1
|
Filipp L, Bausch F, Neuhaus LS, Flade J, Henle T. Metabolization of the Amadori Product N-ε-Fructosyllysine by Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2718-2726. [PMID: 38275205 DOI: 10.1021/acs.jafc.3c07927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Glycation reactions in food lead to the formation of the Amadori rearrangement product (ARP) N-ε-fructosyllysine (fructoselysine, FL), which is taken up with the daily diet and comes into contact with the gut microbiota during digestion. In the present study, nine commercially available probiotic preparations as well as single pure strains thereof were investigated for their FL-degrading capability under anaerobic conditions. One of the commercial preparations as well as three single pure strains thereof was able to completely degrade 0.25 mM FL within 72 h. Three new deglycating lactic acid bacteria species, namely, Lactobacillus buchneri DSM 20057, Lactobacillus jensenii DSM 20557, and Pediococcus acidilactici DSM 25404, could be identified. Quantitative experiments showed that FL was completely deglycated to lysine. Using 13C6-labeled FL as the substrate, it could be proven that the sugar moiety of the Amadori product is degraded to lactic acid, showing for the first time that certain lactic acid bacteria can utilize the sugar moiety as a substrate for lactic acid fermentation.
Collapse
Affiliation(s)
- Lisa Filipp
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Florian Bausch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Lisa Sophie Neuhaus
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Jessica Flade
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
2
|
Mossine VV, Mawhinney TP. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives: An update. Adv Carbohydr Chem Biochem 2023; 83:1-26. [PMID: 37968036 DOI: 10.1016/bs.accb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
1-Amino-1-deoxy-d-fructose (fructosamine, FN) derivatives are omnipresent in all living organisms, as a result of non-enzymatic condensation and Amadori rearrangement reactions between free glucose and biogenic amines such as amino acids, polypeptides, or aminophospholipids. Over decades, steady interest in fructosamine was largely sustained by its role as a key intermediate structure in the Maillard reaction that is responsible for the organoleptic and nutritional value of thermally processed foods, and for pathophysiological effects of hyperglycemia in diabetes. New trends in fructosamine research include the discovery and engineering of FN-processing enzymes, development of advanced tools for hyperglycemia monitoring, and evaluation of the therapeutic potential of both fructosamines and FN-recognizing proteins. This article covers developments in the field of fructosamine and its derivatives since 2010 and attempts to ascertain challenges in future research.
Collapse
Affiliation(s)
- Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
3
|
Li S, Li N, Wang C, Zhao Y, Cao J, Li X, Zhang Z, Li Y, Yang X, Wang X, Che C, Zhao Y, Wang L, Zhao L, Shen J. Gut Microbiota and Immune Modulatory Properties of Human Breast Milk Streptococcus salivarius and S. parasanguinis Strains. Front Nutr 2022; 9:798403. [PMID: 35273986 PMCID: PMC8901577 DOI: 10.3389/fnut.2022.798403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Human breast milk Streptococcus spp. are transferred to infant guts via breast feeding, but their effects on the gut microbiota and immunity remain unclear. In this study, we characterized gut microbiota and immune modulatory properties of human breast milk S. salivarius F286 and S. parasanguinis F278 that had been shown to be able to colonize gut. The two Streptococcus strains were orally administered to mouse pups individually at 1 × 107 cells/day from postnatal Days 1 to 21. At postnatal week 3 (the weaning period), S. salivarius F286 reduced the colonic microbiota α-diversity, increased 21 amplicon sequence variants (ASVs), including bacteria from Akkermansia, Intestinimonas, and Lachnospiraceae, and decreased 52 ASVs, including bacteria from Eubacterium, Bifidobacterium, Escherichia-Shigella, and Turicibacter; however, S. parasanguinis F278 didn't change the colonic microbiota. Both Streptococcus strains reduced the ileal mRNA expression of cytokine/transcription factor representatives of T helper (Th) cells, including IFN-γ (Th1), Gata3 (Th2), and TGF-β (Treg) in 2-week-old suckling mice, and promoted the ileal expression of Foxp3 and TGF-β, which are representatives of anti-inflammatory Treg cells, in 3-week-old weaning mice. The two Streptococcus strains exhibited anti-inflammatory potential when incubated in vitro with human peripheral blood mononuclear cells and TNF-α-treated gut epithelial HT29 cells. In C. elegans, both strains activated immune response genes, which was associated with their lifespan-prolonging effects. Our results suggest that S. salivarius F286 and S. parasanguinis F278 may exert regulatory (anti-inflammatory) roles in gut immunity and S. salivarius F286 can modulate gut microbiota, and highlight the probiotic potential of milk S. salivarius and S. parasanguinis strains.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Na Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenwei Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Cao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejing Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxin Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyan Che
- Department of Animal Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Yufeng Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Quesada-Valverde M, Artavia G, Granados-Chinchilla F, Cortés-Herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Quesada-Valverde
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Szwergold B. A Hypothesis: Fructosamine-3-Kinase-Related-Protein (FN3KRP) Catalyzes Deglycation of Maillard Intermediates Directly Downstream from Fructosamines. Rejuvenation Res 2021; 24:310-318. [PMID: 34314247 DOI: 10.1089/rej.2021.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-enzymatic glycation (a.k.a. Maillard reaction) is a series of random spontaneous reactions between reducing sugars and amines, resulting in the formation of irreversible advanced glycation endproducts (AGE's). In food chemistry, this process is beneficial by contributing to the flavor, aroma, texture, and appearance of cooked foods. In vivo, however, Maillard reaction is deleterious because uncontrolled modification and crosslinking of biological macromolecules impairs their function. Consequently, chronic hyperglycemia of diabetes mellitus, for instance, leads to increased non-enzymatic glycation and diverse, multi-organ pathologies of diabetic complications. Based on the fact that toxic compounds, such as free radicals, are detoxified in vivo by specific defense mechanisms, one would expect to find mechanisms to control glucose toxicity as well. Thus far, only one such enzyme, fructosamine-3-kinase (FN3K), has been characterized. It operates intracellularly by catalyzing ATP-dependent removal of Maillard adducts, D-fructoselysines, from proteins, thereby reducing the Maillard reaction flux from glucose to AGE's. When FN3K was isolated, a closely related but distinct protein copurified with it. Unlike FN3K, however, this enzyme, fructosamine-3-kinase-related protein (FN3KRP), does not phosphorylate D-fructoselysines but it does phosphorylate several other (non-physiological) substrates. Interestingly, the distribution of FN3KRP in nature appears to be nearly universal whereas that of FN3K is limited to endotherms. In this article, it is suggested that the function of FN3KRP is deglycation of Maillard adducts downstream from fructoselysines. Such a mechanism, if proven correct, would be valuable given reports on apparent correlations between FN3KRP and some chronic conditions and/or diseases, such as a recent publication which proposes that the FN3KRP gene may be a longevity gene.
Collapse
|
6
|
Ogura M, Shindo K, Kanesaki Y. Bacillus subtilis Nucleoid-Associated Protein YlxR Is Involved in Bimodal Expression of the Fructoselysine Utilization Operon ( frlBONMD-yurJ) Promoter. Front Microbiol 2020; 11:2024. [PMID: 32983026 PMCID: PMC7475707 DOI: 10.3389/fmicb.2020.02024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria must survive harsh environmental fluctuations at times and have evolved several strategies. “Collective” behaviors have been identified due to recent progress in single-cell analysis. Since most bacteria exist as single cells, bacterial populations are often considered clonal. However, accumulated evidence suggests this is not the case. Gene expression and protein expression are often not homogeneous, resulting in phenotypic heterogeneity. In extreme cases, this leads to bistability, the existence of two stable states. In many cases, expression of key master regulators is bimodal via positive feedback loops causing bimodal expression of the target genes. We observed bimodal expression of metabolic genes for alternative carbon sources. Expression profiles of the frlBONMD-yurJ operon driven by the frlB promoter (PfrlB), which encodes degradation enzymes and a transporter for amino sugars including fructoselysine, were investigated using transcriptional lacZ and gfp, and translational fluorescence reporter mCherry fusions. Disruption effects of genes encoding CodY, FrlR, RNaseY, and nucleoid-associated protein YlxR, four known regulatory factors for PfrlB, were examined for expression of each fusion construct. Expression of PfrlB-gfp and PfrlB-mCherry, which were located at amyE and its original locus, respectively, was bimodal; and disruption of ylxR resulted in the disappearance of the clear bimodal expression pattern in flow cytometric analyses. This suggested a role for YlxR on the bimodal expression of PfrlB. The data indicated that YlxR acted on the bimodal expression of PfrlB through both transcription and translation. YlxR regulates many genes, including those related to translation, supporting the above notion. Depletion of RNaseY abolished heterogenous expression of transcriptional PfrlB-gfp but not bimodal expression of translational PfrlB-mCherry, suggesting the role of RNaseY in regulation of the operon through mRNA stability control and regulatory mechanism for PfrlB-mCherry at the translational level. Based on these results, we discuss the meaning and possible cause of bimodal PfrlB expression.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
7
|
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020; 12:nu12092814. [PMID: 32937858 PMCID: PMC7551018 DOI: 10.3390/nu12092814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of inflammatory bowel diseases (IBD) is increasing in the world. The introduction of the Western diet has been suggested as a potential explanation of increased prevalence. The Western diet includes highly processed food products, and often include thermal treatment. During thermal treatment, the Maillard reaction can occur, leading to the formation of dietary advanced glycation endproducts (dAGEs). In this review, different biological effects of dAGEs are discussed, including their digestion, absorption, formation, and degradation in the gastrointestinal tract, with an emphasis on their pro-inflammatory effects. In addition, potential mechanisms in the inflammatory effects of dAGEs are discussed. This review also specifically elaborates on the involvement of the effects of dAGEs in IBD and focuses on evidence regarding the involvement of dAGEs in the symptoms of IBD. Finally, knowledge gaps that still need to be filled are identified.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
- Correspondence:
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| | - Misha F. Vrolijk
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| |
Collapse
|
8
|
Shrestha S, Katiyar S, Sanz-Rodriguez CE, Kemppinen NR, Kim HW, Kadirvelraj R, Panagos C, Keyhaninejad N, Colonna M, Chopra P, Byrne DP, Boons GJ, van der Knaap E, Eyers PA, Edison AS, Wood ZA, Kannan N. A redox-active switch in fructosamine-3-kinases expands the regulatory repertoire of the protein kinase superfamily. Sci Signal 2020; 13:eaax6313. [PMID: 32636308 PMCID: PMC8455029 DOI: 10.1126/scisignal.aax6313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant regulation of metabolic kinases by altered redox homeostasis substantially contributes to aging and various diseases, such as diabetes. We found that the catalytic activity of a conserved family of fructosamine-3-kinases (FN3Ks), which are evolutionarily related to eukaryotic protein kinases, is regulated by redox-sensitive cysteine residues in the kinase domain. The crystal structure of the FN3K homolog from Arabidopsis thaliana revealed that it forms an unexpected strand-exchange dimer in which the ATP-binding P-loop and adjoining β strands are swapped between two chains in the dimer. This dimeric configuration is characterized by strained interchain disulfide bonds that stabilize the P-loop in an extended conformation. Mutational analysis and solution studies confirmed that the strained disulfides function as redox "switches" to reversibly regulate the activity and dimerization of FN3K. Human FN3K, which contains an equivalent P-loop Cys, was also redox sensitive, whereas ancestral bacterial FN3K homologs, which lack a P-loop Cys, were not. Furthermore, CRISPR-mediated knockout of FN3K in human liver cancer cells altered the abundance of redox metabolites, including an increase in glutathione. We propose that redox regulation evolved in FN3K homologs in response to changing cellular redox conditions. Our findings provide insights into the origin and evolution of redox regulation in the protein kinase superfamily and may open new avenues for targeting human FN3K in diabetic complications.
Collapse
Affiliation(s)
- Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Carlos E Sanz-Rodriguez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Nolan R Kemppinen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Hyun W Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Charalampos Panagos
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Neda Keyhaninejad
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, GA 30602, USA
| | - Maxwell Colonna
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Geert J Boons
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, Netherlands
| | - Esther van der Knaap
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, GA 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Arthur S Edison
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Soh YNA, Kunacheva C, Webster RD, Stuckey DC. Identification of the production and biotransformational changes of soluble microbial products (SMP) in wastewater treatment processes: A short review. CHEMOSPHERE 2020; 251:126391. [PMID: 32143078 DOI: 10.1016/j.chemosphere.2020.126391] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
While the definition of soluble microbial products (SMP) remains somewhat contentious, they have been widely accepted to be the pool of organic compounds which are released by cells into their surroundings (liquid or otherwise) due to substrate metabolism and biomass decay. SMPs are also potential precursors of disinfection by-products, and are known to be important in membrane fouling. With recent developments in analytical methodologies, many of the low molecular weight (MW) compounds can now be identified, although they are often incorrectly identified as recalcitrant compounds present in the influent. The old hypothesis of "microbial infallibility" suggested that all organic compounds produced by bacteria will eventually be degraded by microorganisms. However, there are some limitations to this hypothesis due to; the time available for degradation, the rate of activity of the microorganisms themselves, synergistic effects, as well as the degree of complexity of the chemical substance. Therefore, it is important to identify and characterise the SMPs involved in these processes, which can then in turn support the research and development of improving wastewater treatment efficiency and effectiveness, and eventually reduce environmental damage. In addition, it is still unclear what the evolutionary purpose of these compounds are. This paper reviews the work that has been done on the production and biotransformation of chemical compounds up to now and which were reported to be found in wastewater treatment systems.
Collapse
Affiliation(s)
- Yan Ni Annie Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue Block S2 - B3a - 01, Singapore, 639798, Singapore
| | | | - Richard D Webster
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore, 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Bronesky D, Desgranges E, Corvaglia A, François P, Caballero CJ, Prado L, Toledo-Arana A, Lasa I, Moreau K, Vandenesch F, Marzi S, Romby P, Caldelari I. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J 2019; 38:e99363. [PMID: 30760492 PMCID: PMC6418428 DOI: 10.15252/embj.201899363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023] Open
Abstract
Pathogenic bacteria must rapidly adapt to ever-changing environmental signals resulting in metabolism remodeling. The carbon catabolite repression, mediated by the catabolite control protein A (CcpA), is used to express genes involved in utilization and metabolism of the preferred carbon source. Here, we have identified RsaI as a CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations. When glucose is consumed, RsaI represses translation initiation of mRNAs encoding a permease of glucose uptake and the FN3K enzyme that protects proteins against damage caused by high glucose concentrations. RsaI also binds to the 3' untranslated region of icaR mRNA encoding the transcriptional repressor of exopolysaccharide production and to sRNAs induced by the uptake of glucose-6 phosphate or nitric oxide. Furthermore, RsaI expression is accompanied by a decreased transcription of genes involved in carbon catabolism pathway and an activation of genes involved in energy production, fermentation, and nitric oxide detoxification. This multifaceted RNA can be considered as a metabolic signature when glucose becomes scarce and growth is arrested.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anna Corvaglia
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | | | - Laura Prado
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-GN, Navarra, Spain
| | | | - Inigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Karen Moreau
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Kidney, heart and brain: three organs targeted by ageing and glycation. Clin Sci (Lond) 2017; 131:1069-1092. [PMID: 28515343 DOI: 10.1042/cs20160823] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
Advanced glycation end-product (AGE) is the generic term for a heterogeneous group of derivatives arising from a non-enzymatic reaction between reducing sugars and proteins. In recent years, evidence has accumulated that incriminates AGEs in pathogenic processes associated with both chronic hyperglycaemia and age-related diseases. Regardless of their exogenous or endogenous origin, the accumulation of AGEs and their derivatives could promote accelerated ageing by leading to protein modifications and activating several inflammatory signalling pathways via AGE-specific receptors. However, it remains to be demonstrated whether preventing the accumulation of AGEs and their effects is an important therapeutic option for successful ageing. The present review gives an overview of the current knowledge on the pathogenic role of AGEs by focusing on three AGE target organs: kidney, heart and brain. For each of these organs we concentrate on an age-related disease, each of which is a major public health issue: chronic kidney disease, heart dysfunction and neurodegenerative diseases. Even though strong connections have been highlighted between glycation and age-related pathogenesis, causal links still need to be validated. In each case, we report evidence and uncertainties suggested by animal or epidemiological studies on the possible link between pathogenesis and glycation in a chronic hyperglycaemic state, in the absence of diabetes, and with exogenous AGEs alone. Finally, we present some promising anti-AGE strategies that are currently being studied.
Collapse
|
12
|
Qu W, Yuan X, Zhao J, Zhang Y, Hu J, Wang J, Li J. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res 2017. [DOI: 10.1002/mnfr.201700118] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wanting Qu
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Xiaojin Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jinsong Zhao
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Yingxiao Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jing Hu
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jiawei Wang
- Shaanxi Research Institute of Agricultural Products Processing Technology; Xi'an P. R. China
| | - Juxiu Li
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| |
Collapse
|
13
|
Lund MN, Ray CA. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4537-4552. [PMID: 28535048 DOI: 10.1021/acs.jafc.7b00882] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.
Collapse
Affiliation(s)
- Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen , Frederiksberg 1958, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen 2200, Denmark
| | - Colin A Ray
- Department of Food Science, Faculty of Science, University of Copenhagen , Frederiksberg 1958, Denmark
| |
Collapse
|
14
|
Tipthara P, Kunacheva C, Soh YNA, Wong SCC, Pin NS, Stuckey DC, Boehm BO. Global Profiling of Metabolite and Lipid Soluble Microbial Products in Anaerobic Wastewater Reactor Supernatant Using UPLC-MS E. J Proteome Res 2017; 16:559-570. [PMID: 28067053 DOI: 10.1021/acs.jproteome.6b00681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of soluble microbial products (SMPs) released during bacterial metabolism in mixed cultures in bioreactors is essential to understanding fundamental mechanisms of their biological production. SMPs constitute one of the main foulants (together with colloids and bacterial flocs) in membrane bioreactors widely used to treat and ultimately recycle wastewater. More importantly, the composition and origin of potentially toxic, carcinogenic, or mutagenic SMPs in renewable/reused water supplies must be determined and controlled. Certain classes of SMPs have previously been studied by GC-MS, LC-MS, and MALDI-ToF MS; however, a more comprehensive LC-MS-based method for SMP identification is currently lacking. Here we develop a UPLC-MS approach to profile and identify metabolite SMPs in the supernatant of an anaerobic batch bioreactor. The small biomolecules were extracted into two fractions based on their polarity, and separate methods were then used for the polar and nonpolar metabolites in the aqueous and lipid fractions, respectively. SMPs that increased in the supernatant after feed addition were identified primarily as phospholipids, ceramides, with cardiolipins in the highest relative abundance, and these lipids have not been previously reported in wastewater effluent.
Collapse
Affiliation(s)
- Phornpimon Tipthara
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| | - Chinagarn Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141
| | - Yan Ni Annie Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141
| | - Stephen C C Wong
- Waters Pacific Pte. Ltd. , Singapore Science Park 2, Singapore 117528
| | - Ng Sean Pin
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141.,Department of Chemical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| |
Collapse
|
15
|
Kameya M, Tsugawa W, Yamada-Tajima M, Hatada M, Suzuki K, Sakaguchi-Mikami A, Ferri S, Klonoff DC, Sode K. Electrochemical sensing system employing fructosamine 6-kinase enables glycated albumin measurement requiring no proteolytic digestion. Biotechnol J 2016; 11:797-804. [DOI: 10.1002/biot.201500442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/25/2016] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Miho Kameya
- Department of Biotechnology and Life Science, Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - Mayumi Yamada-Tajima
- Department of Biotechnology and Life Science, Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - Mika Hatada
- Department of Biotechnology and Life Science, Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - Keita Suzuki
- Department of Biotechnology and Life Science, Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| | - Akane Sakaguchi-Mikami
- D epartment of Medical Technology, School of Health Sciences, Graduate School of Bionics, Computer and Media Sciences; Tokyo University of Technology; Tokyo Japan
| | - Stefano Ferri
- Department of Engineering, Graduate School of Integrated Science and Technology; Shizuoka University; Tokyo Japan
| | - David C. Klonoff
- Diabetes Research Institute; Mills-Peninsula Health Services; San Mateo California USA
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering; Tokyo University of Agriculture and Technology; Tokyo Japan
| |
Collapse
|
16
|
Rigoldi F, Gautieri A, Dalle Vedove A, Lucarelli AP, Vesentini S, Parisini E. Crystal structure of the deglycating enzyme Amadoriase I in its free form and substrate-bound complex. Proteins 2016; 84:744-58. [DOI: 10.1002/prot.25015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Federica Rigoldi
- Dipartimento Di Elettronica; Informazione E Bioingegneria, Politecnico Di Milano; Milano 20133 Italy
| | - Alfonso Gautieri
- Dipartimento Di Elettronica; Informazione E Bioingegneria, Politecnico Di Milano; Milano 20133 Italy
| | - Andrea Dalle Vedove
- Center for Nano Science and Technology @Polimi, Istituto Italiano Di Tecnologia; Milano 20133 Italy
- Dipartimento Di Chimica; Materiali E Ingegneria Chimica “G. Natta”, Politecnico Di Milano; Milano 20133 Italy
| | - Anna Paola Lucarelli
- Center for Nano Science and Technology @Polimi, Istituto Italiano Di Tecnologia; Milano 20133 Italy
| | - Simone Vesentini
- Dipartimento Di Elettronica; Informazione E Bioingegneria, Politecnico Di Milano; Milano 20133 Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @Polimi, Istituto Italiano Di Tecnologia; Milano 20133 Italy
| |
Collapse
|
17
|
Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat Commun 2015; 6:10062. [PMID: 26620920 PMCID: PMC4697335 DOI: 10.1038/ncomms10062] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022] Open
Abstract
Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products. Bacterial production of butyrate in the gut is associated with a healthy colon. Here the authors isolate an Intestinimonas strain from the human gut that can produce butyrate from lysine and fructoselysine, a potentially harmful compound formed in heated foods.
Collapse
|
18
|
Hellwig M, Bunzel D, Huch M, Franz CMAP, Kulling SE, Henle T. Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6723-30. [PMID: 26186075 DOI: 10.1021/acs.jafc.5b01391] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Maillard reaction products (MRPs) are taken up in substantial amounts with the daily diet, but the majority are not transported across the intestinal epithelium. The aim of this study was to obtain first insights into the stability of dietary MRPs in the presence of the intestinal microbiota. Four individual MRPs, namely, N-ε-fructosyllysine (FL), N-ε-carboxymethyllysine (CML), pyrraline (PYR), and maltosine (MAL), were anaerobically incubated with fecal suspensions from eight human volunteers at 37 °C for up to 72 h. The stability of the MRPs was measured by HPLC with UV and MS/MS detections. The Amadori product FL could no longer be detected after 4 h of incubation. Marked interindividual differences were observed for CML metabolism: Depending on the individual, at least 40.7 ± 1.5% of CML was degraded after 24 h of incubation, and the subjects could thus be tentatively grouped into fast and slow metabolizers of this compound. PYR was degraded by 20.3 ± 4.4% during 24 h by all subjects. The concentration of MAL was not significantly lowered in the presence of fecal suspensions. In no case could metabolites be identified and quantified by different mass spectrometric techniques. This is the first study showing that the human colonic microbiota is able to degrade selected glycated amino acids and possibly use them as a source of energy, carbon, and/or nitrogen.
Collapse
Affiliation(s)
- Michael Hellwig
- †Institute of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
- §Department of Safety and Quality of Fruits and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Diana Bunzel
- §Department of Safety and Quality of Fruits and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Melanie Huch
- §Department of Safety and Quality of Fruits and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Charles M A P Franz
- §Department of Safety and Quality of Fruits and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Sabine E Kulling
- §Department of Safety and Quality of Fruits and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Thomas Henle
- †Institute of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
19
|
A Mannose Family Phosphotransferase System Permease and Associated Enzymes Are Required for Utilization of Fructoselysine and Glucoselysine in Salmonella enterica Serovar Typhimurium. J Bacteriol 2015; 197:2831-9. [PMID: 26100043 DOI: 10.1128/jb.00339-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/14/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Salmonella enteric serovar Typhimurium, a major cause of food-borne illness, is capable of using a variety of carbon and nitrogen sources. Fructoselysine and glucoselysine are Maillard reaction products formed by the reaction of glucose or fructose, respectively, with the ε-amine group of lysine. We report here that S. Typhimurium utilizes fructoselysine and glucoselysine as carbon and nitrogen sources via a mannose family phosphotransferase (PTS) encoded by gfrABCD (glucoselysine/fructoselysine PTS components EIIA, EIIB, EIIC, and EIID; locus numbers STM14_5449 to STM14_5454 in S. Typhimurium 14028s). Genes coding for two predicted deglycases within the gfr operon, gfrE and gfrF, were required for growth with glucoselysine and fructoselysine, respectively. GfrF demonstrated fructoselysine-6-phosphate deglycase activity in a coupled enzyme assay. The biochemical and genetic analyses were consistent with a pathway in which fructoselysine and glucoselysine are phosphorylated at the C-6 position of the sugar by the GfrABCD PTS as they are transported across the membrane. The resulting fructoselysine-6-phosphate and glucoselysine-6-phosphate subsequently are cleaved by GfrF and GfrE to form lysine and glucose-6-phosphate or fructose-6-phosphate. Interestingly, although S. Typhimurium can use lysine derived from fructoselysine or glucoselysine as a sole nitrogen source, it cannot use exogenous lysine as a nitrogen source to support growth. Expression of gfrABCDEF was dependent on the alternative sigma factor RpoN (σ(54)) and an RpoN-dependent LevR-like activator, which we designated GfrR. IMPORTANCE Salmonella physiology has been studied intensively, but there is much we do not know regarding the repertoire of nutrients these bacteria are able to use for growth. This study shows that a previously uncharacterized PTS and associated enzymes function together to transport and catabolize fructoselysine and glucoselysine. Knowledge of the range of nutrients that Salmonella utilizes is important, as it could lead to the development of new strategies for reducing the load of Salmonella in food animals, thereby mitigating its entry into the human food supply.
Collapse
|
20
|
Kameya M, Sakaguchi-Mikami A, Ferri S, Tsugawa W, Sode K. Advancing the development of glycated protein biosensing technology: next-generation sensing molecules. J Diabetes Sci Technol 2015; 9:183-91. [PMID: 25627465 PMCID: PMC4604589 DOI: 10.1177/1932296814565784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research advances in biochemical molecules have led to the development of convenient and reproducible biosensing molecules for glycated proteins, such as those based on the enzymes fructosyl amino acid oxidase (FAOX) or fructosyl peptide oxidase (FPOX). Recently, more attractive biosensing molecules with potential applications in next-generation biosensing of glycated proteins have been aggressively reported. We review 2 such molecules, fructosamine 6-kinase (FN6K) and fructosyl amino acid-binding protein, as well as their recent applications in the development of glycated protein biosensing systems. Research on FN6K and fructosyl amino acid-binding protein has been opening up new possibilities for the development of highly sensitive and proteolytic-digestion-free biosensing systems for glycated proteins.
Collapse
Affiliation(s)
- Miho Kameya
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akane Sakaguchi-Mikami
- Department of Medical Technology, School of Health Sciences, Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Stefano Ferri
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wakako Tsugawa
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- Department of Biotechnology & Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan Ultizyme International Ltd, Tokyo, Japan
| |
Collapse
|
21
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
22
|
NAD(P)H-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation. PLoS One 2014; 9:e112590. [PMID: 25393291 PMCID: PMC4231035 DOI: 10.1371/journal.pone.0112590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. METHODS AND RESULTS We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. CONCLUSION We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.
Collapse
|
23
|
Szwergold BS. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology. Rejuvenation Res 2014; 16:259-72. [PMID: 23634960 DOI: 10.1089/rej.2012.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maillard reactions are an unavoidable feature of life that appear to be damaging to cell and organisms. Consequently, all living systems must have ways to protect themselves against this process. As of 2012, several such defense mechanisms have been identified. They are all enzymatic and were found in mesophilic organisms. To date, no systematic study of Maillard reactions and the relevant defense mechanisms has been conducted in thermophiles (50°C-80°C) or hyperthermophiles (80°C-120°C). This is surprisingly because Maillard reactions become significantly faster and potent with increasing temperatures. This review examines this neglected issue in two well-defined sets of hyperthermophiles. My analysis suggests that hyperthermophiles cope with glycation stress by several mechanisms: • Absence of glycation-prone head groups (such as ethanoalamine) from hyperthermophilic phospholipids • Protection of reactive carbohydrates and labile metabolic intermediates by substrate channeling. • Conversion of excess reactive sugars such as glucose to non-reactive compounds including trehalose, di-myo-inositol-phosphate and mannosylglycerate. • Detoxification of methylglyoxal and other ketoaldehydes by conversion to inert products through a variety of reductases and dehydrogenases. • Scavenging of the remaining carbonyls by nucleophilic amines, including a variety of novel polyamines. Disruption of the Maillard process at its early stages, rather than repair of damage caused by it at later stages, appears to be the preferred strategy in the organisms examined. The most unique among these mechanisms appears to be a polyamine-based scavenging system. Undertaking research of the Maillard process in hyperthermophiles is important in its own right and is also likely to provide new insights for the control of these reactions in humans, especially in diseases such as diabetes mellitus.
Collapse
|
24
|
The Maillard reaction and pet food processing: effects on nutritive value and pet health. Nutr Res Rev 2013; 26:130-48. [PMID: 23916186 DOI: 10.1017/s0954422413000103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Maillard reaction, which can occur during heat processing of pet foods or ingredients, is known to reduce the bioavailability of essential amino acids such as lysine due to the formation of early and advanced Maillard reaction products (MRP) that are unavailable for utilisation by the body. Determination of the difference between total and reactive lysine by chemical methods provides an indication of the amount of early MRP present in foods, feeds and ingredients. Previous research reported that the difference between total and reactive lysine in pet foods can be up to 61.8%, and foods for growing dogs may be at risk of supplying less lysine than the animal may require. The endogenous analogues of advanced MRP, advanced glycation endproducts, have been associated with age-related diseases in humans, such as diabetes and impaired renal function. It is unknown to what extent advanced MRP are present in pet foods, and if dietary MRP can be associated with the development of diseases such as diabetes and impaired renal function in pet animals. Avoidance of ingredients with high levels of MRP and processing conditions known to favour the Maillard reaction may be useful strategies to prevent the formation of MRP in manufactured pet food. Future work should further focus on understanding the effects of ingredient choice and processing conditions on the formation of early and advanced MRP, and possible effects on animal health.
Collapse
|
25
|
Buchholz M, Nahrstedt H, Pillukat MH, Deppe V, Meinhardt F. yneA mRNA instability is involved in temporary inhibition of cell division during the SOS response of Bacillus megaterium. MICROBIOLOGY-SGM 2013; 159:1564-1574. [PMID: 23728628 DOI: 10.1099/mic.0.064766-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SOS response, a mechanism enabling bacteria to cope with DNA damage, is strictly regulated by the two major players, RecA and LexA (Bacillus homologue DinR). Genetic stress provokes formation of ssDNA-RecA nucleoprotein filaments, the coprotease activity of which mediates the autocatalytic cleavage of the transcriptional repressor DinR and ensures the expression of a set of din (damage-inducible) genes, which encode proteins that enhance repair capacity, accelerate mutagenesis rate and cause inhibition of cell division (ICD). In Bacillus subtilis, the transcriptional activation of the yneAB-ynzC operon is part of the SOS response, with YneA being responsible for the ICD. Pointing to its cellular function in Bacillus megaterium, overexpression of homologous YneA led to filamentous growth, while ICD was temporary during the SOS response. Genetic knockouts of the individual open reading frames of the yneAB-ynzC operon increased the mutagenic sensitivity, proving - for the first time in a Bacillus species - that each of the three genes is in fact instrumental in coping with genetic stress. Northern- and quantitative real-time PCR analyses revealed - in contrast to other din genes (exemplified for dinR, uvrBA) - transient mRNA-presence of the yneAB-ynzC operon irrespective of persisting SOS-inducing conditions. Promoter test assays and Northern analyses suggest that the decline of the ICD is at least partly due to yneAB-ynzC mRNA instability.
Collapse
Affiliation(s)
- Meike Buchholz
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Hannes Nahrstedt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Mike H Pillukat
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Veronika Deppe
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
26
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sakaguchi-Mikami A, Kameya M, Ferri S, Tsugawa W, Sode K. Cloning and characterization of fructosamine-6-kinase from Arthrobacter aurescens. Appl Biochem Biotechnol 2013; 170:710-7. [PMID: 23609907 DOI: 10.1007/s12010-013-0229-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
Fructosamine-6-kinases (FN6Ks) that catalyze phosphorylation of glycated amino acids, i.e., fructosyl amino acids (FAs), have been shown as a potential recognition element for glycated protein detection. However, there are only two available FN6Ks: those from Escherichia coli which is specific for ε-fructosyl lysine (ε-FK) and Bacillus subtilis which recognizes both ε-FK and α-FA as substrates. In this study, we characterized an FN6K homologue isolated from Arthrobacter, some of whose species are reported to assimilate FA. The BLAST searches of Arthrobacter genomic database, using the bacterial FN6K primary structure information, revealed the presence of an FN6K homologue in Arthrobacter aurescens TC1 strain. Indeed, enzymatic assays confirmed that the putative FN6K from A. aurescens is an FN6K that is specific for ε-FK, although the primary sequence alignments showed similarity of A. aurescens FN6Ks with FN6Ks from B. subtilis and E. coli at the same level. In this study, we describe for the first time the presence of FN6K in Arthrobacter spp. and ε-FK-specific degradation pathway from Gram-positive bacteria, providing important information for the development of FA-recognizing molecules as well as for the FA assimilation system in bacteria.
Collapse
Affiliation(s)
- Akane Sakaguchi-Mikami
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, Hachioji, Japan
| | | | | | | | | |
Collapse
|
28
|
Genetic control of amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR. Appl Environ Microbiol 2011; 77:2839-46. [PMID: 21398478 DOI: 10.1128/aem.02515-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis is capable of degrading fructosamines. The phosphorylation and the cleavage of the resulting fructosamine 6-phosphates is catalyzed by the frlD and frlB gene products, respectively. This study addresses the physiological importance of the frlBONMD genes (formerly yurPONML), revealing the necessity of their expression for growth on fructosamines and focusing on the complex regulation of the corresponding transcription unit. In addition to the known regulation by the global transcriptional regulator CodY, the frl genes are repressed by the convergently transcribed FrlR (formerly YurK). The latter causes repression during growth on substrates other than fructosamines. Additionally, we identified in the first intergenic region of the operon an FrlR binding site which is centrally located within a 38-bp perfect palindromic sequence. There is genetic evidence that this sequence, in combination with FrlR, contributes to the remarkable decrease in the transcription downstream of the first gene of the frl operon.
Collapse
|