1
|
Song L, Cai C, Chen Z, Lin C, Lv Y, Ye X, Liu Y, Dai X, Liu M. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies. BIORESOURCE TECHNOLOGY 2024; 414:131635. [PMID: 39401659 DOI: 10.1016/j.biortech.2024.131635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
China generates over 100 million tons of food waste annually, leading to significant environmental pollution and health risks if not managed properly. Converting FW into a high-value-added platform molecule, lactic acid (LA), through fermentation offers a promising approach for both waste treatment and resource recovery. This paper presents a comprehensive review of recent advancements in LA production from FW, focusing on pure strains fermentation and open fermentation technologies, metabolic mechanisms, and problems in fermentation. It also assesses purification methods, including molecular distillation, adsorption, membrane separation, precipitation, esterification and hydrolysis, solvent extraction, and in-situ separation, analyzing their efficiency, advantages, and disadvantages. However, current research encounters several challenges, including low LA yield, low optical purity of L-(+)-LA, and difficulties in the separation and purification of LA. The integration of in-situ separation technology coupled with multiple separation methods is highlighted as a promising direction for future advancements.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zengpeng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Zhu H, Wang H, Wang L, Zheng Z. CRISPR/Cas9-based genome engineering in the filamentous fungus Rhizopus oryzae and its application to L-lactic acid production. Biotechnol J 2024; 19:e2400309. [PMID: 39295562 DOI: 10.1002/biot.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
The filamentous fungus Rhizopus oryzae is one of the main industrial strains for the production of a series of important chemicals such as ethanol, lactic acid, and fumaric acid. However, the lack of efficient gene editing tools suitable for R. oryzae makes it difficult to apply technical methods such as metabolic engineering regulation and synthetic biology modification. A CRISPR-Cas9 system suitable for efficient genome editing in R. oryzae was developed. Firstly, four endogenous U6 promoters of R. oryzae were identified and screened with the highest transcriptional activity for application to sgRNA transcription. It was then determined that the U6 promoter mediated CRISPR/Cas9 system has the ability to efficiently edit the genome of R. oryzae through NHEJ and HDR-mediated events. Furthermore, the newly constructed CRISPR-Cas9 dual sgRNAs system can simultaneously disrupt or insert different fragments of the R. oryzae genome. Finally, this CRISPR-Cas9 system was applied to the genome editing of R. oryzae by knocking out pyruvate carboxylase gene (PYC) and pyruvate decarboxylase gene (pdcA) and knocking in phosphofructokinase (pfkB) from Escherichia coli and L-lactate dehydrogenase (L-LDH) from Heyndrickxia coagulans, which resulted in a substantial increase in L-LA production. In summary, this study showed that the CRISPR/Cas9-based genome editing tool is efficient for manipulating genes in R. oryzae.
Collapse
Affiliation(s)
- Haodong Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
3
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
4
|
Ding Q, Ye C. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact 2023; 22:20. [PMID: 36717860 PMCID: PMC9885587 DOI: 10.1186/s12934-023-02025-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Advanced DNA synthesis, biosensor assembly, and genetic circuit development in synthetic biology and metabolic engineering have reinforced the application of filamentous bacteria, yeasts, and fungi as promising chassis cells for chemical production, but their industrial application remains a major challenge that needs to be solved. RESULTS As important chassis strains, filamentous microorganisms can synthesize important enzymes, chemicals, and niche pharmaceutical products through microbial fermentation. With the aid of metabolic engineering and synthetic biology, filamentous bacteria, yeasts, and fungi can be developed into efficient microbial cell factories through genome engineering, pathway engineering, tolerance engineering, and microbial engineering. Mutant screening and metabolic engineering can be used in filamentous bacteria, filamentous yeasts (Candida glabrata, Candida utilis), and filamentous fungi (Aspergillus sp., Rhizopus sp.) to greatly increase their capacity for chemical production. This review highlights the potential of using biotechnology to further develop filamentous bacteria, yeasts, and fungi as alternative chassis strains. CONCLUSIONS In this review, we recapitulate the recent progress in the application of filamentous bacteria, yeasts, and fungi as microbial cell factories. Furthermore, emphasis on metabolic engineering strategies involved in cellular tolerance, metabolic engineering, and screening are discussed. Finally, we offer an outlook on advanced techniques for the engineering of filamentous bacteria, yeasts, and fungi.
Collapse
Affiliation(s)
- Qiang Ding
- grid.252245.60000 0001 0085 4987School of Life Sciences, Anhui University, Hefei, 230601 China ,grid.252245.60000 0001 0085 4987Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601 Anhui China ,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 Anhui China
| | - Chao Ye
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
5
|
Rodríguez-Torres M, Romo-Buchelly J, Orozco-Sánchez F. Effects of oxygen transfer rate on the L(+) lactic acid production by Rhizopus oryzae NRRL 395 in stirred tank bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Attia MS, El-Wakil DA, Hashem AH, Abdelaziz AM. Antagonistic Effect of Plant Growth-Promoting Fungi Against Fusarium Wilt Disease in Tomato: In vitro and In vivo Study. Appl Biochem Biotechnol 2022. [PMID: 35689755 DOI: 10.1007/s12010-022-03975-9.pdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fusarium wilt is considered one of the most destructive diseases for tomato plants. The novelty of this work was to investigate the antifungal and plant growth-promoting capabilities of some plant growth-promoting fungi (PGPF). Plant growth-promoting fungi (PGPF) improved the plant health and control plant infections. In this study, two fungal strains as PGPF were isolated and identified as Aspergillus fumigatus and Rhizopus oryzae using molecular method. The extracts of A. fumigatus and R. oryzae exhibited promising antifungal activity against F. oxysporum in vitro. Moreover, antagonistic effect of A. fumigatus and R. oryzae against F. oxysporum causing tomato wilt disease was evaluated in vivo. Disease severity and growth markers were recorded and in vitro antagonistic activity assay of the isolated A. fumigatus and R. oryzae against Fusarium oxysporum was measured. Physiological markers of defense in plant as response to stimulate systemic resistance (SR) were recorded. Our results indicated that A. fumigatus and R. oryzae decreased the percentage of disease severity by 12.5 and 37.5%, respectively. In addition, they exhibited relatively high protection percentage of 86.35 and 59.06% respectively. Fusarium wilt was declined the growth parameters, photosynthetic pigments, total soluble carbohydrate, and total soluble protein, whereas content of free proline, total phenols, and the activity of antioxidant enzymes activity increased under infection. Moreover, application of A. fumigatus and R. oryzae on infected plants successfully recovered the loss of morphological traits, photosynthetic pigment total carbohydrates, and total soluble proteins in comparison to infected control plants. PGPF strains in both non-infected and infected plants showed several responses in number and density of peroxidase (POD) and polyphenol oxidase (PPO) isozymes.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt
| | - Deiaa A El-Wakil
- Department of Biology, Faculty of Science, Jazan University, Jazan, 82817, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt.
| |
Collapse
|
7
|
Zaveri A, Edwards J, Rochfort S. Production of Primary Metabolites by Rhizopus stolonifer, Causal Agent of Almond Hull Rot Disease. Molecules 2022; 27:7199. [PMID: 36364023 PMCID: PMC9657676 DOI: 10.3390/molecules27217199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2023] Open
Abstract
Species in the fungal genus Rhizopus are able to convert simple sugars into primary metabolites such as fumaric acid, lactic acid, citric acid, and, to a lesser extent, malic acid in the presence of specific carbon and nitrogen sources. This ability has been linked to plant pathogenicity. Rhizopus stolonifer causes hull rot disease in almonds, symptoms of which have been previously associated with the fungus's production of fumaric acid. Six isolates of R. stolonifer taken from infected almond hulls were grown in artificial media amended with one of four carbon sources (glucose, fructose, sucrose, and xylose) and two nitrogen sources (asparagine and ammonium sulphate) chosen based on almond hull composition and used in industry. Proton nuclear magnetic resonance (1H NMR)-based metabolomics identified that R. stolonifer could metabolise glucose, fructose, sucrose, and to a lesser extent xylose, and both nitrogen sources, to produce three metabolites, i.e., fumaric acid, lactic acid, and ethanol, under in vitro conditions. Sugar metabolisation and acid production were significantly influenced by sugar source and isolates, with five isolates depleting glucose most rapidly, followed by fructose, sucrose, and then xylose. The maximum amounts of metabolites were produced when glucose was the carbon source, with fumaric acid produced in higher amounts than lactic acid. Isolate 19A-0069, however, preferred sucrose as the carbon source, and Isolate 19A-0030 produced higher amounts of lactic acid than fumaric acid. This is the first report, to our knowledge, of R. stolonifer producing lactic acid in preference to fumaric acid. Additionally, R. stolonifer isolate 19-0030 was inoculated into Nonpareil almond fruit on trees grown under high- and low-nitrogen and water treatments, and hull compositions of infected and uninfected fruit were analysed using 1H NMR-based metabolomics. Glucose and asparagine content of uninfected hulls was influenced by the nitrogen and water treatments provided to the trees, being higher in the high-nitrogen and water treatments. In infected hulls, glucose and fructose were significantly reduced but not sucrose or xylose. Large amounts of both fumaric and lactic acid were produced, particularly under high-nitrogen treatments. Moreover, almond shoots placed in dilute solutions of fumaric acid or lactic acid developed leaf symptoms very similar to the 'strike' symptoms seen in hull rot disease in the field, suggesting both acids are involved in causing disease.
Collapse
Affiliation(s)
- Anjali Zaveri
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Agriculture Victoria Research, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Simone Rochfort
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Agriculture Victoria Research, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
8
|
Vasiliauskienė D, Boris R, Balčiūnas G, Kairytė A, Urbonavičius J. Impact of Cellulolytic Fungi on Biodegradation of Hemp Shives and Corn Starch-Based Composites with Different Flame-Retardants. Microorganisms 2022; 10:microorganisms10091830. [PMID: 36144432 PMCID: PMC9503418 DOI: 10.3390/microorganisms10091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Biocomposite boards (BcBs) composed of hemp shives and corn starch are known as thermal insulating or structural building materials. Therefore, they must be stable during exploitation. However, BcBs are exposed to microorganisms present in the environment, and it is of great interest to investigate the biodegradation behaviour of these materials. This work identified microorganisms growing on BcBs that contain either Flovan CGN or expandable graphite as flame retardants and selected fungi such as Rhizopus oryzae and Aspergillus fumigatus to test the way they affect the materials of interest. For this purpose, the enzymatic activity of cellulases and amylases produced by these organisms were determined. In addition, the apparent density as well as compressive strength of the affected boards were evaluated. The results showed that apparent density and compressive strength deteriorated in BcB composition with the Flovan CGN flame retardant. At the same time, the level of deterioration was lower when the expandable graphite was used, suggesting that it also acts as an antimicrobial agent. A scanning electronic microscopy analysis was employed to monitor the growth of microorganisms in the BcBs. Such analysis demonstrated that, regardless of BcB composition, fungi easily penetrate into the middle layers of the material.
Collapse
Affiliation(s)
- Dovilė Vasiliauskienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Renata Boris
- Laboratory of Composite Materials, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Giedrius Balčiūnas
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5274-4840
| |
Collapse
|
9
|
Cloning and screening of the putative hexokinase genes from Rhizopus oryzae and their heterologous expression in Saccharomyces cerevisiae. Mol Biol Rep 2022; 49:8607-8615. [PMID: 35767109 DOI: 10.1007/s11033-022-07696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND A filamentous fungus, Rhizopus oryzae (R. oryzae) is one of the ideal candidates for ethanol and lactic acid production due to its ability to grow on renewable carbon sources. METHODS AND RESULTS In this study, the nucleotide sequence of hexokinases and glucokinase from S. cerevisiae was found on the NCBI site ( http://www.ncbi.nlm.nih.gov/blast/Blast.cgi ) were used. With these nucleotide sequences, a blast search was done on the R. oryzae genome database ( http://www.broad.mit.edu/annotation/genome/rhizopus_oryzae/Home.html ) and ten probable genes were obtained. cDNA was synthesized from the total RNA and PCR products of the seven of these putative genes were determined using the primers designed for them. CONCLUSION The results of the sequences and the complementation studies revealed that three of these seven putative genes were expressed in R. oryzae and the growth was observed on selective media.
Collapse
|
10
|
Rhizopus oryzae for Fumaric Acid Production: Optimising the Use of a Synthetic Lignocellulosic Hydrolysate. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hydrolysis of lignocellulosic biomass opens an array of bioconversion possibilities for producing fuels and chemicals. Microbial fermentation is particularly suited to the conversion of sugar-rich hydrolysates into biochemicals. Rhizopus oryzae ATCC 20344 was employed to produce fumaric acid from glucose, xylose, and a synthetic lignocellulosic hydrolysate (glucose–xylose mixture) in batch and continuous fermentations. A novel immobilised biomass reactor was used to investigate the co-fermentation of xylose and glucose. Ideal medium conditions and a substrate feed strategy were then employed to optimise the production of fumaric acid. The batch fermentation of the synthetic hydrolysate at optimal conditions (urea feed rate 0.625mgL−1h−1 and pH 4) produced a fumaric acid yield of 0.439gg−1. A specific substrate feed rate (0.164gL−1h−1) that negated ethanol production and selected for fumaric acid was determined. Using this feed rate in a continuous fermentation, a fumaric acid yield of 0.735gg−1 was achieved; this was a 67.4% improvement. A metabolic analysis helped to determine a continuous synthetic lignocellulosic hydrolysate feed rate that selected for fumaric acid production while achieving the co-fermentation of glucose and xylose, thus avoiding the undesirable carbon catabolite repression. This work demonstrates the viability of fumaric acid production from lignocellulosic hydrolysate; the process developments discovered will pave the way for an industrially viable process.
Collapse
|
11
|
Attia MS, El-Wakil DA, Hashem AH, Abdelaziz AM. Antagonistic Effect of Plant Growth-Promoting Fungi Against Fusarium Wilt Disease in Tomato: In vitro and In vivo Study. Appl Biochem Biotechnol 2022; 194:5100-5118. [PMID: 35689755 PMCID: PMC9587074 DOI: 10.1007/s12010-022-03975-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Fusarium wilt is considered one of the most destructive diseases for tomato plants. The novelty of this work was to investigate the antifungal and plant growth-promoting capabilities of some plant growth-promoting fungi (PGPF). Plant growth-promoting fungi (PGPF) improved the plant health and control plant infections. In this study, two fungal strains as PGPF were isolated and identified as Aspergillus fumigatus and Rhizopus oryzae using molecular method. The extracts of A. fumigatus and R. oryzae exhibited promising antifungal activity against F. oxysporum in vitro. Moreover, antagonistic effect of A. fumigatus and R. oryzae against F. oxysporum causing tomato wilt disease was evaluated in vivo. Disease severity and growth markers were recorded and in vitro antagonistic activity assay of the isolated A. fumigatus and R. oryzae against Fusarium oxysporum was measured. Physiological markers of defense in plant as response to stimulate systemic resistance (SR) were recorded. Our results indicated that A. fumigatus and R. oryzae decreased the percentage of disease severity by 12.5 and 37.5%, respectively. In addition, they exhibited relatively high protection percentage of 86.35 and 59.06% respectively. Fusarium wilt was declined the growth parameters, photosynthetic pigments, total soluble carbohydrate, and total soluble protein, whereas content of free proline, total phenols, and the activity of antioxidant enzymes activity increased under infection. Moreover, application of A. fumigatus and R. oryzae on infected plants successfully recovered the loss of morphological traits, photosynthetic pigment total carbohydrates, and total soluble proteins in comparison to infected control plants. PGPF strains in both non-infected and infected plants showed several responses in number and density of peroxidase (POD) and polyphenol oxidase (PPO) isozymes.
Collapse
Affiliation(s)
- Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt
| | - Deiaa A El-Wakil
- Department of Biology, Faculty of Science, Jazan University, Jazan, 82817, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt.
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo-11884, Egypt.
| |
Collapse
|
12
|
Lax C, Navarro-Mendoza MI, Pérez-Arques C, Navarro E, Nicolás FE, Garre V. Transformation and CRISPR-Cas9-mediated homologous recombination in the fungus Rhizopus microsporus. STAR Protoc 2022; 3:101237. [PMID: 35308131 PMCID: PMC8927829 DOI: 10.1016/j.xpro.2022.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we describe a reliable approach for targeted DNA integrations in the genome of R. microsporus, one of the main causal agents of mucormycosis. We provide a strategy for stable, targeted integration of DNA templates by homologous recombination (HR) based on the CRISPR-Cas9 technology. This strategy opens a wide range of possibilities for the genetic modification of R. microsporus and will be useful for the study of mucormycosis. For complete details on the use and execution of this protocol, please refer to Lax et al. (2021).
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | | | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
13
|
The Effect of pH, Metal Ions, and Insoluble Solids on the Production of Fumarate and Malate by Rhizopus delemar in the Presence of CaCO3. Catalysts 2022. [DOI: 10.3390/catal12030263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Calcium carbonate has been extensively used as a neutralising agent in acid-forming microbial processes. The effect of increasing calcium carbonate concentrations on Rhizopus delemar has not been previously investigated. In this study, an evaluation of fumaric acid (FA) and malic acid (MA) production was conducted at three CaCO3 concentrations in shake flask cultivations. Increased CaCO3 concentrations resulted in the co-production of FA and MA in the first 55 h of the fermentation (regime 1), and the subsequent depletion of FA thereafter (regime 2). Three factors were highlighted as likely causes of this response: insoluble solids, metal ion concentrations, and pH. Further shake flask cultivations as well as a continuous fermentation with immobilised R. delemar were used to explore the effect of the three factors on regime 1 and 2. Insoluble solids were found to have no effect on the response in either regime 1 or 2. Increasing the aqueous calcium ion concentrations to 10g/L resulted in a three-fold increase in MA titres (regime 1). Moreover, an increase in pH above 7 was associated with a drop in FA concentrations in regime 2. Further tests established that this was due to the hydration of FA to MA, influenced by high pH conditions ( 7 or higher), nitrogen starvation, and glucose depletion. Anaerobic conditions were also found to significantly improve the hydration process. This study presents the first investigation in which the production of FA followed by in situ hydration of FA to MA with R. delemar has been achieved.
Collapse
|
14
|
Groff MC, Scaglia G, Gaido M, Kassuha D, Ortiz OA, Noriega SE. Kinetic modeling of fungal biomass growth and lactic acid production in Rhizopus oryzae fermentation by using grape stalk as a solid substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Recent Molecular Tools for the Genetic Manipulation of Highly Industrially Important Mucoromycota Fungi. J Fungi (Basel) 2021; 7:jof7121061. [PMID: 34947043 PMCID: PMC8705501 DOI: 10.3390/jof7121061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Mucorales is the largest and most well-studied order of the phylum Mucormycota and is known for its rapid growth rate and various industrial applications. The Mucorales fungi are a fascinating group of filamentous organisms with many uses in research and the industrial and medical fields. They are widely used biotechnological producers of various secondary metabolites and other value-added products. Certain members of Mucorales are extensively used as model organisms for genetic and molecular investigation and have extended our understanding of the metabolisms of other members of this order as well. Compared with other fungal species, our understanding of Mucoralean fungi is still in its infancy, which could be linked to their lack of effective genetic tools. However, recent advancements in molecular tools and approaches, such as the construction of recyclable markers, silencing vectors, and the CRISPR-Cas9-based gene-editing system, have helped us to modify the genomes of these model organisms. Multiple genetic modifications have been shown to generate valuable products on a large scale and helped us to understand the morphogenesis, basic biology, pathogenesis, and host–pathogen interactions of Mucoralean fungi. In this review, we discuss various conventional and modern genetic tools and approaches used for efficient gene modification in industrially important members of Mucorales.
Collapse
|
16
|
Restricted Nitrogen and Water Applications in the Orchard Modify the Carbohydrate and Amino Acid Composition of Nonpareil and Carmel Almond Hulls. Metabolites 2021; 11:metabo11100674. [PMID: 34677389 PMCID: PMC8538458 DOI: 10.3390/metabo11100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Hull rot disease of almond (Prunus dulcis), caused by the fungus Rhizopus stolonifer, is prevalent in well maintained orchards where trees are provided plenty of water and nitrogen to increase the growth and yield. The predominantly grown variety Nonpareil is considered very susceptible to hull rot, while the pollinator variety Carmel is more resistant. Reduced nitrogen rates and restricted irrigation scheduling decreased the incidence and severity of hull rot in Californian orchards. As a part of our research, the hull composition of Australian almond fruits of Nonpareil and Carmel varieties, grown under two levels of irrigation (high and low) and two levels of nitrogen (high and low), were analysed using 1H NMR-based metabolomics. Both Nonpareil and Carmel hulls contained sugars such as glucose, sucrose, fructose and xylose, and amino acids, particularly asparagine. Variety was the major factor with Nonpareil hulls significantly higher in sugars and asparagine than Carmel. Within varieties, nitrogen influenced the relative concentrations of glucose, sucrose and asparagine. In Nonpareil, high nitrogen high water (the control) had relatively high glucose and asparagine content. High nitrogen low water increased the sucrose component, low nitrogen high water increased the glucose component and low nitrogen low water increased the sucrose and asparagine components. In Carmel, however, high nitrogen low water and low nitrogen high water increased sucrose and asparagine, and low nitrogen low water increased sucrose and glucose. Hull rot symptoms are caused by fumaric acid production by R. stolonifer growing within the hull. These changes in the hull composition under different nitrogen and water scenarios have the potential to affect the growth of R. stolonifer and its metabolite production in hull rot disease.
Collapse
|
17
|
Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 2021; 37:117. [PMID: 34128152 DOI: 10.1007/s11274-021-03091-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.
Collapse
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. However, it remains unclear how both features act cooperatively to determine cell shape. Here, we investigated this relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, any hypha growing through the channel must adapt its morphology. Live-cell imaging analyses revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels, or had lost apical polarity after emerging from the other end of the channel. Fluorescence live-cell imaging analyses of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at the hyphal tip, in Neurospora crassa indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, including phytopathogenic fungi. This comparative approach revealed that the growth defects induced by the channels were not correlated with their taxonomic classification or with the width of hyphae, but, rather, correlated with the hyphal elongation rate. This report indicates a trade-off between morphological plasticity and velocity in mycelial growth and serves to help understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology, and pathogenicity.
Collapse
|
19
|
Suzuki T, Kato Y, Kobayashi A, Suzuki K. Protective effects of aqueous extracts of Rhizopus oryzae on atopic dermatitis in NC/Nga mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Yukiko Kato
- School of Veterinary Medicine, Azabu University
| | | | | |
Collapse
|
20
|
Yin L, Luo X, Zhang Y, Zheng W, Yin F, Fu Y. Comparative proteomic analysis of Rhizopus oryzae hyphae displaying filamentous and pellet morphology. 3 Biotech 2020; 10:469. [PMID: 33088665 DOI: 10.1007/s13205-020-02458-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
Industrial strains of Rhizopus oryzae is known for its strong ability to produce L-( +)-lactic acid, ethanol, and fumaric acid at high yields. To better understand the underlying mechanism behind the physiology of R. oryzae, we conducted the proteome changes between two different morphologies using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. R. oryzae exhibited pellet morphology and filamentous morphology when the initial pH of the culture medium was 3.0 and 5.0, respectively. The concentration of lactic acid reached 63.5 g L-1 in the samples containing the pellet morphology, compared to 41.5 g L-1 produced by filamentous R. oryzae. Proteomic analysis indicated that expression levels of 128 proteins changed significantly. Of these, 17 protein spots were successfully identified by mass spectrometry and were deemed to be mainly involved in carbohydrate metabolism, genetic information processing, chitin metabolism, protein catabolism, protein folding, and antioxidative pathway. L-lactate dehydrogenase (RO3G_06188), enolase (RO3G_05466) and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase (RO3G_02462) were found to be upregulated, while isocitrate dehydrogenase (RO3G_13820) was downregulated in the samples with pellet morphology compared to the filamentous hyphae. These results suggested that more carbon flow was directed towards lactic acid biosynthesis in R. oryzae hyphae with pellet morphology.
Collapse
Affiliation(s)
- Longfei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Yingying Zhang
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Fengwei Yin
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou, 318000 China
| |
Collapse
|
21
|
Xu J, Zhang R, Han Z, Wang Z, Wang F, Deng L, Nie K. The highly-stable immobilization of enzymes on a waste mycelium carrier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111032. [PMID: 32778312 DOI: 10.1016/j.jenvman.2020.111032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Mycelium is an abundant waste from the fermentation industry, and the environmental problems associated with its required disposal seriously limited the development of fermentation industry. In China, millions of tons of various kinds of mycelium residues were produced each year. Research into providing added-value to mycelium, while avoiding its disposal, is hence of paramount importance. Mycelium can be used as carrier for enzymes, while the enzyme immobilization moreover improves their stability and lifetime performance. Carrier recycling, the natural degradation and disposal of artificial polymer carriers are critical issues in immobilization. This research investigated its use to manufacture a highly-stable immobilized enzyme. An acid pretreatment was employed to enhance the adsorption ability of mycelium, and its adsorption ability was compared with other carriers. Under the optimal conditions, a core-shell immobilized enzyme with porous structure was obtained. The stability and the recycle results of the evaluation indicated the excellent performance of the immobilized enzyme. The mycelium recycling was also investigated to verify the practicability. All the results indicated that the use of a mycelium-based carrier was a promising strategy for the reutilization of the fermentation waste, and this technique provides an alternative way to reduce the total amount of the waste mycelium. Meanwhile, the stability and reusability performance of the mycelium-based immobilization could also decrease the influence of the disposal of the solid waste from denatured enzymes to the environment.
Collapse
Affiliation(s)
- Juntao Xu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Renwei Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zehui Han
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zheng Wang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Fang Wang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Li Deng
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Kaili Nie
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
22
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
23
|
Zhao P, Ren M, Ge X, Tian P, Tan T. Development of orthogonal T7 expression system in
Klebsiella pneumoniae. Biotechnol Bioeng 2020; 117:2446-2459. [DOI: 10.1002/bit.27434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Minrui Ren
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Xizhen Ge
- College of Biochemical EngineeringBeijing Union University Beijing China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing China
| |
Collapse
|
24
|
Sharma A, Sharma P, Singh J, Singh S, Nain L. Prospecting the Potential of Agroresidues as Substrate for Microbial Flavor Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
25
|
Mazzoli R. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass. Biotechnol Appl Biochem 2020; 67:61-72. [DOI: 10.1002/bab.1869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional BiochemistryLaboratory of Proteomics and Metabolic Engineering of ProkaryotesDepartment of Life Sciences and Systems BiologyUniversity of Torino Torino Italy
| |
Collapse
|
26
|
Abstract
Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.
Collapse
Affiliation(s)
- Florent Morio
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 –IICiMed, Nantes, France
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
27
|
Shahri SZ, Vahabzadeh F, Mogharei A. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate. Bioprocess Biosyst Eng 2019; 43:333-345. [DOI: 10.1007/s00449-019-02231-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/10/2019] [Indexed: 11/28/2022]
|
28
|
Xie M, An F, Wu J, Liu Y, Shi H, Wu R. Meta-omics reveal microbial assortments and key enzymes in bean sauce mash, a traditional fermented soybean product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6522-6534. [PMID: 31321764 DOI: 10.1002/jsfa.9932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dajiang is fermented based on the metabolism of microbial communities in bean sauce mash, a traditional fermented soybean product in China. The current study first investigated the metaproteome of bean sauce mash. This was followed by an analysis of its biological functions and its microbial community to reveal information about strains and about the expressed proteins to better understand the roles of the microbiota in bean sauce mash. RESULTS The metaproteomic results demonstrated that a total of 1415 microbial protein clusters were expressed mainly by members of the Penicillium and Rhizopus genera and were classified into 100 cellular components, 238 biological processes, and 220 molecular function categories by gene ontology (GO) annotation. Enzymes associated with glycolysis metabolic pathways were also identified. These can provide the energy required for microbial fermentation. Illumina MiSeq sequencing technology results showed that the microorganism communities of bean sauce mash exhibited a high level of diversity. Microbiological analysis demonstrated that the Penicillium, Mucor, Fusarium, Aspergillus, and Rhizopus fungi, and Lactobacillus, Enterococcus, Fructobacillus, Staphylococcus, Carnobacterium genera were predominant 22 samples. CONCLUSION The profiles and insights in the current study are important for research on bean sauce mash and related products in terms of their food microbial ecology. The information obtained from this study will help the development of stable sufu starter cultures with unique sensory qualities. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengxi Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yiming Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Haishu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
29
|
Dhandapani B, Vishnu D, Murshid S, A RP, R M, D P, Sekar S, K S. Production of lactic acid from industrial waste paper sludge using Rhizopus oryzae MTCC5384 by simultaneous saccharification and fermentation. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1657422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Balaji Dhandapani
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Dhanya Vishnu
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Shabnam Murshid
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Ram Prasath A
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Muruganandh R
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Prasanth D
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India
| | - Sudharshan Sekar
- Center for Ecological Genomics & Wild Life conservation, University of Johannesburg, Auckland Park, South Africa
| | - Senthilkumar K
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, India
| |
Collapse
|
30
|
Sebastian J, Hegde K, Kumar P, Rouissi T, Brar SK. Bioproduction of fumaric acid: an insight into microbial strain improvement strategies. Crit Rev Biotechnol 2019; 39:817-834. [DOI: 10.1080/07388551.2019.1620677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, Québec, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Sebastian J, Rouissi T, Brar SK, Hegde K, Verma M. Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydr Polym 2019; 219:431-440. [PMID: 31151544 DOI: 10.1016/j.carbpol.2019.05.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022]
Abstract
Microwave-assisted extraction (MAE) of chitosan from dried fungal biomass of Rhizopus oryzae NRRL1526, obtained by culturing on potato dextrose broth (PDB), was performed and the optimal conditions required were identified using statistical analysis for the first time in this study. This microwave-assisted extraction (MAE) was compared against the conventional autoclave assisted method of chitosan extraction. The full factorial experimental design was used to investigate the impact of operating parameters of MAE, microwave power (100 W-500 W), and duration (10 min-30 min), on alkaline insoluble material (AIM) yield, chitosan yield, and degree of deacetylation (DDA). The effect of operating conditions was then evaluated using full factorial data analysis and optimum condition for MAE of chitosan was identified using response surface methodology to be 300 W and 22 min. This optimum condition identified was then further evaluated and the chitosan obtained characterized. Higher chitosan yield of 13.43 ± 0.3% (w/w) of fungal biomass was obtained when compared to that obtained, 6.67% ± 0.3% (w/w) of dry biomass, for the conventional extraction process. MAE yielded chitosan of higher degree of deacetylation, 94.6 ± 0.9% against 90.6 ± 0.5% (conventional heating), but the molecular weight was observed to be similar to that obtained by using conventional autoclave heating. MAE of chitosan was observed to yield a higher quantity of chitosan when compared to conventional extraction process and obtained chitosan exhibited a higher degree of deacetylation as well as molecular weight. The lower energy consumption of 0.11 kW h for MAE (5 kW h for conventional process) and the concomitant reduction in the energy bill to 1.1 cents from 50 cents, in addition to the above results, show that microwave irradiation is a more efficient and environment-friendly means to obtain chitosan from fungal biomass.
Collapse
Affiliation(s)
- Joseph Sebastian
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Krishnamoorthy Hegde
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Mausam Verma
- Institut de recherche et de développement en agroenvironnement (IRDA), 2700 Rue Einstein, Québec, QC G1P 3W8, Canada
| |
Collapse
|
32
|
Ibarruri J, Hernández I. Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess Biosyst Eng 2019; 42:1285-1300. [DOI: 10.1007/s00449-019-02127-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/05/2019] [Indexed: 02/07/2023]
|
33
|
Papadaki A, Papapostolou H, Alexandri M, Kopsahelis N, Papanikolaou S, de Castro AM, Freire DMG, Koutinas AA. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35960-35970. [PMID: 29654455 DOI: 10.1007/s11356-018-1791-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Maria Alexandri
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Nikolaos Kopsahelis
- Department of Food Technology, Technological Educational Institute (TEI) of Ionian Islands, Argostoli, 28100, Kefalonia, Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | | | - Denise M G Freire
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab, Rio de Janeiro, RJ, 549, Brazil
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
34
|
Naude A, Nicol W. Improved continuous fumaric acid production with immobilised Rhizopus oryzae by implementation of a revised nitrogen control strategy. N Biotechnol 2018; 44:13-22. [DOI: 10.1016/j.nbt.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 11/29/2022]
|
35
|
Dearth SP, Castro HF, Venice F, Tague ED, Novero M, Bonfante P, Campagna SR. Metabolome changes are induced in the arbuscular mycorrhizal fungus Gigaspora margarita by germination and by its bacterial endosymbiont. MYCORRHIZA 2018; 28:421-433. [PMID: 29860608 DOI: 10.1007/s00572-018-0838-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Metabolomic profiling is becoming an increasingly important technique in the larger field of systems biology by allowing the simultaneous measurement of thousands of small molecules participating in and resulting from cellular reactions. In this way, metabolomics presents an opportunity to observe the physiological state of a system, which may provide the ability to monitor the whole of cellular metabolism as the technology progresses. The arbuscular mycorrhizal fungus Gigaspora margarita has not previously been explored with regard to metabolite composition. To develop a better understanding of G. margarita and the influences of its endosymbiont Candidatus Glomeribacter gigasporarum, a metabolomic analysis was applied to quiescent and germinated spores with and without endobacteria. Over 100 metabolites were identified and greater than 2600 unique unidentified spectral features were observed. Multivariate analysis of the metabolomes was performed, and a differentiation between all metabolic states of spores and spores hosting the endobacteria was observed. The known metabolites were recruited to many biochemical pathways, with many being involved in maintenance of the antioxidant potential, tyrosine metabolism, and melanin production. Each of the pathways had higher metabolite abundances in the presence of the endosymbiont. These metabolomics data also agree with previously reported transcriptomics results demonstrating the capability of this technique to confirm hypotheses and showing the feasibility of multi-omic approaches for the study of arbuscular mycorrhizal fungi and their endobacterial communities. Challenges still exist in metabolomic analysis, e.g., the identification of compounds is demanding due to incomplete libraries. A metabolomics technique to probe the effects of bacterial endosymbionts on fungal physiology is presented herein, and this method is useful for hypothesis generation as well as testing as noted above.
Collapse
Affiliation(s)
- Stephen P Dearth
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Hector F Castro
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Francesco Venice
- Department of Life Sciences and Systems Biology, University of Torino, viale Mattioli 25, 10125, Turin, Italy
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, viale Mattioli 25, 10125, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, viale Mattioli 25, 10125, Turin, Italy.
| | - Shawn Robert Campagna
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
36
|
Biosynthesis of d-lactic acid from lignocellulosic biomass. Biotechnol Lett 2018; 40:1167-1179. [DOI: 10.1007/s10529-018-2588-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022]
|
37
|
Economical Lactic Acid Production and Optimization Strategies. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Satari B, Karimi K. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules. Appl Microbiol Biotechnol 2017; 102:1097-1117. [DOI: 10.1007/s00253-017-8691-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
|
39
|
Nagy G, Szebenyi C, Csernetics Á, Vaz AG, Tóth EJ, Vágvölgyi C, Papp T. Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides. Sci Rep 2017; 7:16800. [PMID: 29196656 PMCID: PMC5711797 DOI: 10.1038/s41598-017-17118-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
Mucor circinelloides and other members of Mucorales are filamentous fungi, widely used as model organisms in basic and applied studies. Although genetic manipulation methods have been described for some Mucoral fungi, construction of stable integrative transformants by homologous recombination has remained a great challenge in these organisms. In the present study, a plasmid free CRISPR-Cas9 system was firstly developed for the genetic modification of a Mucoral fungus. The described method offers a rapid but robust tool to obtain mitotically stable mutants of M. circinelloides via targeted integration of the desired DNA. It does not require plasmid construction and its expression in the recipient organism. Instead, it involves the direct introduction of the guide RNA and the Cas9 enzyme and, in case of homology directed repair (HDR), the template DNA into the recipient strain. Efficiency of the method for non-homologous end joining (NHEJ) and HDR was tested by disrupting two different genes, i.e. carB encoding phytoene dehydrogenase and hmgR2 encoding 3-hydroxy-3-methylglutaryl-CoA reductase, of M. circinelloides. Both NHEJ and HDR resulted in stable gene disruption mutants. While NHEJ caused extensive deletions upstream from the protospacer adjacent motif, HDR assured the integration of the deletion cassette at the targeted site.
Collapse
Affiliation(s)
- Gábor Nagy
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Csilla Szebenyi
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Árpád Csernetics
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Amanda Grace Vaz
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Eszter Judit Tóth
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
40
|
Wu X, Liu Q, Deng Y, Chen X, Zheng Z, Jiang S, Li X. Production of Fumaric Acid by Bioconversion of Corncob Hydrolytes Using an Improved Rhizopus oryzae Strain. Appl Biochem Biotechnol 2017; 184:553-569. [DOI: 10.1007/s12010-017-2554-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
|
41
|
Londoño-Hernández L, Ramírez-Toro C, Ruiz HA, Ascacio-Valdés JA, Aguilar-Gonzalez MA, Rodríguez-Herrera R, Aguilar CN. Rhizopus oryzae - Ancient microbial resource with importance in modern food industry. Int J Food Microbiol 2017. [PMID: 28651077 DOI: 10.1016/j.ijfoodmicro.2017.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filamentous fungi are microorganisms widely known for their diverse biochemical features. Fungi can efficiently invade a wide variety of substrates under operational conditions producing numerous bioproducts of interest, such as enzymes, organic acids, aromatic compounds and colorants. An additional interesting characteristic of some fungi is their safety classification for different uses, which guarantees that the bioproducts obtained from them do not contain any toxic component deleterious to humans. Rhizopus oryzae is among this group of fungi and is classified as a GRAS filamentous fungus, commonly used for production of some oriental traditional foods. It is mainly recognized as a good producer of lactic acid; however, its potential for other biotechnological processes is under study. This review analyzes and discusses the current scientific and technical contributions which may maximize the potential of R. oryzae as a producer of different compounds of industrial interest.
Collapse
Affiliation(s)
- Liliana Londoño-Hernández
- Food Research Dept. School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Cristina Ramírez-Toro
- Faculty of Engineering, School of Food Engineering, Universidad del Valle, Cali, Colombia
| | - Héctor A Ruiz
- Food Research Dept. School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Juan A Ascacio-Valdés
- Food Research Dept. School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Miguel A Aguilar-Gonzalez
- Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Unidad Saltillo, Ramos Arizpe, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Food Research Dept. School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Cristóbal N Aguilar
- Food Research Dept. School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico.
| |
Collapse
|
42
|
Odoni DI, Tamayo-Ramos JA, Sloothaak J, van Heck RGA, Martins Dos Santos VAP, de Graaff LH, Suarez-Diez M, Schaap PJ. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ 2017; 5:e3133. [PMID: 28382234 PMCID: PMC5376114 DOI: 10.7717/peerj.3133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Juan A Tamayo-Ramos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jasper Sloothaak
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmBH, Berlin, Germany
| | - Leo H de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
43
|
Pimtong V, Ounaeb S, Thitiprasert S, Tolieng V, Sooksai S, Boonsombat R, Tanasupawat S, Assabumrungrat S, Thongchul N. Enhanced effectiveness of Rhizopus oryzae by immobilization in a static bed fermentor for l -lactic acid production. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Hasunuma T, Kondo A. Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Tomohisa Hasunuma
- Kobe University; Graduate School of Science, Technology and Innovation; 1-1 Rokkodai Nada Kobe 657-8501 Japan
| | - Akihiko Kondo
- RIKEN; Biomass Engineering Program; 1-7-22 Suehiro-cho, Tsurumi Yokohama 230-0045 Japan
| |
Collapse
|
45
|
Him NRN, Apau C, Azmi NS. Effect of Temperature and pH on Deinking of Laser-Jet Waste Paper Using Commercial Lipase and Esterase. ACTA ACUST UNITED AC 2016. [DOI: 10.18178/jolst.4.2.79-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Papp T, Nyilasi I, Csernetics Á, Nagy G, Takó M, Vágvölgyi C. Improvement of Industrially Relevant Biological Activities in Mucoromycotina Fungi. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| |
Collapse
|
48
|
Wei L, Liu J, Qi H, Wen J. Engineering Scheffersomyces stipitis for fumaric acid production from xylose. BIORESOURCE TECHNOLOGY 2015; 187:246-254. [PMID: 25863201 DOI: 10.1016/j.biortech.2015.03.122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 05/28/2023]
Abstract
In this work, Scheffersomyces stipitis, the yeast with excellent xylose-utilizing ability, was firstly engineered for fumaric acid production from xylose with the heterologous reductive pathway from Rhizopus oryzae FM19, and 1.86g/L fumaric acid was produced by the initial strain PSRPMF under the oxygen-limited condition. Furthermore, three strategies were performed to improve the fumaric acid production, including increasing the reductive pathway activity by codon optimization, blocking the fumaric acid conversion in tricarboxylic acid cycle by knocking out the native fumarases, and improving the fumaric acid transportation by overexpressing heterologous transporter. Finally, the strain PSYPMFfS was obtained and the fumaric acid titer reached to 4.67g/L, significantly increased by 37.92-fold than that of the control strain PSPYSS. It was indicated that the S. stipitis was a promising platform for fumaric acid production from xylose.
Collapse
Affiliation(s)
- Liang Wei
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiao Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haishan Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
49
|
Repetitive genomic sequences as a substrate for homologous integration in the Rhizopus oryzae genome. Fungal Biol 2015; 119:494-502. [PMID: 25986546 DOI: 10.1016/j.funbio.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 11/24/2022]
Abstract
The vast number of repetitive genomic elements was identified in the genome of Rhizopus oryzae. Such genomic repeats can be used as homologous regions for integration of plasmids. Here, we evaluated the use of two different repeats: the short (575 bp) rptZ, widely distributed (about 34 copies per genome) and the long (2053 bp) rptH, less prevalent (about 15 copies). The plasmid carrying rptZ integrated, but did so through a 2256-bp region of homology to the pyrG locus, a unique genomic sequence. Thus, the length of rptZ was below the minimal requirements for homologous strand exchange in this fungus. In contrast, rptH was used efficiently for homologous integration. The plasmid bearing this repeat integrated in multicopy fashion, with up to 25 copies arranged in tandem. The latter vector, pPyrG-H, could be a valuable tool for integration at homologous sequences, for such purposes as high-level expression of proteins.
Collapse
|
50
|
Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|