaPS gene expression and β-patchoulene accumulation in wheat. Overexpression of TaPS in Arabidopsis successfully produces β-patchoulene, verifying the biochemical function of TaPS in planta. Furthermore, these transgenic Arabidopsis plants exhibit resistance against herbivory by repelling beet armyworm larvae feeding, thereby indicating anti-herbivory activity of β-patchoulene. The catalytic mechanism of TaPS is also explored by homology modeling and site-directed mutagenesis. Two key amino acids are identified to act in protonation and stability of intermediates and product formation. Taken together, one wheat sesquiterpene synthase is identified as β-patchoulene synthase. TaPS exhibits inducible gene expression and the sesquiterpene β-patchoulene is involved in repelling insect infestation.
Collapse
|
48
|
Zhang W, Guo Z, Liang J, Lu X, Chen S, Zhu J, Yu R. Functional Characterization of the Levopimaradiene Synthase in Escherichia coli and Differences in Functional Expression Patterns in Distinct Cell Lines. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19850371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wenjin Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhongyi Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Jincai Liang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Xiaofeng Lu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shan Chen
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Jianhua Zhu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Karunanithi PS, Dhanota P, Addison JB, Tong S, Fiehn O, Zerbe P. Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare. BMC PLANT BIOLOGY 2019; 19:114. [PMID: 30909879 PMCID: PMC6434833 DOI: 10.1186/s12870-019-1702-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/06/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - Puja Dhanota
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - J. Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182 USA
| | - Shen Tong
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| |
Collapse
|
50
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|