1
|
Ouzi ZA, Aber S, Nofouzi K, Khajeh RT, Rezaei A. Carbon paste/LDH/bacteria biohybrid for the modification of the anode electrode of a microbial fuel cell. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Wen L, Huang L, Wang Y, Yuan Y, Zhou L. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153154. [PMID: 35038509 DOI: 10.1016/j.scitotenv.2022.153154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Hematite has been proven to be an excellent material for enhancing extracellular electron transfer (EET) in microbial bioelectrochemical systems (BESs). However, the effect of hematite with different exposed facets on microbial EET remains unclear. Here, we synthesized two types of hematite nanoparticles with high {100} and {001} facet exposure (Hem_{100} and Hem_{001}), respectively, which were coated on ITO electrode to stimulate the microbial EET in the BESs. The results showed that the maximum biocurrent density of commercial hematite nanoparticles (Hem_NPs), Hem_{100} and Hem_{001} electrodes reached 73.33 ± 5.68, 129.33 ± 9.12 and 287.00 ± 19.89 μA cm-2 from three replicates of each treatment, respectively. The current generation achieved from the Hem_{001} electrode was nearly 199-times higher than that of the blank ITO electrode (1.44 ± 0.10 μA cm-2). The electrochemical measurements showed that the lowest charge transfer resistance (Rct) was observed for the Hem_{001}, and the promoted biofilm formation and EPS secretion on the Hem_{001} electrode were also revealed, which could contribute the high performance of this electrode. Moreover, metagenomic analysis revealed that Hem_{001} might facilitate the microbial EET by stimulating the expression of genes related to cytochrome c and conductive nanowires. This study not only provides a new strategy to enhance microbial electrogenesis but also expands the knowledge of the effect of facet on microbial EET, helping to develop more efficient electrode materials in the future.
Collapse
Affiliation(s)
- Liumei Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lingyan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lihua Zhou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Tseng CP, Liu F, Zhang X, Huang PC, Campbell I, Li Y, Atkinson JT, Terlier T, Ajo-Franklin CM, Silberg JJ, Verduzco R. Solution-Deposited and Patternable Conductive Polymer Thin-Film Electrodes for Microbial Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109442. [PMID: 35088918 DOI: 10.1002/adma.202109442] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Microbial bioelectronic devices integrate naturally occurring or synthetically engineered electroactive microbes with microelectronics. These devices have a broad range of potential applications, but engineering the biotic-abiotic interface for biocompatibility, adhesion, electron transfer, and maximum surface area remains a challenge. Prior approaches to interface modification lack simple processability, the ability to pattern the materials, and/or a significant enhancement in currents. Here, a novel conductive polymer coating that significantly enhances current densities relative to unmodified electrodes in microbial bioelectronics is reported. The coating is based on a blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) crosslinked with poly(2-hydroxyethylacrylate) (PHEA) along with a thin polydopamine (PDA) layer for adhesion to an underlying indium tin oxide (ITO) electrode. When used as an interface layer with the current-producing bacterium Shewanella oneidensis MR-1, this material produces a 178-fold increase in the current density compared to unmodified electrodes, a current gain that is higher than previously reported thin-film 2D coatings and 3D conductive polymer coatings. The chemistry, morphology, and electronic properties of the coatings are characterized and the implementation of these coated electrodes for use in microbial fuel cells, multiplexed bioelectronic devices, and organic electrochemical transistor based microbial sensors are demonstrated. It is envisioned that this simple coating will advance the development of microbial bioelectronic devices.
Collapse
Affiliation(s)
- Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Fangxin Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Xu Zhang
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Po-Chun Huang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Ian Campbell
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Yilin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90007, USA
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, TX, 77005, USA
| | | | | | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
4
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Tseng CP, Silberg JJ, Bennett GN, Verduzco R. 100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Lett 2020; 9:1590-1603. [PMID: 35617074 DOI: 10.1021/acsmacrolett.0c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioelectronics brings together the fields of biology and microelectronics to create multifunctional devices with the potential to address longstanding technological challenges and change our way of life. Microbial electrochemical devices are a growing subset of bioelectronic devices that incorporate naturally occurring or synthetically engineered microbes into electronic devices and have broad applications including energy harvesting, chemical production, water remediation, and environmental and health monitoring. The goal of this Viewpoint is to highlight recent advances and ongoing challenges in the rapidly developing field of microbial bioelectronic devices, with an emphasis on materials challenges. We provide an overview of microbial bioelectronic devices, discuss the biotic-abiotic interface in these devices, and then present recent advances and ongoing challenges in materials related to electron transfer across the abiotic-biotic interface, microbial adhesion, redox signaling, electronic amplification, and device miniaturization. We conclude with a summary and perspective of the field of microbial bioelectronics.
Collapse
Affiliation(s)
- Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Yang K, Ji M, Liang B, Zhao Y, Zhai S, Ma Z, Yang Z. Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122892. [PMID: 32768818 DOI: 10.1016/j.jhazmat.2020.122892] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn't be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhifan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
7
|
Wang Y, Zhou L, Luo X, Zhang Y, Sun J, Ning XA, Yuan Y. Solar Photothermal Electrodes for Highly Efficient Microbial Energy Harvesting at Low Ambient Temperatures. CHEMSUSCHEM 2018; 11:4071-4076. [PMID: 30277322 DOI: 10.1002/cssc.201801808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Temperature is an important parameter for the performance of bioelectrochemical systems (BESs). Energy-intensive bulk water heating has been usually employed to maintain a desired temperature for the BESs. This study concerns a proof-of-concept of a light-to-heat photothermal electrode for solar heating of a local electroactive biofilm in a BES for efficient microbial energy harvesting at low temperatures as a replacement for bulk water heating approaches. The photothermal electrode was prepared by coating Ti3 C2 Tx MXene sunlight absorber onto carbon felt. The as-prepared photothermal electrode could efficiently raise the local temperature of the bioelectrode to approximately 30 °C from low bulk water temperatures (i.e., 10, 15, and 20 °C) under simulated sunlight illumination. As a result, highly efficient microbial energy could be harvested from the low-temperature BES equipped with a photothermal electrode without bulk water heating. This study represents a new avenue for the design and fabrication of electrodes for temperature-sensitive electrochemical and biological systems.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Lihua Zhou
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaoshan Luo
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yaping Zhang
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jian Sun
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xun-An Ning
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yong Yuan
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Bacterial electroactivity and viability depends on the carbon nanotube-coated sponge anode used in a microbial fuel cell. Bioelectrochemistry 2018. [DOI: 10.1016/j.bioelechem.2018.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Han TH, Parveen N, Shim JH, Nguyen ATN, Mahato N, Cho MH. Ternary Composite of Polyaniline Graphene and TiO2 as a Bifunctional Catalyst to Enhance the Performance of Both the Bioanode and Cathode of a Microbial Fuel Cell. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05314] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thi Hiep Han
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Nazish Parveen
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
- Flexible Display and Printed Electronics Laboratory, Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jun Ho Shim
- Department of Chemistry, Daegu University, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
| | - Anh Thi Nguyet Nguyen
- Department of Chemistry, Daegu University, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea
| | - Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
10
|
Thermophilic Moorella thermoautotrophica -immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO 2. Bioelectrochemistry 2017; 117:23-28. [DOI: 10.1016/j.bioelechem.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022]
|
11
|
Yu YY, Zhai DD, Si RW, Sun JZ, Liu X, Yong YC. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems. Int J Mol Sci 2017; 18:ijms18010090. [PMID: 28054970 PMCID: PMC5297724 DOI: 10.3390/ijms18010090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 02/02/2023] Open
Abstract
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed.
Collapse
Affiliation(s)
- Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Dan-Dan Zhai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Rong-Wei Si
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Jian-Zhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xiang Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Carbon quantum dots shuttle electrons to the anode of a microbial fuel cell. 3 Biotech 2016; 6:228. [PMID: 28330300 PMCID: PMC5080269 DOI: 10.1007/s13205-016-0552-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/19/2016] [Indexed: 11/12/2022] Open
Abstract
Electrodes based on graphite, graphene, and carbon nanomaterials have been used in the anode chamber of microbial fuel cells (MFCs). Carbon quantum dots (C-dots) are a class of versatile nanomaterials hitherto not reported in MFCs. C-dots previously synthesized from coconut husk were reported to possess hydroxyl and carboxyl functional groups on their surface. The presence of these functional groups on a carbon matrix conferred on the C-dots the ability to conduct and transfer electrons. Formation of silver nanoparticles from silver nitrate upon addition of C-dots confirmed their reducing ability. DREAM assay using a mixed microbial culture containing C-dots showed a 172% increase in electron transfer activity and thus confirmed the involvement of C-dots in supplementing redox activity of a microbial culture. Addition of C-dots as a suspension in the anode chamber of an MFC resulted in a 22.5% enhancement in maximum power density. C-dots showed better performance as electron shuttles than methylene blue, a conventional electron shuttle used in MFCs.
Collapse
|
13
|
Wang R, MoYung KC, Zhang MH, Poon K. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19618-19631. [PMID: 26276275 DOI: 10.1007/s11356-015-5155-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, China, 201499.
| | - K C MoYung
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China, 519085.
| | - M H Zhang
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China, 519085
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China, 519085.
| |
Collapse
|
14
|
|
15
|
Xu C, Poon K, Choi MMF, Wang R. Using live algae at the anode of a microbial fuel cell to generate electricity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15621-35. [PMID: 26018284 DOI: 10.1007/s11356-015-4744-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/18/2015] [Indexed: 05/07/2023]
Abstract
Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.
Collapse
Affiliation(s)
- Chang Xu
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China.
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China.
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China.
| | - Martin M F Choi
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China.
| | - Ruihua Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Fengxian District, Shanghai, China, 201499.
| |
Collapse
|
16
|
Yong YC, Liao ZH, Sun JZ, Zheng T, Jiang RR, Song H. Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Yuan Y, Yuan T, Wang D, Tang J, Zhou S. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. BIORESOURCE TECHNOLOGY 2013; 144:115-120. [PMID: 23859987 DOI: 10.1016/j.biortech.2013.06.075] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Sewage sludge (SS) biochars have been prepared under an inert atmosphere at different temperatures. Morphologic and chemical analyses reveal that the surface of the biochar carbonized at 900°C (SS900) has more abundant micropores, and higher nitrogen and iron contents as compared to those carbonized at 500 (SS500) and 700°C (SS700). The electrochemical analyses display that the prepared biochars are active for catalyzing oxygen reduction reaction (ORR). However, more positive peak potential and larger peak current of ORR are found using the SS900 as compared to the SS500 and SS700. In MFCs, the maximum power density of 500±17 mW m(-2) was obtained from the SS900 cathode, which is comparable to the Pt cathode. The proposed cathode exhibited good stability and great tolerance to methanol. Given these results, it is expected that the SS-derived biochar cathode can find application in fuel cell systems.
Collapse
Affiliation(s)
- Yong Yuan
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, Guangdong Province 510650, China
| | | | | | | | | |
Collapse
|
18
|
Yuan Y, Zhou S, Tang J. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4911-7. [PMID: 23537198 DOI: 10.1021/es400045s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mass transport within a cathode, including OH(-) transport and oxygen diffusion, is important for the performance of air-cathode microbial fuel cells (MFCs). However, little is known regarding how mass transport profiles are associated with MFC performance and how they are affected by biofilm that inevitably forms on the cathode surface. In this study, the OH(-) and oxygen profiles of a cathode biofilm were probed in situ in an MFC using microelectrodes. The pH of the catalyst layer interface increased from 7.0 ± 0.1 to 9.4 ± 0.3 in a buffered MFC with a bare cathode, which demonstrates significant accumulation of OH(-) in the cathode region. Furthermore, the pH of the interface increased to 10.0 ± 0.3 in the presence of the local biofilm, which indicates that OH(-) transport was severely blocked. As a result of the significant OH(-) accumulation, the maximum power density of the MFC decreased from 1.8 ± 0.1 W/m(2) to 1.5 ± 0.08 W/m(2). In contrast, oxygen crossover, which was significant under low current flow conditions, was limited by the cathode biofilm. As a result of the blocked oxygen crossover, higher MFC coulombic efficiency (CE) was achieved in the presence of the cathode biofilm. These results indicate that enhanced OH(-) transport and decreased oxygen crossover would be beneficial for high-performance MFC development.
Collapse
Affiliation(s)
- Yong Yuan
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China
| | | | | |
Collapse
|
19
|
Liu Y, Du Y, Li CM. Direct Electrochemistry Based Biosensors and Biofuel Cells Enabled with Nanostructured Materials. ELECTROANAL 2013. [DOI: 10.1002/elan.201200555] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Liu X, Du X, Wang X, Li N, Xu P, Ding Y. Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge. Biosens Bioelectron 2013; 41:848-51. [DOI: 10.1016/j.bios.2012.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022]
|
21
|
Le Ouay B, Coradin T, Laberty-Robert C. Silica–carbon hydrogels as cytocompatible bioelectrodes. J Mater Chem B 2013; 1:606-609. [DOI: 10.1039/c2tb00312k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Wang Z, Mei X, Ma J, Wu Z. Recent Advances in Microbial Fuel Cells Integrated with Sludge Treatment. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201200132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|