1
|
Acevedo-López J, González-Madrid G, Navarro CA, Jerez CA. Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms 2024; 12:2627. [PMID: 39770829 PMCID: PMC11677633 DOI: 10.3390/microorganisms12122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In Escherichia coli, polyphosphates also function as inorganic molecular chaperones. The present study aims to investigate whether polyphosphate serves a similar chaperone function in archaea, using Saccharolobus solfataricus as a model organism. To this end, polyphosphate was extracted and quantified, the ADP/ATP ratio was determined, insoluble protein extracts were analyzed at different time points after copper exposure, and qPCR was performed to measure the expression of stress-related genes. PolyP was extracted after exposing the archaeon S. solfataricus to different copper concentrations. We determined that polyP degradation is directly correlated with metal concentration. At the minimum inhibitory concentration (MIC) of 2 mM Cu2+, polyP degradation stabilized 2 h after exposure and showed no recovery even after 24 h. The ADP/ATP ratio was measured and showed differences in the presence or absence of polyP. The analysis of proteins precipitated under copper stress showed a higher proportion of insoluble proteins at an elevated metal concentration. On the other hand, increased protein precipitation was detected in the absence of polyP. Gene expression analysis via qPCR was conducted to assess the expression of genes involved in chaperone and chaperonin production, copper resistance, oxidative stress response, and phosphate metabolism under prolonged copper exposure, both in the presence and absence of polyP. The results indicated an upregulation of all the chaperonins measured in the presence of polyP. Interestingly, just some of these genes were upregulated in polyP's absence. Despite copper stress, there was no upregulation of superoxide dismutase in our conditions. These results highlight the role of polyP in the copper stress response in S. solfataricus, particularly to prevent protein precipitation, likely due to its function as an inorganic chaperone. Additionally, the observed protein precipitation could be attributable to interactions between copper and some amino acids on the protein structures rather than oxidative stress induced by copper exposure, as previously described in E. coli. Our present findings provide new insights into the protective role of polyP as an inorganic chaperone in S. solfataricus and emphasize its importance in maintaining cellular homeostasis under metal stress conditions.
Collapse
Affiliation(s)
| | | | | | - Carlos A. Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile; (J.A.-L.); (G.G.-M.)
| |
Collapse
|
2
|
Aliyu GO, Ezugworie FN, Onwosi CO, Nnamchi CI, Ekwealor CC, Igbokwe VC, Sani RK. Multi-stress adaptive lifestyle of acidophiles enhances their robustness for biotechnological and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176190. [PMID: 39265677 DOI: 10.1016/j.scitotenv.2024.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms. The existing literature reveals a notable gap in understanding the multi-stress conditions confronting acidophiles and their corresponding coping mechanisms. Therefore, the current review aims to illuminate the intricacies of the metabolic lifestyles of acidophiles within these demanding habitats, exploring how their energy demands contribute to habitat acidification. In addition, the unique adaptive mechanisms employed by acidophiles were emphasized, especially the pivotal role of monolayer membrane-spanning lipids, and how these organisms effectively respond to a myriad of stresses. Beyond mere survival, understanding the adaptive mechanisms of these unique organisms could further enhance their use in some biotechnological and environmental applications. Lastly, this review explores the strategies used to engineer these organisms to promote their use in industrial applications.
Collapse
Affiliation(s)
- Godwin O Aliyu
- Department of Microbiology, Faculty of Natural Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Flora N Ezugworie
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Sciences, Federal College of Dental Technology and Therapy, Enugu, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | - Chukwudi I Nnamchi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; INSERM UMR-S 1121 Biomaterial and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Rajesh K Sani
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, SD, United States; Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States; Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States; BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
3
|
Khaleque HN, Fathollahzadeh H, Kaksonen AH, Valdés J, Vergara E, Holmes DS, Watkin ELJ. Genomic insights into key mechanisms for carbon, nitrogen, and phosphate assimilation by the acidophilic, halotolerant genus Acidihalobacter members. FEMS Microbiol Ecol 2024; 100:fiae145. [PMID: 39496518 PMCID: PMC11585279 DOI: 10.1093/femsec/fiae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
In-depth comparative genomic analysis was conducted to predict carbon, nitrogen, and phosphate assimilation pathways in the halotolerant, acidophilic genus Acidihalobacter. The study primarily aimed to understand how the metabolic capabilities of each species can determine their roles and effects on the microbial ecology of their unique saline and acidic environments, as well as in their potential application to saline water bioleaching systems. All four genomes encoded the genes for the complete tricarboxylic acid cycle, including 2-oxoglutarate dehydrogenase, a key enzyme absent in obligate chemolithotrophic acidophiles. Genes for a unique carboxysome shell protein, csoS1D, typically found in halotolerant bacteria but not in acidophiles, were identified. All genomes contained lactate and malate utilization genes, but only A. ferrooxydans DSM 14175T contained genes for the metabolism of propionate. Genes for phosphate assimilation were present, though organized differently across species. Only A. prosperus DSM 5130T and A. aeolianus DSM 14174T genomes contained nitrogen fixation genes, while A. ferrooxydans DSM 14175T and A. yilgarnensis DSM 105917T possessed genes for urease transporters and respiratory nitrate reductases, respectively. The findings suggest that all species can fix carbon dioxide but can also potentially utilize exogenous carbon sources and that the non-nitrogen-fixing species rely on alternative nitrogen assimilation mechanisms.
Collapse
Affiliation(s)
- Himel Nahreen Khaleque
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- CSIRO, Environment, Floreat, WA 6014, Australia
| | - Homayoun Fathollahzadeh
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | | | - Jorge Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, 8420000, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, 8420000, Chile
| | - Elizabeth L J Watkin
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
4
|
Redko V, Wolska L, Potrykus M, Olkowska E, Cieszyńska-Semenowicz M, Tankiewicz M. Environmental impacts of 5-year plastic waste deposition on municipal waste landfills: A follow-up study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167710. [PMID: 37832682 DOI: 10.1016/j.scitotenv.2023.167710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Depositing plastic waste has long been a prevalent method of utilization, persisting today. Plastic waste within municipal waste landfills (MWL) undergoes diverse (bio-)degradation processes, which may be a potential source of chemicals and microorganisms harmful to the environment and human health. Soil and air samples were collected from modern MWL to identify environmental contamination caused by 5 years of plastic (bio-)degradation. The pH of soil samples was higher than in the reference area (RA), which was possibly caused by alterations in soil anionic composition detected with ion chromatography. The presence of plastic additives with a toxic potential was detected in soil samples by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). With the use of thermal desorption and GC - MS, hazardous substances (phthalic anhydride, phenylmaleic anhydride, ethylbenzene, xylene) with a known impact on the human endocrine system were also detected. The number of microorganisms, both fungi, and bacteria, was highly increased in soil and air in the MWL as compared to the RA. The soil collected in the MWL area appeared to be phytotoxic, and inhibited seed germination (Phytotoxkit FTM bioassay), while acute toxicity Microtox® bioassay showed a hormetic effect towards Aliivibrio fischeri. Obtained results exhibited massive soil and air contamination, with both chemical substances and microorganisms while plastic waste undergoes (bio-)degradation. It may contribute to serious environmental contamination and pose a threat to human health.
Collapse
Affiliation(s)
- Vladyslav Redko
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Lidia Wolska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Marta Potrykus
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Ewa Olkowska
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Monika Cieszyńska-Semenowicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| | - Maciej Tankiewicz
- Division of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland.
| |
Collapse
|
5
|
Khaleque HN, Nazem-Bokaee H, Gumulya Y, Carlson RP, Kaksonen AH. Simulating compatible solute biosynthesis using a metabolic flux model of the biomining acidophile, Acidithiobacillus ferrooxidans ATCC 23270. Res Microbiol 2024; 175:104115. [PMID: 37572823 DOI: 10.1016/j.resmic.2023.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Halotolerant, acidophilic, bioleaching microorganisms are crucial to biomining operations that utilize saline water. Compatible solutes play an important role in the adaptation of these microorganisms to saline environments. Acidithiobacillus ferrooxidans ATCC 23270, an iron- and sulfur-oxidizing acidophilic bacterium, synthesizes trehalose as its native compatible solute but is still sensitive to salinity. Recently, halotolerant bioleaching bacteria were found to use ectoine as their key compatible solute. Previously, bioleaching bacteria were recalcitrant to genetic manipulation; however, recent advancements in genetic tools and techniques allow successful genetic modification of A. ferrooxidans ATCC 23270. Therefore, this study aimed to test, in silico, the effect of native and synthetic compatible solute biosynthesis by A. ferrooxidans ATCC 23270 on its growth and metabolism. Metabolic network flux modelling was used to provide a computational framework for the prediction of metabolic fluxes during production of native and synthetic compatible solutes by A. ferrooxidans ATCC 23270, in silico. Complete pathways for trehalose biosynthesis by the bacterium are proposed and captured in the updated metabolic model including a newly discovered UDP-dependent trehalose synthesis pathway. Finally, the effect of nitrogen sources on compatible solute production was simulated and showed that using nitrogen gas as the sole nitrogen source enables the ectoine-producing 'engineered' microbe to oxidize up to 20% more ferrous iron in comparison to the native microbe that only produces trehalose. Therefore, the predictive outcomes of the model have the potential to guide the design and optimization of a halotolerant strain of A. ferrooxidans ATCC 23270 for saline bioleaching operations.
Collapse
Affiliation(s)
- Himel Nahreen Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA, Australia; Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia; School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Hadi Nazem-Bokaee
- Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia; Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra 2601, ACT, Australia.
| | - Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA, Australia; Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Ross P Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA, Australia; Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia.
| |
Collapse
|
6
|
Li M, Wen J. Study on the intracellular adaptative mechanism of Acidithiobacillus caldus MTH-04 to NaCl stress. Microb Cell Fact 2023; 22:218. [PMID: 37880737 PMCID: PMC10599003 DOI: 10.1186/s12934-023-02232-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
To understand the adaptive mechanism of bioleaching microorganism Acidithiobacillus caldus MTH-04, its physiology and metabolic changes at the transcriptional level were systemically studied. The results of growth curves, SO42- content, pH and flow cytometry analyses indicated that the higher the NaCl concentration, the more the strain was inhibited. The transcriptome response of A. caldus to elevated NaCl concentrations included changes in carbon flux, elevated glutathione synthesis, alterations in cell wall and membrane composition, the down-regulation in genes involved in flagellar synthesis and rotation, the reduced energy generation through sulfur oxidation, and the up-regulation in genes involved in DNA and protein repair. Based on the transcriptome results, the effects of proline and glutathione on NaCl adaptation in A. caldus were analyzed separately. We found that either the exogenous addition of proline and glutathione or the intracellular overexpression of the enzymes responsible for the synthesis of these two substances contributed to the enhancement of the adaptive capacity of A. caldus under NaCl stress. The findings offer insight into the design of chloride-based techniques for the bioprocessing of minerals.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Interesting Halophilic Sulphur-Oxidising Bacteria with Bioleaching Potential: Implications for Pollutant Mobilisation from Mine Waste. Microorganisms 2023; 11:microorganisms11010222. [PMID: 36677514 PMCID: PMC9866277 DOI: 10.3390/microorganisms11010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
For many years, research on the microbial-dissolution of metals from ores or waste materials mainly focussed on the study of acidophilic organisms. However, most acidophilic bioleaching microorganisms have limited tolerance to high chloride concentrations, thereby requiring fresh water for bioleaching operations. There is a growing interest in the use of seawater for leaching purposes, especially in regions with less access to fresh water. Consequently, there is a need to find halophilic organisms with bioleaching potentials. This study investigated the bioleaching potentials of four moderately halophilic sulphur-oxidising bacteria: Thiomicrospira cyclica, Thiohalobacter thiocyanaticus, Thioclava electrotropha and Thioclava pacifica. Results revealed T. electrotropha and T. pacifica as the most promising for bioleaching. Pure cultures of the two Thioclava strains liberated about 30% Co, and between 8-17% Cu, Pb, Zn, K, Cd, and Mn from a mine waste rock sample from the Neves Corvo mine, Portugal. Microwave roasting of the waste rock at 400 and 500 °C improved the bioleaching efficiency of T. electrotropha for Pb (13.7 to 45.7%), Ag (5.3 to 36%) and In (0 to 27.4%). Mineralogical analysis of the bioleached residues using SEM/MLA-GXMAP showed no major difference in the mineral compositions before or after bioleaching by the Thioclava spp. Generally, the bioleaching rates of the Thioclava spp. are quite low compared to that of the conventional acidophilic bioleaching bacteria. Nevertheless, their ability to liberate potential pollutants (metal(loid)s) into solution from mine waste raises environmental concerns. This is due to their relevance in the biogeochemistry of mine waste dumps, as similar neutrophile halophilic sulphur-oxidising organisms (e.g., Halothiobacillus spp.) have been isolated from mine wastes. On the other hand, the use of competent halophilic microorganisms could be the future of bioleaching due to their high tolerance to Cl- ions and their potential to catalyse mineral dissolution in seawater media, instead of fresh water.
Collapse
|
8
|
The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms 2022; 11:microorganisms11010035. [PMID: 36677326 PMCID: PMC9861516 DOI: 10.3390/microorganisms11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Acidithiobacillus spp. are prevalent in acid mine drainage, and they have been widely used in biomining for extracting nonferrous metals from ores. The osmotic stress generated by elevated concentrations of inorganic ions is a severe challenge for the growth of Acidithiobacillus spp. in the bioleaching process; however, the adaptation mechanism of these bacteria to high osmotic pressure remains unclear. In this study, bioinformatics analysis indicated that the osmotic stress response two-component system EnvZ-OmpR is widely distributed in Acidithiobacillus spp., while OmpRs from Acidithiobacillus spp. exhibited a far more evolutionary relationship with the well-studied OmpRs in E. coli and Salmonella typhimurium. The growth measurement of an Acidithiobacillus caldus (A. caldus) ompR-knockout strain demonstrated that OmpR is essential in the adaptation of this bacterium to high osmotic stress. The overall impact of OmpR on the various metabolic and regulatory systems of A. caldus was revealed by transcriptome analysis. The OmpR binding sequences of differentially expressed genes (DEGs) were predicted, and the OmpR box motif in A. caldus was analysed. The direct and negative regulation of EnvZ-OmpR on the tetrathionate-metabolic (tetH) cluster in A. caldus was discovered for the first time, and a co-regulation mode mediated by EnvZ-OmpR and RsrS-RsrR for the tetrathionate intermediate thiosulfate-oxidizing (S4I) pathway in this microorganism was proposed. This study reveals that EnvZ-OmpR is an indispensable regulatory system for the ability of A. caldus to cope with high osmotic stress and the significance of EnvZ-OmpR on the regulation of sulfur metabolism in A. caldus adapting to the high-salt environment.
Collapse
|
9
|
Santini TC, Gramenz L, Southam G, Zammit C. Microbial Community Structure Is Most Strongly Associated With Geographical Distance and pH in Salt Lake Sediments. Front Microbiol 2022; 13:920056. [PMID: 35756015 PMCID: PMC9221066 DOI: 10.3389/fmicb.2022.920056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Salt lakes are globally significant microbial habitats, hosting substantial novel microbial diversity and functional capacity. Extremes of salinity and pH both pose major challenges for survival of microbial life in terrestrial and aquatic environments, and are frequently cited as primary influences on microbial diversity across a wide variety of environments. However, few studies have attempted to identify spatial and geochemical contributions to microbial community composition, functional capacity, and environmental tolerances in salt lakes, limiting exploration of novel halophilic and halotolerant microbial species and their potential biotechnological applications. Here, we collected sediment samples from 16 salt lakes at pH values that ranged from pH 4 to 9, distributed across 48,000 km2 of the Archaean Yilgarn Craton in southwestern Australia to identify associations between environmental factors and microbial community composition, and used a high throughput culturing approach to identify the limits of salt and pH tolerance during iron and sulfur oxidation in these microbial communities. Geographical distance between lakes was the primary contributor to variation in microbial community composition, with pH identified as the most important geochemical contributor to variation in microbial community composition. Microbial community composition split into two clear groups by pH: Bacillota dominated microbial communities in acidic saline lakes, whereas Euryarchaeota dominated microbial communities in alkaline saline lakes. Iron oxidation was observed at salinities up to 160 g L-1 NaCl at pH values as low as pH 1.5, and sulfur oxidation was observed at salinities up to 160 g L-1 NaCl between pH values 2-10, more than doubling previously observed tolerances to NaCl salinity amongst cultivable iron and sulfur oxidizers at these extreme pH values. OTU level diversity in the salt lake microbial communities emerged as the major indicator of iron- and sulfur-oxidizing capacity and environmental tolerances to extremes of pH and salinity. Overall, when bioprospecting for novel microbial functional capacity and environmental tolerances, our study supports sampling from remote, previously unexplored, and maximally distant locations, and prioritizing for OTU level diversity rather than present geochemical conditions.
Collapse
Affiliation(s)
- Talitha C. Santini
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Lucy Gramenz
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Carla Zammit
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Rivera-Araya J, Heine T, Chávez R, Schlömann M, Levicán G. Transcriptomic analysis of chloride tolerance in Leptospirillum ferriphilum DSM 14647 adapted to NaCl. PLoS One 2022; 17:e0267316. [PMID: 35486621 PMCID: PMC9053815 DOI: 10.1371/journal.pone.0267316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Chloride ions are toxic for most acidophilic microorganisms. In this study, the chloride tolerance mechanisms in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 adapted to 180 mM NaCl were investigated by a transcriptomic approach. Results showed that 99 genes were differentially expressed in the adapted versus the non-adapted cultures, of which 69 and 30 were significantly up-regulated or down-regulated, respectively. Genes that were up-regulated include carbonic anhydrase, cytochrome c oxidase (ccoN) and sulfide:quinone reductase (sqr), likely involved in intracellular pH regulation. Towards the same end, the cation/proton antiporter CzcA (czcA) was down-regulated. Adapted cells showed a higher oxygen consumption rate (2.2 x 10−9 ppm O2 s-1cell-1) than non-adapted cells (1.2 x 10−9 ppm O2 s-1cell-1). Genes coding for the antioxidants flavohemoprotein and cytochrome c peroxidase were also up-regulated. Measurements of the intracellular reactive oxygen species (ROS) level revealed that adapted cells had a lower level than non-adapted cells, suggesting that detoxification of ROS could be an important strategy to withstand NaCl. In addition, data analysis revealed the up-regulation of genes for Fe-S cluster biosynthesis (iscR), metal reduction (merA) and activation of a cellular response mediated by diffusible signal factors (DSFs) and the second messenger c-di-GMP. Several genes related to the synthesis of lipopolysaccharide and peptidoglycan were consistently down-regulated. Unexpectedly, the genes ectB, ectC and ectD involved in the biosynthesis of the compatible solutes (hydroxy)ectoine were also down-regulated. In line with these findings, although hydroxyectoine reached 20 nmol mg-1 of wet biomass in non-adapted cells, it was not detected in L. ferriphilum adapted to NaCl, suggesting that this canonical osmotic stress response was dispensable for salt adaptation. Differentially expressed transcripts and experimental validations suggest that adaptation to chloride in acidophilic microorganisms involves a multifactorial response that is different from the response in other bacteria studied.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Thomas Heine
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Gloria Levicán
- Biology Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
- * E-mail:
| |
Collapse
|
11
|
Abramov SM, Straub D, Tejada J, Grimm L, Schädler F, Bulaev A, Thorwarth H, Amils R, Kappler A, Kleindienst S. Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Appl Environ Microbiol 2022; 88:e0229021. [PMID: 34910570 PMCID: PMC8863065 DOI: 10.1128/aem.02290-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
In the mining-impacted Rio Tinto, Spain, Fe-cycling microorganisms influence the transport of heavy metals (HMs) into the Atlantic Ocean. However, it remains largely unknown how spatial and temporal hydrogeochemical gradients along the Rio Tinto shape the composition of Fe-cycling microbial communities and how this in turn affects HM mobility. Using a combination of DNA- and RNA-based 16S rRNA (gene) amplicon sequencing and hydrogeochemical analyses, we explored the impact of pH, Fe(III), Fe(II), and Cl- on Fe-cycling microorganisms. We showed that the water column at the acidic (pH 2.2) middle course of the river was colonized by Fe(II) oxidizers affiliated with Acidithiobacillus and Leptospirillum. At the upper estuary, daily fluctuations of pH (2.7 to 3.7) and Cl- (6.9 to 16.6 g/L) contributed to the establishment of a unique microbial community, including Fe(II) oxidizers belonging to Acidihalobacter, Marinobacter, and Mariprofundus, identified at this site. Furthermore, DNA- and RNA-based profiles of the benthic community suggested that acidophilic and neutrophilic Fe(II) oxidizers (e.g., Acidihalobacter, Marinobacter, and Mariprofundus), Fe(III) reducers (e.g., Thermoanaerobaculum), and sulfate-reducing bacteria drive the Fe cycle in the estuarine sediments. RNA-based relative abundances of Leptospirillum at the middle course as well as abundances of Acidihalobacter and Mariprofundus at the upper estuary were higher than DNA-based results, suggesting a potentially higher level of activity of these taxa. Based on our findings, we propose a model of how tidal water affects the composition and activity of the Fe-cycling taxa, playing an important role in the transport of HMs (e.g., As, Cd, Cr, and Pb) along the Rio Tinto. IMPORTANCE The estuary of the Rio Tinto is a unique environment in which extremely acidic, heavy metal-rich, and especially iron-rich river water is mixed with seawater. Due to the mixing events, the estuarine water is characterized by a low pH, almost seawater salinity, and high concentrations of bioavailable iron. The unusual hydrogeochemistry maintains unique microbial communities in the estuarine water and in the sediment. These communities include halotolerant iron-oxidizing microorganisms which typically inhabit acidic saline environments and marine iron-oxidizing microorganisms which, in contrast, are not typically found in acidic environments. Furthermore, highly saline estuarine water favored the prosperity of acidophilic heterotrophs, typically inhabiting brackish and saline environments. The Rio Tinto estuarine sediment harbors a diverse microbial community with both acidophilic and neutrophilic members that can mediate the iron cycle and, in turn, can directly impact the mobility and transport of heavy metals in the Rio Tinto estuary.
Collapse
Affiliation(s)
- Sergey M. Abramov
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Julian Tejada
- University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Baden-Württemberg, Germany
| | - Lars Grimm
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Franziska Schädler
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Aleksandr Bulaev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Harald Thorwarth
- University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Baden-Württemberg, Germany
| | - Ricardo Amils
- Centre for Molecular Biology Severo Ochoa, Autonomous University of Madrid, Madrid, Spain
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tuebingen, Baden-Württemberg, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| |
Collapse
|
12
|
Examining the Osmotic Response of Acidihalobacter aeolianus after Exposure to Salt Stress. Microorganisms 2021; 10:microorganisms10010022. [PMID: 35056469 PMCID: PMC8781986 DOI: 10.3390/microorganisms10010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Acidihalobacter aeolianus is an acidophilic, halo-tolerant organism isolated from a marine environment near a hydrothermal vent, an ecosystem whereby levels of salinity and total dissolved salts are constantly fluctuating creating ongoing cellular stresses. In order to survive these continuing changes, the synthesis of compatible solutes—also known as organic osmolytes—is suspected to occur, aiding in minimising the overall impact of environmental instability. Previous studies on A. aeolianus identified genes necessary for the accumulation of proline, betaine and ectoine, which are known to act as compatible solutes in other halophilic species. In this study, the impact of increasing the osmotic stress as well as the toxic ion effect was investigated by subjecting A. aeolianus to concentrations of NaCl and MgSO4 up to 1.27 M. Exposure to high concentrations of Cl− resulted in the increase of ectC expression in log-phase cells with a corresponding accumulation of ectoine at stationary phase. Osmotic stress via MgSO4 exposure did not trigger the same up-regulation of ectC or accumulation of ectoine, indicating the transcriptionally regulated response against osmotic stress was induced by chloride toxicity. These findings have highlighted how the adaptive properties of halo-tolerant organisms in acidic environments are likely to differ and are dependent on the initial stressor.
Collapse
|
13
|
Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb Cell Fact 2021; 20:178. [PMID: 34496835 PMCID: PMC8425152 DOI: 10.1186/s12934-021-01671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Bio-mining microorganisms are a key factor affecting the metal recovery rate of bio-leaching, which inevitably produces an extremely acidic environment. As a powerful tool for exploring the adaptive mechanisms of microorganisms in extreme environments, omics technologies can greatly aid our understanding of bio-mining microorganisms and their communities on the gene, mRNA, and protein levels. These omics technologies have their own advantages in exploring microbial diversity, adaptive evolution, changes in metabolic characteristics, and resistance mechanisms of single strains or their communities to extreme environments. These technologies can also be used to discover potential new genes, enzymes, metabolites, metabolic pathways, and species. In addition, integrated multi-omics analysis can link information at different biomolecular levels, thereby obtaining more accurate and complete global adaptation mechanisms of bio-mining microorganisms. This review introduces the current status and future trends in the application of omics technologies in the study of bio-mining microorganisms and their communities in extreme environments.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
14
|
Glutathione synthetase overexpression in Acidithiobacillus ferrooxidans improves halotolerance of iron oxidation. Appl Environ Microbiol 2021; 87:e0151821. [PMID: 34347521 DOI: 10.1128/aem.01518-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acidithiobacillus ferrooxidans are well-studied iron- and sulfur-oxidizing acidophilic chemolithoautotrophs that are exploited for their ability to participate in the bioleaching of metal sulfides. Here, we overexpressed the endogenous glutamate-cysteine ligase and glutathione synthetase genes in separate strains and found that glutathione synthetase overexpression increased intracellular glutathione levels. We explored the impact of pH on the halotolerance of iron oxidation in wild type and engineered cultures. The increase in glutathione allowed the modified cells to grow under salt concentrations and pH conditions that are fully inhibitory to wild type cells. Furthermore, we found that improved iron oxidation ability in the presence of chloride also resulted in higher levels of intracellular ROS in the strain. These results indicate that glutathione overexpression can be used to increase halotolerance in A. ferrooxidans and would likely be a useful strategy on other acidophilic bacteria. Importance The use of acidophilic bacteria in the hydrometallurgical processing of sulfide ores can enable many benefits including the potential reduction of environmental impacts. The cells involved in bioleaching tend to have limited halotolerance, and increased halotolerance could enable several benefits, including a reduction in the need for the use of fresh water resources. We show that the genetic modification of A. ferrooxidans for the overproduction of glutathione is a promising strategy to enable cells to resist the oxidative stress that can occur during growth in the presence of salt.
Collapse
|
15
|
Khaleque HN, González C, Johnson DB, Kaksonen AH, Holmes DS, Watkin ELJ. Genome-based classification of Acidihalobacter prosperus F5 (=DSM 105917=JCM 32255) as Acidihalobacter yilgarnensis sp. nov. Int J Syst Evol Microbiol 2020; 70:6226-6234. [PMID: 33112221 PMCID: PMC8049490 DOI: 10.1099/ijsem.0.004519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
The genus Acidihalobacter has three validated species, Acidihalobacter ferrooxydans, Acidihalobacter prosperus and Acidihalobacter aeolinanus, all of which were isolated from Vulcano island, Italy. They are obligately chemolithotrophic, aerobic, acidophilic and halophilic in nature and use either ferrous iron or reduced sulphur as electron donors. Recently, a novel strain was isolated from an acidic, saline drain in the Yilgarn region of Western Australia. Strain F5T has an absolute requirement for sodium chloride (>5 mM) and is osmophilic, growing in elevated concentrations (>1 M) of magnesium sulphate. A defining feature of its physiology is its ability to catalyse the oxidative dissolution of the most abundant copper mineral, chalcopyrite, suggesting a potential role in biomining. Originally categorized as a strain of A. prosperus, 16S rRNA gene phylogeny and multiprotein phylogenies derived from clusters of orthologous proteins (COGS) of ribosomal protein families and universal protein families unambiguously demonstrate that strain F5T forms a well-supported separate branch as a sister clade to A. prosperus and is clearly distinguishable from A. ferrooxydans DSM 14175T and A. aeolinanus DSM14174T. Results of comparisons between strain F5T and the other Acidihalobacter species, using genome-based average nucleotide identity, average amino acid identity, correlation indices of tetra-nucleotide signatures (Tetra) and genome-to-genome distance (digital DNA-DNA hybridization), support the contention that strain F5T represents a novel species of the genus Acidihalobacter. It is proposed that strain F5T should be formally reclassified as Acidihalobacter yilgarnenesis F5T (=DSM 105917T=JCM 32255T).
Collapse
Affiliation(s)
- Himel Nahreen Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- CSIRO Land and Water, Floreat, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - D. Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5RW, UK
| | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Universidad San Sebastian, Santiago, Chile
| | | |
Collapse
|
16
|
Huynh D, Kaschabek SR, Schlömann M. Effect of inoculum history, growth substrates and yeast extract addition on inhibition of Sulfobacillus thermosulfidooxidans by NaCl. Res Microbiol 2020; 171:252-259. [PMID: 32916217 DOI: 10.1016/j.resmic.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
This study reports on the effect of inoculum history, growth substrates, and yeast extract on sodium chloride tolerance of Sulfobacillus thermosulfidooxidans DSM 9293T. The concentrations of NaCl for complete inhibition of Fe2+ oxidation by cells initially grown with ferrous iron sulfate, or tetrathionate, or pyrite as energy sources were 525 mM, 725 mM, and 800 mM, respectively. Noticeably, regardless of NaCl concentrations, oxygen consumption rates of S. thermosulfidooxidans with 20 mM tetrathionate were higher than with 50 mM FeSO4. NaCl concentrations of higher than 400 mM strongly inhibited the iron respiration of S. thermosulfidooxidans. In contrast, the presence of NaCl was shown to stimulate tetrathionate oxidation. This trend was especially pronounced in NaCl-adapted cells where respiration rates at 200 mM NaCl were threefold of those in the absence of NaCl. In NaCl-adapted cultures greater respiration rates for tetrathionate were observed than in non-NaCl-adapted cultures, especially at concentrations ≥ 200 mM NaCl. At concentrations of ≤ 200 mM NaCl, cell growth and iron oxidation were enhanced with the addition of increasing concentrations of yeast extract. Thus, cell numbers in cultures with 0.05% yeast extract were ∼5 times higher than without yeast extract addition. At NaCl concentration as high as 400 mM, however, iron oxidation rates improved compared to control assays without yeast extract, but there was no clear dependence on yeast extract concentrations. The initial growth of bacteria with and without yeast extract in the presence of different NaCl concentrations was shown to impact leaching of copper from chalcopyrite. Copper dissolution was enhanced in the presence of 200 mM NaCl and absence of yeast extract, while the addition of 0.02% yeast extract was shown to promote copper solubilization in the presence of 500 mM NaCl.
Collapse
Affiliation(s)
- Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Stefan R Kaschabek
- Environmental Microbiology, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.
| |
Collapse
|
17
|
Huynh D, Norambuena J, Boldt C, Kaschabek SR, Levicán G, Schlömann M. Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Sulfobacillus thermosulfidooxidans. Front Microbiol 2020; 11:2102. [PMID: 33013767 PMCID: PMC7516052 DOI: 10.3389/fmicb.2020.02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Biomining applies microorganisms to extract valuable metals from usually sulfidic ores. However, acidophilic iron (Fe)-oxidizing bacteria tend to be sensitive to chloride ions which may be present in biomining operations. This study investigates the bioleaching of pyrite (FeS2), as well as the attachment to FeS2 by Sulfobacillus thermosulfidooxidans DSM 9293T in the presence of elevated sodium chloride (NaCl) concentrations. The bacteria were still able to oxidize iron in the presence of up to 0.6M NaCl (35 g/L), and the addition of NaCl in concentrations up to 0.2M (~12 g/L) did not inhibit iron oxidation and growth of S. thermosulfidooxidans in leaching cultures within the first 7 days. However, after approximately 7 days of incubation, ferrous iron (Fe2+) concentrations were gradually increased in leaching assays with NaCl, indicating that iron oxidation activity over time was reduced in those assays. Although the inhibition by 0.1M NaCl (~6 g/L) of bacterial growth and iron oxidation activity was not evident at the beginning of the experiment, over extended leaching duration NaCl was likely to have an inhibitory effect. Thus, after 36 days of the experiment, bioleaching of FeS2 with 0.1M NaCl was reduced significantly in comparison to control assays without NaCl. Pyrite dissolution decreased with the increase of NaCl. Nevertheless, pyrite bioleaching by S. thermosulfidooxidans was still possible at NaCl concentrations as high as 0.4M (~23 g/L NaCl). Besides, cell attachment in the presence of different concentrations of NaCl was investigated. Cells of S. thermosulfidooxidans attached heterogeneously on pyrite surfaces regardless of NaCl concentration. Noticeably, bacteria were able to adhere to pyrite surfaces in the presence of NaCl as high as 0.4M. Although NaCl addition inhibited iron oxidation activity and bioleaching of FeS2, the presence of 0.2M seemed to enhance bacterial attachment of S. thermosulfidooxidans on pyrite surfaces in comparison to attachment without NaCl.
Collapse
Affiliation(s)
- Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Javiera Norambuena
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christin Boldt
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Stefan R. Kaschabek
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Gloria Levicán
- Biology Department, Universidad de Santiago de Chile, Santiago, Chile
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
18
|
Yin Z, Feng S, Tong Y, Yang H. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. ACTA ACUST UNITED AC 2019; 46:1643-1656. [DOI: 10.1007/s10295-019-02224-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/07/2019] [Indexed: 11/27/2022]
Abstract
Abstract
Acidithiobacillus thiooxidans (A. thiooxidans) is often used for sulfur-bearing ores bioleaching, but its adaptive mechanism to harsh environments remains unclear. Here, we explored the adaptive mechanism of A. thiooxidans in the process of low-grade chalcopyrite bioleaching based on the physiology and comparative transcriptome analysis. It was indicated that A. thiooxidans maintains intracellular pH homeostasis by regulating unsaturated fatty acids, especially cyclopropane fatty acids, intracellular ATP, amino acid metabolism, and antioxidant factors. Comparative transcriptome analysis indicated that the key genes involved in sulfur oxidation, sor and soxABXYZ, were significantly up-regulated, generating more energy to resist extreme environmental stress by more active sulfur metabolism. Confocal laser scanning microscope analysis found that down-regulation of flagellar-related genes was likely to promote the biofilm formation. System-level understanding of leaching microorganisms under extreme stress can contribute to the evolution of these extremophiles via genetic engineering modification work, which further improves bioleaching in future.
Collapse
Affiliation(s)
- Zongwei Yin
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| | - Yanjun Tong
- grid.258151.a 0000 0001 0708 1323 State Key Laboratory of Food Science and Technology Jiangnan University Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| |
Collapse
|
19
|
Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria. Front Microbiol 2019; 10:2455. [PMID: 31736901 PMCID: PMC6828654 DOI: 10.3389/fmicb.2019.02455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile.,Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andre Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| |
Collapse
|
20
|
Khaleque HN, González C, Shafique R, Kaksonen AH, Holmes DS, Watkin ELJ. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Front Microbiol 2019; 10:155. [PMID: 30853944 PMCID: PMC6396713 DOI: 10.3389/fmicb.2019.00155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
There are few naturally occurring environments where both acid and salinity stress exist together, consequently, there has been little evolutionary pressure for microorganisms to develop systems that enable them to deal with both stresses simultaneously. Members of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that have developed the ability to tolerate acid and saline stress and, therefore, have the potential to bioleach ores with brackish or saline process waters under acidic conditions. The genus consists of four members, A. prosperus DSM 5130T, A. prosperus DSM 14174, A. prosperus F5 and "A. ferrooxidans" DSM 14175. An in depth genome comparison was undertaken in order to provide a more comprehensive description of the mechanisms of halotolerance used by the different members of this genus. Pangenome analysis identified 29, 3 and 9 protein families related to halotolerance in the core, dispensable and unique genomes, respectively. The genes for halotolerance showed Ka/Ks ratios between 0 and 0.2, confirming that they are conserved and stabilized. All the Acidihalobacter genomes contained similar genes for the synthesis and transport of ectoine, which was recently found to be the dominant osmoprotectant in A. prosperus DSM 14174 and A. prosperus DSM 5130T. Similarities also existed in genes encoding low affinity potassium pumps, however, A. prosperus DSM 14174 was also found to contain genes encoding high affinity potassium pumps. Furthermore, only A. prosperus DSM 5130T and "A. ferrooxidans" DSM 14175 contained genes allowing the uptake of taurine as an osmoprotectant. Variations were also seen in genes encoding proteins involved in the synthesis and/or transport of periplasmic glucans, sucrose, proline, and glycine betaine. This suggests that versatility exists in the Acidihalobacter genus in terms of the mechanisms they can use for halotolerance. This information is useful for developing hypotheses for the search for life on exoplanets and moons.
Collapse
Affiliation(s)
- Himel N. Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- CSIRO Land and Water, Floreat, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
| | | | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Elizabeth L. J. Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
21
|
Low-level thiocyanate concentrations impact on iron oxidation activity and growth of Leptospirillum ferriphilum through inhibition and adaptation. Res Microbiol 2018; 169:576-581. [DOI: 10.1016/j.resmic.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022]
|
22
|
Khaleque HN, Shafique R, Kaksonen AH, Boxall NJ, Watkin EL. Quantitative proteomics using SWATH-MS identifies mechanisms of chloride tolerance in the halophilic acidophile Acidihalobacter prosperus DSM 14174. Res Microbiol 2018; 169:638-648. [DOI: 10.1016/j.resmic.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
|
23
|
Bulaev AG, Chernyshov AN. Effect of Light Metal Ions and Chloride on Activity of Moderately Thermophilic Acidophilic Iron-Oxidizing Microorganisms. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018; 22:563-579. [PMID: 29696439 DOI: 10.1007/s00792-018-1024-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
The widely distributed Acidithiobacillus ferrooxidans (A. ferrooxidans) lives in extremely acidic conditions by fixing CO2 and nitrogen, and by obtaining energy from Fe2+ oxidation with either downhill or uphill electron transfer pathway and from reduced sulfur oxidation. A. ferrooxidans exists as different genomovars and its genome size is 2.89-4.18 Mb. The chemotactic movement of A. ferrooxidans is regulated by quorum sensing. A. ferrooxidans shows weak magnetotaxis due to formation of 15-70 nm magnetite magnetosomes with surface functional groups. The room- and low-temperature magnetic features of A. ferrooxidans are different from other magnetotactic bacteria. A. ferrooxidans has potential for removing sulfur from solids and gases, metals recycling from metal-bearing ores, electric wastes and sludge, biochemical production synthesizing, and metal workpiece machining.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China.
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| |
Collapse
|
25
|
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (Basel) 2018; 9:E116. [PMID: 29466321 PMCID: PMC5852612 DOI: 10.3390/genes9020116] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms.
Collapse
Affiliation(s)
- Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Naomi J Boxall
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Himel N Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology (TUT), Tampere, 33101, Finland.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University (MSU), Bozeman, MT 59717, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
26
|
Abstract
As the global population increases, so does the demand for minerals and energy resources. Demand for some of the major global commodities is currently growing at rates of: copper – 1.6% p.a.1; iron ore: 1.4% p.a.2; aluminium – 5% p.a.3; rare earth elements – 7% p.a.4, driven not only by population growth in China, India, and Africa, but also by increasing urbanisation and industrialisation globally. Technological advances in renewable energy production and storage, construction materials, transport, and computing could see demand for some of these resources spike by 2600% over the next 25 years under the most extreme demand scenarios5. Coupled with declining ore grades, this demand means that the global extent of mining environments is set to increase dramatically. Land disturbance attributed to mining was estimated to be 400 000 km2 in 20076, with projected rates of increase of 10 000 km2 per year7. This will increase the worldwide extent of mining environments from around 500 000 km2 at present to 1 330 000 km2 by 2100, larger than the combined land area of New South Wales and Victoria (1 050 000 km2), making them a globally important habitat for the hardiest of microbial life. The extreme geochemical and physical conditions prevalent in mining environments present great opportunities for discovery of novel microbial species and functions, as well as exciting challenges for microbiologists to apply their understanding to solve complex remediation problems.
Collapse
|
27
|
Khaleque HN, Corbett MK, Ramsay JP, Kaksonen AH, Boxall NJ, Watkin ELJ. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron- and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite. J Biotechnol 2017; 262:56-59. [PMID: 28986293 DOI: 10.1016/j.jbiotec.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/01/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Himel N Khaleque
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Melissa K Corbett
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Joshua P Ramsay
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Naomi J Boxall
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Elizabeth L J Watkin
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| |
Collapse
|
28
|
Draft Genome Sequence of Acidihalobacter ferrooxidans DSM 14175 (Strain V8), a New Iron- and Sulfur-Oxidizing, Halotolerant, Acidophilic Species. GENOME ANNOUNCEMENTS 2017; 5:5/21/e00413-17. [PMID: 28546494 PMCID: PMC5477407 DOI: 10.1128/genomea.00413-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of halotolerant acidophiles for bioleaching provides a biotechnical approach for the extraction of metals from regions where high salinity exists in the ores and source water. Here, we describe the first draft genome of a new species of a halotolerant and iron- and sulfur-oxidizing acidophile, Acidihalobacter ferrooxidans DSM-14175 (strain V8).
Collapse
|
29
|
Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG, Mulroney KT, Steuart R, Jackaman C, Watkin ELJ. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions. Front Microbiol 2017; 7:2132. [PMID: 28111571 PMCID: PMC5216662 DOI: 10.3389/fmicb.2016.02132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022] Open
Abstract
Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - David S Holmes
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Marcelo Lazcano
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Timothy J McCredden
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Christopher G Bryan
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Kieran T Mulroney
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Robert Steuart
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Connie Jackaman
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Elizabeth L J Watkin
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| |
Collapse
|
30
|
Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G. Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol 2016; 2:39-48. [PMID: 29062960 PMCID: PMC5625738 DOI: 10.1016/j.synbio.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 11/26/2022] Open
Abstract
The usefulness of genetic/metabolic engineering for further improvement of industrial strains is subject of discussion because of the general lack of knowledge on genetic alterations introduced by iterative cycles of random mutagenesis in such strains. An industrial clavulanic acid (CA)-overproducer Streptomyces clavuligerus DEPA was assessed to understand proteome-wide changes that have occurred in a local industrial CA overproducer developed through succesive mutagenesis programs. The proteins that could be identified corresponded to 33 distinct ORFs for underrepresented ones and 60 ORFs for overrepresented ones. Three CA biosynthetic enzymes were overrepresented in S. clavuligerus DEPA; carboxyethylarginine synthase (Ceas2), clavaldehyde dehydrogenase (Car) and carboxyethyl-arginine beta-lactam-synthase (Bls2) whereas the enzymes of two other secondary metabolites were underrepresented along with two important global regulators [two-component system (TCS) response regulator (SCLAV_2102) and TetR-family transcriptional regulator (SCLAV_3146)] that might be related with CA production and/or differentiation. γ-butyrolactone biosynthetic protein AvaA2 was 2.6 fold underrepresented in S. clavuligerus DEPA. The levels of two glycolytic enzymes, 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and phosophoglycerate kinase were found decreased while those of dihydrolipoyl dehydrogenase (E3) and isocitrate dehydrogenase, with two isoforms were found as significantly increased. A decrease of amino acid metabolism, methionine biosynthesis in particular, as well as S-adenosylmethionine synthetase appeared as one of the prominent mechanisms of success of S. clavuligerus DEPA strain as a prolific producer of CA. The levels of two enzymes of shikimate pathway that leads to the production of aromatic amino acids and aromatic secondary metabolites were also underrepresented. Some of the overrepresented stress proteins in S. clavuligerus DEPA included polynucleotide phosphorylase/polyadenylase (PNPase), ATP-dependent DNA helicase, two isoforms of an anti-sigma factor and thioredoxin reductase. Downregulation of important proteins of cell wall synthesis and division was recorded and a protein with β-lactamase domain (SCLAV_p1007) appeared in 12 isoforms, 5 of which were drastically overrepresented in DEPA strain. These results described herein provide useful information for rational engineering to improve CA production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Birgit Voigt
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
31
|
Watling HR, Collinson DM, Corbett MK, Shiers DW, Kaksonen AH, Watkin EL. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms. Res Microbiol 2016; 167:546-54. [DOI: 10.1016/j.resmic.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
32
|
|
33
|
Lu S, Peiffer S, Lazar CS, Oldham C, Neu TR, Ciobota V, Näb O, Lillicrap A, Rösch P, Popp J, Küsel K. Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:58-67. [PMID: 26524974 DOI: 10.1111/1758-2229.12351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/30/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
We investigated the microbial community compositions in two sediment samples from the acidic (pH ∼3) and hypersaline (>4.5% NaCl) surface waters, which are widespread in Western Australia. In West Dalyup River, large amounts of NaCl, Fe(II) and sulfate are brought by the groundwater into the surface run-off. The presence of K-jarosite and schwertmannite minerals in the river sediments suggested the occurrence of microbial Fe(II) oxidation because chemical oxidation is greatly reduced at low pH. 16S rRNA gene diversity analyses revealed that sequences affiliated with an uncultured archaeal lineage named Aplasma, which has the genomic potential for Fe(II) oxidation, were dominant in both sediment samples. The acidophilic heterotrophs Acidiphilium and Acidocella were identified as the dominant bacterial groups. Acidiphilium strain AusYE3-1 obtained from the river sediment tolerated up to 6% NaCl at pH 3 under oxic conditions and cells of strain AusYE3-1 reduced the effects of high salt content by forming filamentous structure clumping as aggregates. Neither growth nor Fe(III) reduction by strain AusYE3-1 was observed in anoxic salt-containing medium. The detection of Aplasma group as potential Fe(II) oxidizers and the inhibited Fe(III)-reducing capacity of Acidiphilium contributes to our understanding of the microbial ecology of acidic hypersaline environments.
Collapse
Affiliation(s)
- Shipeng Lu
- Chair of Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Peiffer
- Department of Hydrology, University of Bayreuth, Bayreuth, Germany
| | - Cassandre Sara Lazar
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Carolyn Oldham
- School of Civil, Environmental and Mining Engineering, The University of Western Australia, Crawley, Australia
| | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Valerian Ciobota
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Olga Näb
- Department of Hydrology, University of Bayreuth, Bayreuth, Germany
| | - Adam Lillicrap
- School of Civil, Environmental and Mining Engineering, The University of Western Australia, Crawley, Australia
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Institute of Photonic Technology, Jena, Germany
| | - Kirsten Küsel
- Chair of Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
De Oliveira MVV, Intorne AC, Vespoli LDS, Madureira HC, Leandro MR, Pereira TNS, Olivares FL, Berbert-Molina MA, De Souza Filho GA. Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Arch Microbiol 2016; 198:287-94. [PMID: 26809283 DOI: 10.1007/s00203-015-1176-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Plant growth-promoting bacteria (PGPB) represent a promising alternative to the massive use of industrial fertilizers in agriculture. Gluconacetobacter diazotrophicus is a PGPB that colonizes several plant species. Although this bacterium is able to grow at high sucrose concentrations, its response to environmental stresses is poorly understood. The present study evaluated G. diazotrophicus PAL5 response to stresses caused by sucrose, PEG 400, NaCl, KCl, Na2SO4 and K2SO4. Morphological, ultrastructural and cell growth analysis revealed that G. diazotrophicus PAL5 is more sensitive to salt than osmotic stress. Growth inhibition and strong morphological changes were caused by salinity, in consequence of Cl ion-specific toxic effect. Interestingly, low osmotic stress levels were beneficial for bacterial multiplication, which was able to tolerate high sucrose concentrations, Na2SO4 and K2SO4. Our data show that G. diazotrophicus PAL5 has differential response to osmotic and salinity stress, which may influence its use as inoculant in saline environments.
Collapse
Affiliation(s)
- Marcos Vinicius V De Oliveira
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Aline C Intorne
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Luciano de S Vespoli
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Hérika C Madureira
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, Brazil
| | - Mariana R Leandro
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Telma N S Pereira
- Laboratory of Genetics and Plant Breeding, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, Brazil
| | - Fábio L Olivares
- Laboratory of Cell and Tissue Biology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, Brazil
| | - Marília A Berbert-Molina
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Gonçalo A De Souza Filho
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (State University of Northern Rio de Janeiro - UENF), Campos dos Goytacazes, RJ, 28013-600, Brazil.
| |
Collapse
|
35
|
Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01563-15. [PMID: 26769942 PMCID: PMC4714123 DOI: 10.1128/genomea.01563-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome.
Collapse
|
36
|
Bulaev AG, Kanaeva ZK, Kanaev AT, Kondrat’eva TF. Biooxidation of a double-refractory gold-bearing sulfide ore concentrate. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Watling HR, Shiers DW, Collinson DM. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition. Microorganisms 2015; 3:364-90. [PMID: 27682094 PMCID: PMC5023253 DOI: 10.3390/microorganisms3030364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/16/2022] Open
Abstract
In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity.
Collapse
Affiliation(s)
- Helen R Watling
- CSIRO Mineral Resources Flagship, Australian Minerals Research Centre, P.O. Box 7229, Karawara, WA 6152, Australia.
| | - Denis W Shiers
- CSIRO Mineral Resources Flagship, Australian Minerals Research Centre, P.O. Box 7229, Karawara, WA 6152, Australia.
| | - David M Collinson
- CSIRO Mineral Resources Flagship, Australian Minerals Research Centre, P.O. Box 7229, Karawara, WA 6152, Australia.
| |
Collapse
|
38
|
Kanaev ZK, Bulaev AG, Kanaev AT, Kondrat’eva TF. Physiological properties of Acidithiobacillus ferrooxidans strains isolated from sulfide ore deposits in Kazakhstan. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715030091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Hamedi J, Mohammadipanah F, Panahi HKS. Biotechnological Exploitation of Actinobacterial Members. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion. AMB Express 2014; 4:84. [PMID: 26267113 PMCID: PMC4884008 DOI: 10.1186/s13568-014-0084-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/20/2014] [Indexed: 01/12/2023] Open
Abstract
Currently more than 90% of the world’s copper is obtained through sulfide mineral processing. Among the copper sulfides, chalcopyrite is the most abundant and therefore economically relevant. However, primary copper sulfide bioleaching is restricted due to high ionic strength raffinate solutions and particularly chloride coming from the dissolution of ores. In this work we describe the chalcopyrite bioleaching capacity of Sulfobacillus thermosulfidooxidans strain Cutipay (DSM 27601) previously described at the genomic level (Travisany et al. (2012) Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194:6327–6328). Bioleaching assays with the mixotrophic strain Cutipay showed a strong increase in copper recovery from chalcopyrite concentrate at 50°C in the presence of chloride ion, a relevant inhibitory element present in copper bioleaching processes. Compared to the abiotic control and a test with Sulfobacillus acidophilus DSM 10332, strain Cutipay showed an increase of 42 and 69% in copper recovery, respectively, demonstrating its high potential for chalcopyrite bioleaching. Moreover, a genomic comparison highlights the presence of the 2-Haloacid dehalogenase predicted-protein related to a potential new mechanism of chloride resistance in acidophiles. This novel and industrially applicable strain is under patent application CL 2013–03335.
Collapse
|
41
|
Biotechnological applications derived from microorganisms of the Atacama Desert. BIOMED RESEARCH INTERNATIONAL 2014; 2014:909312. [PMID: 25147824 PMCID: PMC4132489 DOI: 10.1155/2014/909312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 01/18/2023]
Abstract
The Atacama Desert in Chile is well known for being the driest and oldest desert on Earth. For these same reasons, it is also considered a good analog model of the planet Mars. Only a few decades ago, it was thought that this was a sterile place, but in the past years fascinating adaptations have been reported in the members of the three domains of life: low water availability, high UV radiation, high salinity, and other environmental stresses. However, the biotechnological applications derived from the basic understanding and characterization of these species, with the notable exception of copper bioleaching, are still in its infancy, thus offering an immense potential for future development.
Collapse
|
42
|
Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-0039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 2013; 97:7529-41. [DOI: 10.1007/s00253-013-4954-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 01/31/2023]
|
44
|
Korehi H, Blöthe M, Sitnikova MA, Dold B, Schippers A. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2189-2196. [PMID: 23373853 DOI: 10.1021/es304056n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.
Collapse
Affiliation(s)
- H Korehi
- Federal Institute for Geosciences and Natural Resources (BGR) , Stilleweg 2, 30655 Hannover, Germany
| | | | | | | | | |
Collapse
|
45
|
Feng S, Yang H, Xin Y, Gao K, Yang J, Liu T, Zhang L, Wang W. A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus. BIORESOURCE TECHNOLOGY 2013; 129:456-462. [PMID: 23266846 DOI: 10.1016/j.biortech.2012.11.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/23/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
An integrated bioleaching system (stable pH-silver ion-chloride ion) was firstly proposed to for improving the efficiency of chalcopyrite bioleaching by mixed strains of Acidithiobacillus. The individual effects of stable pH, silver ion, and chloride ion on bioleaching were respectively studied. The highest copper ion concentrations in each system were 45.8, 50.2, and 45.2 mg/l, respectively, when it was only 28.0 mg/l the blank system. Compared with the individual stable pH, silver or chloride ion systems, the relevance of biological and chemical reactions achieved a better balance in the integrated system (stable pH 1.3, 2.0 mg/l silver ion, and 2.5 g/l chloride ion). Moreover, the highest ferrous and sulfate ion concentrations implied less production of S0 membrane and jarosite precipitation. It was also demonstrated by the highest copper ion concentration 55.5 mg/l. These results all indicated that this system was a novel and believable strategy for effectively operating chalcopyrite bioleaching.
Collapse
Affiliation(s)
- Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Preston J, Watts JEM, Jones M. Novel bacterial community associated with 500-year-old unpreserved archaeological wood from King Henry VIII's Tudor Warship the Mary Rose. Appl Environ Microbiol 2012; 78:8822-8. [PMID: 23023757 PMCID: PMC3502903 DOI: 10.1128/aem.02387-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/22/2012] [Indexed: 02/01/2023] Open
Abstract
A 500-year-old unpreserved Mary Rose sample, historically containing an iron bolt, was analyzed using enrichment cultures and 16S sequencing. The novel community of bacteria present demonstrates a biological pathway of Fe and S oxidation and a range of acid-generating metabolisms, with implications for preservation and biogeochemical cycling.
Collapse
Affiliation(s)
- Joanne Preston
- University of Portsmouth, School of Biological Sciences, Portsmouth, Hants, United Kingdom.
| | | | | |
Collapse
|
47
|
Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 2012; 17:75-85. [PMID: 23143658 DOI: 10.1007/s00792-012-0495-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.
Collapse
|
48
|
Wang Y, Su L, Zhang L, Zeng W, Wu J, Wan L, Qiu G, Chen X, Zhou H. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. BIORESOURCE TECHNOLOGY 2012; 121:348-354. [PMID: 22864170 DOI: 10.1016/j.biortech.2012.06.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 06/01/2023]
Abstract
A defined mixed moderately thermophilic consortium including three terrestrial microorganisms (Leptospirillum ferriphilum, Acidithiobacillus caldus and Ferroplasma thermophilum) and a marine acidophilic halotolerant bacterium (Sulfobacillus sp. TPY) was constructed to evaluate its ability for bioleaching of chalcopyrite with the addition of sodium chloride (NaCl), and the community dynamics was monitored by real-time quantitative PCR (qPCR). It was found that Sulfobacillus sp. TPY was able to tolerate 2% (w/v) NaCl, while other three microorganisms were suppressed when the concentration of NaCl was higher than 0.35%. The results suggested that NaCl below certain concentration could improve copper extraction by using pure cultures or the consortium to bioleach chalcopyrite. Community dynamics analysis during bioleaching at 0.1% NaCl showed that Sulfobacillus sp. TPY was predominant species during the whole bioleaching process, L. ferriphilum and A. caldus were less at any time compared with Sulfobacillus sp. TPY. F. thermophilum had never been dominant species even in the final stage.
Collapse
Affiliation(s)
- Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|