1
|
Bertolazi AA, Passamani LZ, de Souza SB, Rodrigues WP, Campostrini E, Pinto VB, Silveira V, de Rezende CE, Cruz C, Cardoso EJBN, Ramos AC. Comparative effects of Serendipita indica and a mix of arbuscular mycorrhizal fungi on the growth, photosynthetic capacity, and proteomics of Schinus terebinthifolius Raddi. PLANTA 2025; 261:34. [PMID: 39808192 DOI: 10.1007/s00425-025-04608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments. We observed growth stimulation by both PGPMs; however, S. indica primarily enhanced root weight, whereas AMF improved shoot weight. S. indica's positive effects on root systems could be attributed to increased auxin levels and altered root architecture, which are critical for seedling establishment in reforestation programs. In terms of nutritional status, both treatments increased the content of most nutrients, with higher micronutrient contents in the shoots and higher macronutrient content in roots of inoculated plants. Despite AMF's role in enhancing photosynthesis, plants inoculated with these fungi showed reduced photosynthetic capacity traits, possibly due to lower leaf nitrogen content. The proteomic analysis of Schinus terebinthifolius leaf extracts revealed that, despite the upregulation of several proteins associated with the photosynthetic apparatus in response to S. indica treatment, no enhancement in photosynthetic capacity was observed. We also found several proteins related to oxidative stress in plants inoculated with both fungi, indicating a greater tolerance to adverse environmental conditions. These findings underscore the potential of both, S. indica and AMF, as sustainable alternatives to chemical fertilizers in reforestation efforts, enhancing seedling quality and survival in nutrient-poor soils.
Collapse
Affiliation(s)
- Amanda A Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Lucas Z Passamani
- FAESA University Center, Av. Vitória, 2220, Vitória, ES, 29053-360, Brazil
| | - Sávio B de Souza
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Weverton P Rodrigues
- Center of Agrarian Sciences, CCA, Universidade Estadual da Região Tocantina do Maranhão (UEMASUL), Avenida Agrária, 100, Imperatriz, Estreito, Maranhão, 65900-001, Brazil
| | - Eliemar Campostrini
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Vitor B Pinto
- Laboratory of Biotechnology, Integrative Biology Unit, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Integrative Biology Unit, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Carlos E de Rezende
- Laboratory of Environmental Sciences, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Cristina Cruz
- Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Campo Grande, Portugal
| | - Elke J B N Cardoso
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
| |
Collapse
|
2
|
Wang C, Ahsan T, Ding A, Han D, Gao J, Liang CH, Du ST, Wei Y, Huang YQ, Zhang SH. Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L. World J Microbiol Biotechnol 2025; 41:28. [PMID: 39789344 DOI: 10.1007/s11274-024-04244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S. indica suppressed the growth of P. arachidicola. Additionally, scanning electron microscopy illustrated that S. indica adversely affected the pathogen's hyphae. LSi treatment showed the highest stem height (35 cm), root length (15.533 cm), shoot fresh weight (9.33 g), shoot dry weight (1.30085 g), root dry weight (0.1990 g), and chlorophyll a (1.3253) and b (1.8316), while BPa had the lowest values of these parameters. The highest MDA value was observed at 96 h for BPa with (3.14598 nmol/g), and the highest proline value was observed at 72 h for LSi-Pa with (56.42851 µmol/g). Antioxidant enzymes, catalase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyase, increased significantly after 48 h in cultivar L. The most significant result is observed in salicylic acid with LSi-Pa at 72 h (702.10 µg/mL), showing a consistent significant difference. RNA-seq analysis revealed more pronounced transcriptomic changes in cultivar L, with enriched pathways related to flavonoid biosynthesis and defense responses. The LSi-Pa treatment significantly upregulated gene expression at 96 h, with AhNPR1 (0.05807), AhNPR10 (0.10536), AhPAL1 (4.30831), and Ahcapx (0.22074), demonstrating a strong regulatory effect. These results demonstrate that S. indica enhances peanut plant growth and resilience against P. arachidicola, mainly through modulation of oxidative stress and immune responses.
Collapse
Affiliation(s)
- Chen Wang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Ao Ding
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Han
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Gao
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chun-Hao Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Si-Tong Du
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu-Qian Huang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Wang J, Wang B, Huang J, Yang S, Mei H, Jiang Y, Hou Y, Peng J, Cheng C, Li H, Lü P. Integrated Transcriptome and sRNAome Analysis Reveals the Molecular Mechanisms of Piriformospora indica-Mediated Resistance to Fusarium Wilt in Banana. Int J Mol Sci 2024; 25:12446. [PMID: 39596511 PMCID: PMC11595150 DOI: 10.3390/ijms252212446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Bananas (Musa spp.) are among the most important fruit and staple food crops globally, holding a significant strategic position in food security in tropical and subtropical regions. However, the industry is grappling with a significant threat from Fusarium wilt, a disease incited by Fusarium oxysporum f. sp. cubense (Foc). In this study, we explored the potential of Piriformospora indica (Pi), a mycorrhizal fungus renowned for bolstering plant resilience and nutrient assimilation, to fortify bananas against this devastating disease. Through a meticulous comparative analysis of mRNA and miRNA expression in control, Foc-inoculated, Pi-colonized, and Pi-colonized followed by Foc-inoculated plants via transcriptome and sRNAome, we uncovered a significant enrichment of differentially expressed genes (DEGs) and DE miRNAs in pathways associated with plant growth and development, glutathione metabolism, and stress response. Our findings suggest that P. indica plays a pivotal role in bolstering banana resistance to Foc. We propose that P. indica modulates the expression of key genes, such as glutathione S-transferase (GST), and transcription factors (TFs), including TCP, through miRNAs, thus augmenting the plant's defensive capabilities. This study offers novel perspectives on harnessing P. indica for the management of banana wilt disease.
Collapse
Affiliation(s)
- Junru Wang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Wang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junmei Huang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Shuai Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Huan Mei
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youfeng Jiang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yacong Hou
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Peng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hua Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Peitao Lü
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
4
|
Li H, Wang Z, Yu Y, Gao W, Zhu J, Zhang H, Li X, Liu Y. Enhancing cold tolerance in tobacco through endophytic symbiosis with Piriformospora indica. FRONTIERS IN PLANT SCIENCE 2024; 15:1459882. [PMID: 39524557 PMCID: PMC11543411 DOI: 10.3389/fpls.2024.1459882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Tobacco, a warm-season crop originating from the Americas, is highly susceptible to cold stress. The utilization of symbiotic fungi as a means to bolster crops' resilience against abiotic stresses has been proven to be a potent strategy. In this study, we investigated the effect of endophytic fungus Piriformospora indica on the cold resistance of tobacco. When exposed to cold stress, the colonization of P.indica in tobacco roots effectively stimulates the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). This, in turn, reduces the accumulation of reactive oxygen species (ROS), thereby mitigating oxidative damage. Additionally, P. indica elevates the levels of osmolytes, such as soluble sugars, proline, and soluble proteins, thus facilitating the restoration of osmotic balance. Under cold stress conditions, P. indica also induces the expression of cold-responsive genes. Furthermore, this fungus not only enhances photosynthesis in tobacco by stimulating the synthesis of photosynthetic pigments, strengthening Rubisco activity, and elevating PSII efficiency, but also fortifies tobacco's nitrogen assimilation by inducing the expression of nitrate transporter gene and activating enzymes related to nitrogen assimilation. Consequently, this synergistic optimization of nitrogen and carbon assimilation provides a solid material and energetic foundation for tobacco plants to withstand cold stress. Our study demonstrates that a mycorrhizal association between P. indica and tobacco seedlings provides multifaceted protection to tobacco plants against low-temperature stress and offers a valuable insight into how P. indica enhances the cold tolerance of tobacco.
Collapse
Affiliation(s)
- Han Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhiyao Wang
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Yongxu Yu
- Technology Research and Development Center, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Weichang Gao
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jingwei Zhu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Heng Zhang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xiang Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
- Tobacco Leaf Administration Office, Guizhou Branch Company of China Tobacco Corporation, Guiyang, China
| | - Yanxia Liu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
5
|
Gao J, Wang C, Tian PC, Liu C, Ahsan T, Wei Y, Huang YQ, Zhang SH. Peanut-Colonized Piriformospora indica Enhanced Drought Tolerance by Modulating the Enzymes and Expression of Drought-Related Genes. J Basic Microbiol 2024:e2400305. [PMID: 39439269 DOI: 10.1002/jobm.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important cash and oil seed crop, mostly distributed in arid and semi-arid areas. In recent years, due to the influence of atmospheric circulation anomalies and other factors, drought has become frequent and increasingly serious in China. This has posed serious challenges to peanut production. The objective of this study was to investigate the potential of the endophytic fungus Piriformospora indica to form a symbiotic relationship with peanut plants and to evaluate the drought tolerance of P. indica-colonized peanut plants subjected to a simulated drought stress treatment using 20% polyethylene glycol 6000 (PEG6000). The endophytic fungus P. indica affected the physiological characteristics of the host plant by colonizing the plant roots, thereby conferring greater resistance to drought stress. This fungus strongly colonized the roots of peanuts and was found to enhance root activity after 24 h of P. indica colonization under PEG6000. Catalase (CAT) and peroxidase (POD) activities were increased at 24 h in peanut leaves colonized with P. indica. Expression of drought-related genes, such as AhNCED1, AhP5CS, and DREB2A was upregulated at 24 h of P. indica colonization. In addition, after PEG6000 treatment, proline, soluble protein, and abscisic acid (ABA) concentrations in plants were increased, while the accumulation of malondialdehyde (MDA), and hydrogen peroxide (H2O2) was decreased in P. indica colonized peanut. In conclusion, P. indica mediated peanut plant protection against the detrimental effects of drought resulted from enhanced antioxidant enzyme activities, and the upregulated expression of drought-related genes for lower membrane damage.
Collapse
Affiliation(s)
- Jie Gao
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chen Wang
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Pei-Cong Tian
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Chuang Liu
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Taswar Ahsan
- Department of Plant Pathology, Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yi Wei
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yu-Qian Huang
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- Department of Plant Pathology, The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Morales-Vargas AT, López-Ramírez V, Álvarez-Mejía C, Vázquez-Martínez J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024; 12:1357. [PMID: 39065124 PMCID: PMC11279104 DOI: 10.3390/microorganisms12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Endophytic fungi (EFs) have emerged as promising modulators of plant growth and stress tolerance in agricultural ecosystems. This review synthesizes the current knowledge on the role of EFs in enhancing the adaptation of crops to abiotic stress. Abiotic stresses, such as drought, salinity, and extreme temperatures, pose significant challenges to crop productivity worldwide. EFs have shown remarkable potential in alleviating the adverse effects of these stresses. Through various mechanisms, including the synthesis of osmolytes, the production of stress-related enzymes, and the induction of plant defense mechanisms, EFs enhance plant resilience to abiotic stressors. Moreover, EFs promote nutrient uptake and modulate the hormonal balance in plants, further enhancing the stress tolerance of the plants. Recent advancements in molecular techniques have facilitated the identification and characterization of stress-tolerant EF strains, paving the way for their utilization in agricultural practices. Furthermore, the symbiotic relationship between EFs and plants offers ecological benefits, such as improved soil health and a reduced dependence on chemical inputs. However, challenges remain in understanding the complex interactions between EFs and host plants, as well as in scaling up their application in diverse agricultural systems. Future research should focus on elucidating the mechanisms underlying endophytic-fungal-mediated stress tolerance and developing sustainable strategies for harnessing their potential in crop production.
Collapse
Affiliation(s)
- Adan Topiltzin Morales-Vargas
- Programa de Ingeniería en Biotecnología, Campus Celaya-Salvatierra, Universidad de Guanajuato, Mutualismo #303, Col. La Suiza, Celaya 36060, Mexico
| | - Varinia López-Ramírez
- Departamento de Ingeniería Bioquímica, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| | - Cesar Álvarez-Mejía
- Coordinación de Ingeniería Ambiental, TecNM/ITS Abasolo, Cuitzeo de los Naranjos #401, Col. Cuitzeo de los Naranjos, Abasolo 36976, Mexico
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| |
Collapse
|
7
|
Rehan N, Farhat H, Shafique HA, Shaheen S. A Comprehensive Perception of Biological Control Potential of Endophytes and Quality Refinement of Lagenaria siceraria. Curr Microbiol 2024; 81:184. [PMID: 38771325 DOI: 10.1007/s00284-024-03706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.
Collapse
Affiliation(s)
- Noureen Rehan
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| | - Hafiza Farhat
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan.
- Institute of Biological Sciences, Gomal University, D.I Khan, D.I Khan, 29050, Pakistan.
| | | | - Sumera Shaheen
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
8
|
Opitz MW, Díaz-Manzano FE, Ruiz-Ferrer V, Daneshkhah R, Ludwig R, Lorenz C, Escobar C, Steinkellner S, Wieczorek K. The other side of the coin: systemic effects of Serendipita indica root colonization on development of sedentary plant-parasitic nematodes in Arabidopsis thaliana. PLANTA 2024; 259:121. [PMID: 38615288 PMCID: PMC11016515 DOI: 10.1007/s00425-024-04402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
MAIN CONCLUSION Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Fernando Evaristo Díaz-Manzano
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cindy Lorenz
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carolina Escobar
- Área de Fisiología Vegetal, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria.
| |
Collapse
|
9
|
Sehar S, Adil MF, Askri SMH, Dennis E, Faizan M, Zhao P, Zhou F, Shamsi IH. Nutrient and mycoremediation of a global menace 'arsenic': exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. PLANT CELL REPORTS 2024; 43:90. [PMID: 38466444 DOI: 10.1007/s00299-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Elvis Dennis
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Natural Resources, Department of Agriculture, Papua New Guinea University of Natural Resources and Environment, Kokopo, ENBP 613, Papua New Guinea
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Abudeshesh RM, Aboul-Nasr AM, Khairy HM, Atia MAM, Sabra MA. Differential impacts of interactions between Serendipita indica, Chlorella vulgaris, Ulva lactuca and Padina pavonica on Basil (Ocimum basilicumL.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108218. [PMID: 38029616 DOI: 10.1016/j.plaphy.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Plant biostimulants (PBs) are used globally to increase crop yield and productivity. PBs such as (Serendipita indica) or algal extracts stimulate and accelerate plant physiological processes. The physiological, ecological, and biochemical effects of (Serendipita indica) or algal extracts individually and in combination on basil plant (Ocimum basilicum L.) were investigated. Macroalgae samples were collected from Abu Qir, Alexandria, Egypt. The growth parameters, chlorophyll index, and biochemical composition of basil were analyzed at 90th day. The (Chlorella vulgaris) + (Serendipita indica) (MI + F) treatment increased chlorophyll index by 61.7% (SPAD) compared to control. (Chlorella vulgaris) had the highest growth hormones, including GA3 at 158.2 ppb, GA4 at 149.1 ppb, GA7 at 142.6 ppb, IAA at 136.6 ppb, and TC at 130.9 ppb, while (Ulva lactuca) had the lowest. The MI + F treatment yielded the highest essential oil and antioxidant values. Treatment with (Chlorella vulgaris) increased S. indica colonization by 66%. In contrast, Ulva lactuca and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. (Ulva lactuca) and (Padina Pavonica) inhibited S. indica colonization by 80% and 40%, respectively. Combined treatments had a greater influence on basil performance than the individual treatments. The evidence of synergistic/additive benefits to plants performance due to the interactive effects of (Chlorella vulgaris) and (Serendipita indica) had been studied. Complementary modes of action between (Chlorella vulgaris) and (Serendipita indica), through their components newly emerging properties on basil, may explain observed synergistic effects. This study explores the potential of microbial-algal interactions, particularly (Chlorella vulgaris) and (Serendipita indica), as innovative plant biostimulants. These interactions demonstrate positive effects on basil growth, offering promise for more effective microbial-based formulations to enhance crop productivity and sustainability in agriculture. These novelties will help create a second generation of PBs with integrated and complementary actions.
Collapse
Affiliation(s)
| | - Amal M Aboul-Nasr
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| | - Hanan M Khairy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mohamed A M Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mayada A Sabra
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture Saba Basha, Alexandria University, Egypt
| |
Collapse
|
11
|
Zheng M, Zhong S, Wang W, Tang Z, Bu T, Li Q. Serendipita indica Promotes the Growth of Tartary Buckwheat by Stimulating Hormone Synthesis, Metabolite Production, and Increasing Systemic Resistance. J Fungi (Basel) 2023; 9:1114. [PMID: 37998919 PMCID: PMC10671858 DOI: 10.3390/jof9111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The main objective of this study was to investigate the influence of Serendipita indica on the growth of Tartary buckwheat plants. This study highlighted that the roots of Tartary buckwheat can be colonized by S. indica and that this fungal endophyte improved plants height, fresh weight, dry weight, and grain yield. In the meantime, the colonization of S. indica in Tartary buckwheat leaves resulted in elevated levels of photosynthesis, plant hormone content, antioxidant enzyme activity, proline content, chlorophyll content, soluble sugars, and protein content. Additionally, the introduction of S. indica to Tartary buckwheat roots led to a substantial rise in the levels of flavonoids and phenols found in the leaves and seeds of Tartary buckwheat. In addition, S. indica colonization reduced the content of malondialdehyde and hydrogen peroxide when compared to non-colonized plants. Importantly, the drought tolerance of Tartary buckwheat plants is increased, which benefits from physiology and bio-chemical changes in plants after S. indica colonized. In conclusion, we have shown that S. indica can improve systematic resistance and promote the growth of Tartary buckwheat by enhancing the photosynthetic capacity of Tartary buckwheat, inducing the production of IAA, increasing the content of secondary metabolites such as total phenols and total flavonoids, and improving the antioxidant enzyme activity of the plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (M.Z.); (S.Z.); (W.W.); (Z.T.); (T.B.)
| |
Collapse
|
12
|
Sehar S, Adil MF, Askri SMH, Feng Q, Wei D, Sahito FS, Shamsi IH. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. RICE (NEW YORK, N.Y.) 2023; 16:28. [PMID: 37354226 DOI: 10.1186/s12284-023-00645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Wei
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Fan L, Li Y, Wang X, Leng F, Li S, Zhu N, Chen K, Wang Y. Culturable endophytic fungi community structure isolated from Codonopsis pilosula roots and effect of season and geographic location on their structures. BMC Microbiol 2023; 23:132. [PMID: 37189022 DOI: 10.1186/s12866-023-02848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/05/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Rhizosphere soil physicochemical, endophytic fungi have an important role in plant growth. A large number of endophytic fungi play an indispensable role in promoting plant growth and development, and they can provide protection for host plants by producing a variety of secondary metabolites to resist and inhibit plant pathogens. Due to the terrain of Gansu province is north-south and longitudinal, different climatic conditions, altitude, terrain and growth environment will affect the growth of Codonopsis pilosula, and the changes in these environmental factors directly affect the quality and yield of C. pilosula in different production areas. However, In C. pilosula, the connection between soil nutrients, spatiotemporal variation and the community structure of endophytic fungi isolated from C. pilosula roots has not been well studied. RESULTS Seven hundred six strains of endophytic fungi were obtained using tissue isolation and the hyphaend-purification method from C. pilosula roots that picked at all seasons and six districts (Huichuan, HC; Longxi, LX; Zhangxian, ZX; Minxian, MX; Weiyuan, WY; and Lintao, LT) in Gansu Province, China. Fusarium sp. (205 strains, 29.04%), Aspergillus sp. (196 strains, 27.76%), Alternaria sp. (73 strains, 10.34%), Penicillium sp. (58 strains, 8.22%) and Plectosphaerella sp. (56 strains, 7.93%) were the dominant genus. The species composition differed from temporal and spatial distribution (Autumn and Winter were higher than Spring and Summer, MX and LT had the highest similarity, HC and LT had the lowest). physical and chemical of soil like Electroconductibility (EC), Total nitrogen (TN), Catalase (CAT), Urease (URE) and Sucrase (SUC) had significant effects on agronomic traits of C. pilosula (P < 0.05). AK (Spring and Summer), TN (Autumn) and altitude (Winter) are the main driving factors for the change of endophytic fungal community. Moreover, geographic location (such as altitude, latitude and longitude) also has effects on the diversity of endophytic fungi. CONCLUSIONS These results suggested that soil nutrients and enzyme, seasonal variation and geographical locations have an impact on shaping the community structure of culturable endophytic fungi in the roots of C. pilosula and its root traits. This suggests that climatic conditions may play a driving role in the growth and development of C. pilosula.
Collapse
Affiliation(s)
- Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yuanli Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
14
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
15
|
Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543-6551. [DOI: 10.1016/j.csbj.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
|
16
|
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:953836. [PMID: 35865289 PMCID: PMC9294639 DOI: 10.3389/fpls.2022.953836] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 05/14/2023]
Abstract
The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Collapse
Affiliation(s)
- Anamika Verma
- Amity Institute of Horticulture Studies and Research, Amity University Uttar Pradesh, Noida, India
| | - Nowsheen Shameem
- Department of Environmental Science, S.P. College, Srinagar, India
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government Degree College Eidgah, Srinagar, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s SI Patil Arts, GB Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
17
|
Bandyopadhyay P, Yadav BG, Kumar SG, Kumar R, Kogel KH, Kumar S. Piriformospora indica and Azotobacter chroococcum Consortium Facilitates Higher Acquisition of N, P with Improved Carbon Allocation and Enhanced Plant Growth in Oryza sativa. J Fungi (Basel) 2022; 8:jof8050453. [PMID: 35628709 PMCID: PMC9146537 DOI: 10.3390/jof8050453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
The soil microbiome contributes to nutrient acquisition and plant adaptation to numerous biotic and abiotic stresses. Numerous studies have been conducted over the past decade showing that plants take up nutrients better when associated with fungi and additional beneficial bacteria that promote plant growth, but the mechanisms by which the plant host benefits from this tripartite association are not yet fully understood. In this article, we report on a synergistic interaction between rice (Oryza sativa), Piriformospora indica (an endophytic fungus colonizing the rice roots), and Azotobacter chroococcum strain W5, a free-living nitrogen-fixing bacterium. On the basis of mRNA expression analysis and enzymatic activity, we found that co-inoculation of plant roots with the fungus and the rhizobacterium leads to enhanced plant growth and improved nutrient uptake compared to inoculation with either of the two microbes individually. Proteome analysis of O. sativa further revealed that proteins involved in nitrogen and phosphorus metabolism are upregulated and improve nitrogen and phosphate uptake. Our results also show that A. chroococcum supports colonization of rice roots by P. indica, and consequentially, the plants are more resistant to biotic stress upon co-colonization. Our research provides detailed insights into the mechanisms by which microbial partners synergistically promote each other in the interaction while being associated with the host plant.
Collapse
Affiliation(s)
- Prasun Bandyopadhyay
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Srinivasan Ganesh Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Karl-Heinz Kogel
- Institute for Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
- Correspondence:
| |
Collapse
|
18
|
Li L, Guo N, Feng Y, Duan M, Li C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:836940. [PMID: 35498704 PMCID: PMC9047502 DOI: 10.3389/fpls.2022.836940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 06/01/2023]
Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.
Collapse
|
19
|
Chen XJ, Yin YQ, Zhu XM, Xia X, Han JJ. High Ambient Temperature Regulated the Plant Systemic Response to the Beneficial Endophytic Fungus Serendipita indica. FRONTIERS IN PLANT SCIENCE 2022; 13:844572. [PMID: 35371134 PMCID: PMC8966885 DOI: 10.3389/fpls.2022.844572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Most plants in nature establish symbiotic associations with endophytic fungi in soil. Beneficial endophytic fungi induce a systemic response in the aboveground parts of the host plant, thus promoting the growth and fitness of host plants. Meanwhile, temperature elevation from climate change widely affects global plant biodiversity as well as crop quality and yield. Over the past decades, great progresses have been made in the response of plants to high ambient temperature and to symbiosis with endophytic fungi. However, little is known about their synergistic effect on host plants. The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants, including Arabidopsis. Based on the Arabidopsis-S. indica symbiosis experimental system, we analyzed the synergistic effect of high ambient temperature and endophytic fungal symbiosis on host plants. By transcriptome analysis, we found that DNA replication-related genes were significantly upregulated during the systemic response of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic responses. We found that high ambient temperature repressed the JA and ET signaling pathways of Arabidopsis aboveground parts during the systemic response to S. indica colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped with many differentially expressed genes (DEGs) during the systemic response, and further showed that the growth promotion efficiency of S. indica on the pif4 mutant was higher than that on the wild-type plants. In short, our data showed that high ambient temperature strengthened the growth promotion effect of S. indica fungi on the aboveground parts of the host plant Arabidopsis, and the growth promotion effect of the systemic response under high ambient temperature was regulated by PIF4.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yue-Qing Yin
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xin-Meng Zhu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xue Xia
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jia-Jia Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
20
|
Mahdi LK, Miyauchi S, Uhlmann C, Garrido-Oter R, Langen G, Wawra S, Niu Y, Guan R, Robertson-Albertyn S, Bulgarelli D, Parker JE, Zuccaro A. The fungal root endophyte Serendipita vermifera displays inter-kingdom synergistic beneficial effects with the microbiota in Arabidopsis thaliana and barley. THE ISME JOURNAL 2022; 16:876-889. [PMID: 34686763 PMCID: PMC8857181 DOI: 10.1038/s41396-021-01138-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/05/2022]
Abstract
Plant root-associated bacteria can confer protection against pathogen infection. By contrast, the beneficial effects of root endophytic fungi and their synergistic interactions with bacteria remain poorly defined. We demonstrate that the combined action of a fungal root endophyte from a widespread taxon with core bacterial microbiota members provides synergistic protection against an aggressive soil-borne pathogen in Arabidopsis thaliana and barley. We additionally reveal early inter-kingdom growth promotion benefits which are host and microbiota composition dependent. Using RNA-sequencing, we show that these beneficial activities are not associated with extensive host transcriptional reprogramming but rather with the modulation of expression of microbial effectors and carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Lisa K Mahdi
- University of Cologne, Institute for Plant Sciences, Cologne, Germany
| | - Shingo Miyauchi
- University of Cologne, Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Cologne, Germany
| | - Charles Uhlmann
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Cologne, Germany
| | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gregor Langen
- University of Cologne, Institute for Plant Sciences, Cologne, Germany
| | - Stephan Wawra
- University of Cologne, Institute for Plant Sciences, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Yulong Niu
- University of Cologne, Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Cologne, Germany
| | - Rui Guan
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Cologne, Germany
| | | | - Davide Bulgarelli
- University of Dundee, Plant Sciences, School of Life Sciences, Dundee, UK
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
21
|
Tian Y, Fu X, Zhang G, Zhang R, Kang Z, Gao K, Mendgen K. Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. J Fungi (Basel) 2022; 8:jof8020180. [PMID: 35205933 PMCID: PMC8878499 DOI: 10.3390/jof8020180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.
Collapse
Affiliation(s)
- Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Xuesong Fu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Gongchen Zhang
- Qingdao Academy of Agricultural Science, Qingdao 266100, China;
| | - Rui Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Kexiang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
- Correspondence:
| | - Kurt Mendgen
- Department of Biology, University of Constance, 78457 Constance, Germany;
| |
Collapse
|
22
|
Tabande L, Sepehri M, Yasrebi J, Zarei M, Ghasemi-Fasaei R, Khatabi B. A comparison between the function of Serendipita indica and Sinorhizobium meliloti in modulating the toxicity of zinc oxide nanoparticles in alfalfa (Medicago sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8790-8803. [PMID: 34490575 DOI: 10.1007/s11356-021-16287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are among the most commonly used nano-fertilizers (NF). However, elevated levels of ZnO-NPs in soil may affect plant growth and development due to its potential toxicity when accumulated in large amounts in plant tissues. This research was conducted using an in situ rhizobox system with the aims of evaluating zinc uptake from nano-zinc oxide amended rhizosphere soil by alfalfa plant and the effect of plant growth-promoting microorganisms on alleviating the phytotoxicity of ZnO-NPs. Treatments included microbial inoculations (Sinorhizobium meliloti, Serendipita indica) and different ZnO-NP concentrations (0, 400, and 800 mg kg-1) with three replications. The results indicated that S. indica minimized the phytotoxicity of ZnO-NPs to alfalfa by enhancing growth rate and decreasing zinc (Zn) translocation from root to shoot. Compared with plants inoculated with S. meliloti, co-inoculation with S. indica increased the shoot dry weight by 18.33% and 8.05% at 400 and 800 mg kg-1 ZnO-NPs, respectively. However, at the highest level of ZnO-NPs (800 mg kg-1), root inoculation of S. indica and S. indica + S. meliloti decreased Zn translocation factor by 60.2% and 44.3% compared to S. meliloti, respectively. Furthermore, a distinct relation between tolerance of S. indica-colonized plant to ZnO-NPs and the ability of S. indica in inhibiting or retarding degradation of polyunsaturated lipids through prevention of excess reactive oxygen species formation was observed. Malondialdehyde content of inoculated plants with S. indica either alone or in combination with S. meliloti was significantly lower than non-inoculated plants (p< 0.01). Zn-induced oxidative stress was mitigated by S. indica through enhanced activities of catalase and peroxidase enzymes. The findings of the present study indicate the potential use of endophytes fungus S. indica for ensuring food safety and security, and human health in heavy metal-polluted soil by reducing the phytoavailability of heavy metals in the aerial parts of the host plants.
Collapse
Affiliation(s)
- Leila Tabande
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mozhgan Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Jafar Yasrebi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| |
Collapse
|
23
|
Liu B, Jing D, Liu F, Ma H, Liu X, Peng L. Serendipita indica alleviates drought stress responses in walnut (Juglans regia L.) seedlings by stimulating osmotic adjustment and antioxidant defense system. Appl Microbiol Biotechnol 2021; 105:8951-8968. [PMID: 34735609 DOI: 10.1007/s00253-021-11653-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
Juglans regia L. is a good host for Serendipita indica. Under drought condition, seedlings colonized with S. indica showed higher values in plant height, total fresh biomass, root/shoot ratio, relative growth rate, leaf relative water content and chlorophyll content, gas exchange parameters, maximal photochemical efficiency, photochemical quenching, and effective photosystem II quantum yield than the uncolonized seedlings. It suggested beneficial effects of S. indica on host plants' growth and physiological parameters in response to drought. In comparison with the uncolonized seedlings, S. indica-colonized seedlings showed lower levels in hydrogen peroxide, superoxide anion, malondialdehyde, and relative electrical conductivity under drought condition, suggesting the ability of S. indica to prevent or retard the accumulation of reactive oxygen species and to diminish the oxidative injure. Furthermore, walnut seedlings responded to drought by actively accumulating osmotic regulation substances including soluble protein, soluble sugar, and proline. Root colonization with S. indica was more conductive to the accumulation. Moreover, in response to drought stress, walnut seedlings, regardless of colonization, increased activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase, levels of ascorbate and glutathione, and ratios of reduced ascorbate/dehydroascorbic acid and reduced glutathione/oxidized glutathione in leaves and roots. S. indica colonization induced much more increase in the abovementioned indicators as compared to the uncolonized seedlings. Overall, S. indica colonization alleviated the detrimental effects of drought stress by altering root system, enhancing osmotic adjustment, and repressing the accumulation of reactive oxygen species via stimulating antioxidant system including enzymatic and nonenzymatic components. KEY POINTS: • S. indica stimulated root growth of walnut seedlings under drought condition. • S. indica accelerated osmotic adjustment under drought condition. • S. indica activated antioxidant defense mechanism under drought condition.
Collapse
Affiliation(s)
- Binghua Liu
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China. .,Economic Forest Products Quality Inspection Test Center of State Forestry Administration (Jinan), Jinan, 250014, Shandong, China.
| | - Dawei Jing
- Dezhou University, Dezhou, 253023, Shandong, China
| | - Fangchun Liu
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China.,Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Hailin Ma
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China.,Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation, Jinan, 250014, Shandong, China
| | - Xinghong Liu
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China
| | - Lin Peng
- Shandong Academy of Forestry, 42, East Wenhua Road, Jinan, 250014, Shandong, China
| |
Collapse
|
24
|
Yang Z, Jin Y, Hou F, Bowatte S. Soil microbial and chemical responses to foliar Epichloë fungal infection in Lolium perenne, Hordeum brevisubulatum and Achnatherum inebrians. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Meng LL, Liu RC, Yang L, Zou YN, Srivastava AK, Kuča K, Hashem A, Abd_Allah EF, Giri B, Wu QS. The Change in Fatty Acids and Sugars Reveals the Association between Trifoliate Orange and Endophytic Fungi. J Fungi (Basel) 2021; 7:jof7090716. [PMID: 34575754 PMCID: PMC8465165 DOI: 10.3390/jof7090716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
Endophytes have the ability to improve plant nutrition alongside their agronomic performance, among which arbuscular mycorrhizal fungi provide the most benefits to their host. Previously, we reported for the first time that an arbuscular mycorrhizal-like fungus Piriformospora indica had the ability to colonize roots of trifoliate orange (Poncirus trifoliata) and conferred positive effects on nutrient acquisition. Present study showed the changes in fatty acids and sugars to unravel the physiological and symbiotic association of trifoliate orange with P. indica and an arbuscular mycorrhizal fungus, Funneliformis mosseae singly or in combination. All the endophytic fungi collectively increased fructose, glucose, and sucrose content in leaves and roots, along with a relatively higher increase with P. indica inoculation than with F. mosseae alone or dual inoculation. Treatment with P. indica increased the concentration of part unsaturated fatty acids such as C18:3N6, C20:2, C20:3N6, C20:4N6, C20:3N3, C20:5N3, C22:1N9, and C24:1. Additionally, P. indica induced the increase in the concentration of part saturated fatty acids such as C6:0, C8:0, C13:0, C14:0, and C24:0. F. mosseae hardly changed the content of fatty acids, except for increase in C14:0 and C20:5N3. Double inoculation only reduced the C21:0, C10:0, C12:0, C18:3N3, and C18:1 content and increased the C20:5N3 content. These endophytic fungi up-regulated the root PtFAD2, PtFAD6, PtΔ9, and PtΔ15 gene expression level, coupled with a higher expression of PtFAD2 and PtΔ9 by P. indica than by F. mosseae. It was concluded that P. indica exhibited a stronger response, for sugars and fatty acids, than F. mosseae on trifoliate orange. Such results also reveal the Pi (an in vitro culturable fungus) as a bio-stimulator applying to citriculture.
Collapse
Affiliation(s)
- Lu-Lu Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.-L.M.); (R.-C.L.); (L.Y.); (Y.-N.Z.)
| | - Rui-Cheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.-L.M.); (R.-C.L.); (L.Y.); (Y.-N.Z.)
| | - Liu Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.-L.M.); (R.-C.L.); (L.Y.); (Y.-N.Z.)
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.-L.M.); (R.-C.L.); (L.Y.); (Y.-N.Z.)
| | | | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Bhoopander Giri
- Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi 110036, India;
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.-L.M.); (R.-C.L.); (L.Y.); (Y.-N.Z.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic;
- Correspondence:
| |
Collapse
|
26
|
Roylawar P, Khandagale K, Randive P, Shinde B, Murumkar C, Ade A, Singh M, Gawande S, Morelli M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens 2021; 10:1085. [PMID: 34578118 PMCID: PMC8472787 DOI: 10.3390/pathogens10091085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
The root-endophytic fungus Piriformospora indica (=Serendipita indica) has been revealed for its growth-promoting effects and its capacity to induce resistance in a broad spectrum of host plants. However, the bioefficacy of this fungus had not yet been tested against any pathogen affecting onion (Allium cepa). In this study, the biocontrol potency of P. indica against onion leaf blight, an impacting disease caused by the necrotrophic fungal pathogen Stemphylium vesicarium, was evaluated. First, it was proved that colonisation of onion roots by P. indica was beneficial for plant growth, as it increased leaf development and root biomass. Most relevantly, P. indica was also effective in reducing Stemphylium leaf blight (SLB) severity, as assessed under greenhouse conditions and confirmed in field trials in two consecutive years. These investigations could also provide some insight into the biochemical and molecular changes that treatment with P. indica induces in the main pathways associated with host defence response. It was possible to highlight the protective effect of P. indica colonisation against peroxidative damage, and its role in signalling oxidative stress, by assessing changes in malondialdehyde and H2O2 content. It was also showed that treatment with P. indica contributes to modulate the enzymatic activity of superoxide dismutase, catalase, phenylalanine ammonia-lyase and peroxidase, in the course of infection. qPCR-based expression analysis of defence-related genes AcLOX1, AcLOX2, AcPAL1, AcGST, AcCHI, AcWRKY1, and AcWRKY70 provided further indications on P. indica ability to induce onion systemic response. Based on the evidence gathered, this study aims to propose P. indica application as a sustainable tool for improving SLB control, which might not only enhance onion growth performance but also activate defence signalling mechanisms more effectively, involving different pathways.
Collapse
Affiliation(s)
- Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
- Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Pune 413102, India;
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, Ahamadnagar 422605, India
| | - Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Pragati Randive
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Bharat Shinde
- Vidya Pratishthan’s Arts, Science & Commerce College, Baramati, Pune 413133, India;
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Massimiliano Morelli
- CNR-IPSP Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70124 Bari, Italy;
| |
Collapse
|
27
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
28
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Opitz MW, Daneshkhah R, Lorenz C, Ludwig R, Steinkellner S, Wieczorek K. Serendipita indica changes host sugar and defense status in Arabidopsis thaliana: cooperation or exploitation? PLANTA 2021; 253:74. [PMID: 33620564 PMCID: PMC7902589 DOI: 10.1007/s00425-021-03587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2021] [Indexed: 05/10/2023]
Abstract
Manipulation of sugar metabolism upon S. indica root colonization triggers changes in sugar pools and defense responses in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with many different plants including important crops as well as the model plant A. thaliana. Successful root colonization typically results in growth promotion and enhanced tolerance against various biotic and abiotic stresses. The fungus delivers phosphorus to the host and receives in exchange carbohydrates. There are hints that S. indica prefers hexoses, glucose, and fructose, products of saccharose cleavage driven by invertases (INVs) and sucrose synthases (SUSs). Carbohydrate metabolism in this interaction, however, remains still widely unexplored. Therefore, in this work, the sugar pools as well as the expression of SUSs and cytosolic INVs in plants colonized by S. indica were analyzed. Using sus1/2/3/4 and cinv1/2 mutants the importance of these genes for the induction of growth promotion and proper root colonization was demonstrated. Furthermore, the expression of several defense-related marker genes in both multiple mutants in comparison to the wild-type plants was determined. Our results show that in colonized A. thaliana plants S. indica manipulates the sugar metabolism by altering the expression of host's INV and SUS and modulates both the sugar pools and plant defense in its favor. We conclude that the interaction A. thaliana-S. indica is a balancing act between cooperation and exploitation, in which sugar metabolism plays a crucial role. Small changes in this mechanism can lead to severe disruption resulting in the lack of growth promotion or altered colonization rate.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Cindy Lorenz
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| |
Collapse
|
30
|
|
31
|
Kajarekar KV, Parulekar Berde CV, Salvi SP, Berde VB. Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
|
33
|
Hallasgo AM, Spangl B, Steinkellner S, Hage-Ahmed K. The Fungal Endophyte Serendipita williamsii Does Not Affect Phosphorus Status but Carbon and Nitrogen Dynamics in Arbuscular Mycorrhizal Tomato Plants. J Fungi (Basel) 2020; 6:E233. [PMID: 33086650 PMCID: PMC7711999 DOI: 10.3390/jof6040233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Some members of the root endophytic Serendipitaceae were observed to frequently coexist with arbuscular mycorrhizal fungi (AMF), but their interactions and potential synergistic effects in plants have not yet been well elucidated. Here, we inoculated three-week-old tomato seedlings with Serendipita indica or Serendipita williamsii alone or in combination with the arbuscular mycorrhizal fungus Funneliformis mosseae and cultivated the plants in a greenhouse until the late vegetative stage. Our data show that the simultaneous presence of Serendipita spp. did not affect root colonization by AMF, proving the feasibility of their combination for future agronomic uses. The photosynthetic performance was enhanced in AM tomato plants, although growth remained unresponsive following single or dual inoculation with Serendipita spp. and AMF. With regard to nutrient status under dual inoculation, AMF-induced phosphorus increases remained unaffected, but nitrogen and carbon dynamics were highly altered. Specifically, the application of S. williamsii to mycorrhizal tomato plants significantly enhanced nitrogen concentration in the shoots, but this effect was also compensated with a carbon cost. Our findings indicate that S. williamsii performs differently from S. indica when co-inoculated with AMF, and this suggests an unknown mechanism that needs more detailed investigation.
Collapse
Affiliation(s)
- Anna M. Hallasgo
- Department of Crop Sciences, Institute of Crop Protection, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria; (A.M.H.); (S.S.)
| | - Bernhard Spangl
- Department of Landscape, Institute of Statistics, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences, Vienna, 1180 Vienna, Austria;
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Crop Protection, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria; (A.M.H.); (S.S.)
| | - Karin Hage-Ahmed
- Department of Crop Sciences, Institute of Crop Protection, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria; (A.M.H.); (S.S.)
| |
Collapse
|
34
|
Venneman J, Vandermeersch L, Walgraeve C, Audenaert K, Ameye M, Verwaeren J, Steppe K, Van Langenhove H, Haesaert G, Vereecke D. Respiratory CO 2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:544435. [PMID: 32983211 PMCID: PMC7492573 DOI: 10.3389/fpls.2020.544435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/14/2020] [Indexed: 05/17/2023]
Abstract
Rhizospheric microorganisms can alter plant physiology and morphology in many different ways including through the emission of volatile organic compounds (VOCs). Here we demonstrate that VOCs from beneficial root endophytic Serendipita spp. are able to improve the performance of in vitro grown Arabidopsis seedlings, with an up to 9.3-fold increase in plant biomass. Additional changes in VOC-exposed plants comprised petiole elongation, epidermal cell and leaf area expansion, extension of the lateral root system, enhanced maximum quantum efficiency of photosystem II (Fv/Fm), and accumulation of high levels of anthocyanin. Notwithstanding that the magnitude of the effects was highly dependent on the test system and cultivation medium, the volatile blends of each of the examined strains, including the references S. indica and S. williamsii, exhibited comparable plant growth-promoting activities. By combining different approaches, we provide strong evidence that not only fungal respiratory CO2 accumulating in the headspace, but also other volatile compounds contribute to the observed plant responses. Volatile profiling identified methyl benzoate as the most abundant fungal VOC, released especially by Serendipita cultures that elicit plant growth promotion. However, under our experimental conditions, application of methyl benzoate as a sole volatile did not affect plant performance, suggesting that other compounds are involved or that the mixture of VOCs, rather than single molecules, accounts for the strong plant responses. Using Arabidopsis mutant and reporter lines in some of the major plant hormone signal transduction pathways further revealed the involvement of auxin and cytokinin signaling in Serendipita VOC-induced plant growth modulation. Although we are still far from translating the current knowledge into the implementation of Serendipita VOCs as biofertilizers and phytostimulants, volatile production is a novel mechanism by which sebacinoid fungi can trigger and control biological processes in plants, which might offer opportunities to address agricultural and environmental problems in the future.
Collapse
Affiliation(s)
- Jolien Venneman
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Danny Vereecke
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Tienda S, Vida C, Lagendijk E, de Weert S, Linares I, González-Fernández J, Guirado E, de Vicente A, Cazorla FM. Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Front Microbiol 2020; 11:1874. [PMID: 32849458 PMCID: PMC7426498 DOI: 10.3389/fmicb.2020.01874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Biocontrol bacteria can be used for plant protection against some plant diseases. Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model bacterium isolated from the avocado rhizosphere with strong antifungal antagonism mediated by the production of 2-hexyl, 5-propil resorcinol (HPR). Additionally, PcPCL1606 has biological control against different soil-borne fungal pathogens, including the causal agent of the white root rot of many woody crops and avocado in the Mediterranean area, Rosellinia necatrix. The objective of this study was to assess whether the semicommercial application of PcPCL1606 to soil can potentially affect avocado soil and rhizosphere microbial communities and their activities in natural conditions and under R. necatrix infection. To test the putative effects of PcPCL1606 on soil eukaryotic and prokaryotic communities, a formulated PcPCL1606 was prepared and applied to the soil of avocado plants growing in mesocosm experiments, and the communities were analyzed by using 16S/ITS metagenomics. PcPCL1606 survived until the end of the experiments. The effect of PcPCL1606 application on prokaryotic communities in soil and rhizosphere samples from natural soil was not detectable, and very minor changes were observed in eukaryotic communities. In the infested soils, the presence of R. necatrix strongly impacted the soil and rhizosphere microbial communities. However, after PcPCL1606 was applied to soil infested with R. necatrix, the prokaryotic community reacted by increasing the relative abundance of few families with protective features against fungal soilborne pathogens and organic matter decomposition (Chitinophagaceae, Cytophagaceae), but no new prokaryotic families were detected. The treatment of PcPCL1606 impacted the fungal profile, which strongly reduced the presence of R. necatrix in avocado soil and rhizosphere, minimizing its effect on the rest of the microbial communities. The bacterial treatment of formulated PcPCL1606 on avocado soils infested with R. necatrix resulted in biological control of the pathogen. This suppressiveness phenotype was analyzed, and PcPCL1606 has a key role in suppressiveness induction; in addition, this phenotype was strongly dependent on the production of HPR.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Ellen Lagendijk
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Sandra de Weert
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Irene Linares
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jorge González-Fernández
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Emilio Guirado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
36
|
Wu LS, Dong WG, Si JP, Liu JJ, Zhu YQ. Endophytic fungi, host genotype, and their interaction influence the growth and production of key chemical components of Dendrobium catenatum. Fungal Biol 2020; 124:864-876. [PMID: 32948274 DOI: 10.1016/j.funbio.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/22/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
To examine how host plant genotype, endophytic fungal species, and their interaction may affect growth and key chemical content and composition in an important orchid species, we assessed four Dendrobium catenatum cultivars co-cultured with three fungi previously isolated from D. catenatum. Fungal endophytes (Tulasnella sp., Leptosphaeria microscopica, and Guignardia sp.) specifically affected the growth and chemical composition of the four cultivars. Fungal infection significantly increased certain growth traits, especially mid-stem thickness, stem biomass, stem polysaccharide and ethanol-soluble extractive content, and leaf flavonoid and phenol content. Presence or abundance of some key chemical components was also altered by fungal treatment. These increases and alterations were highly dependent on the host genotype. The findings of this study contribute to our understanding of Dendrobium and endophytic fungi interactions, and provide vital information for improving the development and use of endophytic fungi in D. catenatum breeding.
Collapse
Affiliation(s)
- Ling-Shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, PR China
| | - Wei-Guo Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, PR China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, PR China.
| | - Jing-Jing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, PR China
| | - Yu-Qiu Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, PR China
| |
Collapse
|
37
|
Evaluation of genome size and quantitative features of the dolipore septum as taxonomic predictors for the Serendipita 'williamsii' species complex. Fungal Biol 2020; 124:781-800. [PMID: 32883429 DOI: 10.1016/j.funbio.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Despite multiple taxonomic revisions, several uncertainties at the genus and species level remain to be resolved within the Serendipitaceae family (Sebacinales). This volatile classification is attributed to the limited number of available axenic cultures and the scarcity of useful morphological traits. In the current study, we attempted to discover alternative taxonomic markers not relying on DNA sequences to differentiate among the closely related members of our Congolese Serendipita isolate collection and the reference strains S. indica (syn. Piriformospora indica) and S. williamsii (syn. P. williamsii). We demonstrated that nuclear distribution across hyphal cells and genome size (determined by flow cytometry) did not have enough resolving power, but quantitative and qualitative variations in the ultrastructure of the dolipore septa investigated by transmission electron microscopy did provide useful markers. Multivariate analysis revealed that subtle differences in ultrastructural characteristics of the parenthesome and the attached endoplasmic reticulum are most relevant when studying this fungal group. Moreover, the observed clustering pattern showed that there might be more diversity amongst the Congolese isolates within the S. 'williamsii' species complex than previously anticipated based on molecular data. Altogether, our results provide novel perspectives on the use of integrative approaches to support sebacinoid and Serendipitaceae taxonomy.
Collapse
|
38
|
Venneman J, De Tender C, Debode J, Audenaert K, Baert G, Vermeir P, Cremelie P, Bekaert B, Landschoot S, Thienpondt B, Djailo BD, Vereecke D, Haesaert G. Sebacinoids within rhizospheric fungal communities associated with subsistence farming in the Congo Basin: a needle in each haystack. FEMS Microbiol Ecol 2020; 95:5524361. [PMID: 31247636 DOI: 10.1093/femsec/fiz101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
The unique ecosystem of the Congolese rainforest has only scarcely been explored for its plant-fungal interactions. Here, we characterized the root fungal communities of field-grown maize and of Panicum from adjacent borders in the Congo Basin and assessed parameters that could shape them. The soil properties indicated that comparable poor soil conditions prevailed in fields and borders, illustrating the low input character of local subsistence farming. The rhizosphere fungal communities, dominated by ascomycetous members, were structured by plant species, slash-and-burn practices and soil P, pH and C/N ratio. Examining fungi with potential plant growth-promoting abilities, the glomeromycotan communities appeared to be affected by the same parameters, whereas the inconspicuous symbionts of the order Sebacinales seemed less susceptible to environmental and anthropogenic factors. Notwithstanding the low abundances at which they were detected, sebacinoids occurred in 87% of the field samples, implying that they represent a consistent taxon within indigenous fungal populations across smallholder farm sites. Pending further insight into their ecosystem functionality, these data suggest that Sebacinales are robust root inhabitants that might be relevant for on-farm inoculum development within sustainable soil fertility management in the Sub-Saharan region.
Collapse
Affiliation(s)
- Jolien Venneman
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Caroline De Tender
- Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96, BE-9820, Merelbeke, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281, S9, BE-9000, Ghent, Belgium
| | - Jane Debode
- Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96, BE-9820, Merelbeke, Belgium
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Geert Baert
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Pieter Vermeir
- Department of Green Chemistry and Technology, Laboratory of Chemical Analysis (LCA), Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Pieter Cremelie
- Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96, BE-9820, Merelbeke, Belgium
| | - Boris Bekaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Bert Thienpondt
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Benoît Dhed'a Djailo
- Faculty of Science and Agriculture, Kisangani University, B.P. 2012, Kisangani, Democratic Republic of Congo
| | - Danny Vereecke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, BE-9000, Ghent, Belgium
| |
Collapse
|
39
|
Inaji A, Okazawa A, Taguchi T, Nakamoto M, Katsuyama N, Yoshikawa R, Ohnishi T, Waller F, Ohta D. Rhizotaxis Modulation in Arabidopsis Is Induced by Diffusible Compounds Produced during the Cocultivation of Arabidopsis and the Endophytic Fungus Serendipita indica. PLANT & CELL PHYSIOLOGY 2020; 61:838-850. [PMID: 32016405 DOI: 10.1093/pcp/pcaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Rhizotaxis is established under changing environmental conditions via periodic priming of lateral root (LR) initiation at the root tips and adaptive LR formation along the primary root (PR). In contrast to the adaptable LR formation in response to nutrient availability, there is little information on root development during interactions with beneficial microbes. The Arabidopsis root system is characteristically modified upon colonization by the root endophytic fungus Serendipita indica, accompanied by a marked stimulation of LR formation and the inhibition of PR growth. This root system modification has been attributed to endophyte-derived indole-3-acetic acid (IAA). However, it has yet to be clearly explained how fungal IAA affects the intrinsic LR formation process. In this study, we show that diffusible compounds (chemical signals) other than IAA are present in the coculture medium of Arabidopsis and S. indica and induce auxin-responsive DR5::GUS expression in specific sections within the pericycle layer. The DR5::GUS expression was independent of polar auxin transport and the major IAA biosynthetic pathways, implicating unidentified mechanisms responsible for the auxin response and LR formation. Detailed metabolite analysis revealed the presence of multiple compounds that induce local auxin responses and LR formation. We found that benzoic acid (BA) cooperatively acted with exogenous IAA to generate a local auxin response in the pericycle layer, suggesting that BA is one of the chemical signals involved in adaptable LR formation. Identification and characterization of the chemical signals will contribute to a greater understanding of the molecular mechanisms underlying adaptable root development and to unconventional technologies for sustainable agriculture.
Collapse
Affiliation(s)
- Aoi Inaji
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Taiki Taguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Masatoshi Nakamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu Shiga, 525-8577 Japan
| | - Nao Katsuyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Ryoka Yoshikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
| | - Frank Waller
- Julius-von-Sachs-Institute, Pharmaceutical Biology, Julius-Maximilians-University Würzburg, Julius-von-Sachs-Platz 2, Würzburg D-97082, Germany
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan
| |
Collapse
|
40
|
Osman M, Stigloher C, Mueller MJ, Waller F. An improved growth medium for enhanced inoculum production of the plant growth-promoting fungus Serendipita indica. PLANT METHODS 2020; 16:39. [PMID: 32190103 PMCID: PMC7076966 DOI: 10.1186/s13007-020-00584-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The plant endophytic fungus Serendipita indica colonizes roots of a wide range of plant species and can enhance growth and stress resistance of these plants. Due to its ease of axenic cultivation and its broad host plant range including the model plant Arabidopsis thaliana and numerous crop plants, it is widely used as a model fungus to study beneficial fungus-root interactions. In addition, it was suggested to be utilized for commercial applications, e.g. to enhance yield in barley and other species. To produce inoculum, S. indica is mostly cultivated in a complex Hill-Käfer medium (CM medium), however, growth in this medium is slow, and yield of chlamydospores, which are often used for plant root inoculation, is relatively low. RESULTS We tested and optimized a simple vegetable juice-based medium for an enhanced yield of fungal inoculum. The described vegetable juice (VJ) medium is based on commercially available vegetable juice and is easy to prepare. VJ medium was superior to the currently used CM medium with respect to biomass production in liquid medium and hyphal growth on agar plates. Using solid VJ medium supplemented with sucrose (VJS), a high amount of chlamydospores developed already after 8 days of cultivation, producing significantly more spores than on CM medium. Use of VJ medium is not restricted to S. indica, as it also supported growth of two pathogenic fungi often used in plant pathology experiments: the ascomycete Fusarium graminearum, the causal agent of Fusarium head blight disease on wheat and barley, and Verticillium longisporum, the causal agent of verticillium wilt. CONCLUSIONS The described VJ medium is recommended for streamlined and efficient production of inoculum for the plant endophytic fungus Serendipita indica and might prove superior for the propagation of other fungi for research purposes.
Collapse
Affiliation(s)
- Mohamed Osman
- Julius-Von-Sachs Institute of Biosciences, Biocenter, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Theodor-Boveri Institute of Biosciences, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin J. Mueller
- Julius-Von-Sachs Institute of Biosciences, Biocenter, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Frank Waller
- Julius-Von-Sachs Institute of Biosciences, Biocenter, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| |
Collapse
|
41
|
Strom N, Hu W, Haarith D, Chen S, Bushley K. Corn and Soybean Host Root Endophytic Fungi with Toxicity Toward the Soybean Cyst Nematode. PHYTOPATHOLOGY 2020; 110:603-614. [PMID: 31631807 DOI: 10.1094/phyto-07-19-0243-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although fungal endophytes are commonly investigated for their ability to deter microbial plant pathogens, few studies have examined the activity of fungal root endophytes against nematodes. The soybean cyst nematode (SCN; Heterodera glycines), the most severe yield-limiting pathogen of soybean (Glycine max), is commonly managed through rotation of soybean with corn (Zea mays), a nonhost of the SCN. A total of 626 fungal endophytes were isolated from surface-sterilized corn and soybean roots from experimental plots in which soybean and corn had been grown under annual rotation and under 1, 3, 5, and 35 years of continuous monoculture. Fungal isolates were grouped into 401 morphotypes, which were clustered into 108 operational taxonomic units (OTUs) based on 99% sequence similarity of the full internal transcribed spacer region. Morphotype representatives within each OTU were grown in malt extract broth and in a secondary metabolite-inducing medium buffered with ammonium tartrate, and their culture filtrates were tested for nematicidal activity against SCN juveniles. A majority of OTUs containing isolates with nematicidal culture filtrates were in the order Hypocreales, with the genus Fusarium being the most commonly isolated nematicidal genus from corn and soybean roots. Less commonly isolated taxa from soybean roots included the nematophagous fungi Hirsutella rhossiliensis, Metacordyceps chlamydosporia, and Arthrobotrys iridis. Root endophytic fungal diversity in soybean was positively correlated with SCN density, suggesting that the SCN plays a role in shaping the soybean root endophytic community.
Collapse
Affiliation(s)
- Noah Strom
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | - Weiming Hu
- Entomology and Nematology Department, University of Florida, Gainesville, FL
| | - Deepak Haarith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN
| | - Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| |
Collapse
|
42
|
de Lamo FJ, Takken FLW. Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:37. [PMID: 32117376 PMCID: PMC7015898 DOI: 10.3389/fpls.2020.00037] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
Interactions between plants and the root-colonizing fungus Fusarium oxysporum (Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as Verticillium dahliae and pathogenic Fo strains. Fo also confers protection to root pathogens like Pythium ultimum, but typically not to pathogens attacking above-ground tissues such as Botrytis cinerea or Phytophthora capsici. Endophytes confer biocontrol either directly by interacting with pathogens via mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.
Collapse
Affiliation(s)
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Leyva-Rojas JA, Coy-Barrera E, Hampp R. Interaction with Soil Bacteria Affects the Growth and Amino Acid Content of Piriformospora indica. Molecules 2020; 25:E572. [PMID: 32012990 PMCID: PMC7038203 DOI: 10.3390/molecules25030572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Exploration of the effect of soil bacteria on growth and metabolism of beneficial root endophytic fungi is relevant to promote favorable associations between microorganisms of the plant rhizosphere. Hence, the interaction between the plant-growth-promoting fungus Piriformospora indica and different soil bacteria was investigated. The parameters studied were fungal growth and its amino acid composition during the interaction. Fungus and bacteria were confronted in dual cultures in Petri dishes, either through agar or separated by a Perspex wall that only allowed the bacterial volatiles to be effective. Fungal growth was stimulated by Azotobacter chroococcum, whereas Streptomyces anulatus AcH 1003 inhibited it and Streptomyces sp. Nov AcH 505 had no effect. To analyze amino acid concentration data, targeted metabolomics was implemented under supervised analysis according to fungal-bacteria interaction and time. Orthogonal partial least squares-discriminant analysis (OPLS-DA) model clearly discriminated P. indica-A. chroococcum and P. indica-S. anulatus interactions, according to the respective score plot in comparison to the control. The most observable responses were in the glutamine and alanine size groups: While Streptomyces AcH 1003 increased the amount of glutamine, A. chroococcum decreased it. The fungal growth and the increase of alanine content might be associated with the assimilation of nitrogen in the presence of glucose as a carbon source. The N-fixing bacterium A. chroococcum should stimulate fungal amino acid metabolism via glutamine synthetase-glutamate synthase (GS-GOGAT). The data pointed to a stimulated glycolytic activity in the fungus observed by the accumulation of alanine, possibly via alanine aminotransferase. The responses toward the growth-inhibiting Streptomyces AcH 1003 suggest an (oxidative) stress response of the fungus.
Collapse
Affiliation(s)
- Jorge A. Leyva-Rojas
- Faculty of Basic and Biomedical Science, Universidad Simón Bolivar, Barranquilla 080002, Colombia
- Institute of Microbiology and Infection Biology (IMIT), University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany;
| | - Ericsson Coy-Barrera
- Faculty of Basic and Applied Science, Universidad Militar Nueva Granada, Cajica 250247, Colombia
| | - Rüdiger Hampp
- Institute of Microbiology and Infection Biology (IMIT), University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany;
| |
Collapse
|
44
|
Druege U. Overcoming Physiological Bottlenecks of Leaf Vitality and Root Development in Cuttings: A Systemic Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:907. [PMID: 32714348 PMCID: PMC7340085 DOI: 10.3389/fpls.2020.00907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/03/2020] [Indexed: 05/09/2023]
Abstract
Each year, billions of ornamental young plants are produced worldwide from cuttings that are harvested from stock plants and planted to form adventitious roots. Depending on the plant genotype, the maturation of the cutting, and the particular environment, which is complex and often involves intermediate storage of cuttings under dark conditions and shipping between different climate regions, induced senescence or abscission of leaves and insufficient root development can impair the success of propagation and the quality of generated young plants. Recent findings on the molecular and physiological control of leaf vitality and adventitious root formation are integrated into a systemic perspective on improved physiologically-based control of cutting propagation. The homeostasis and signal transduction of the wound responsive plant hormones ethylene and jasmonic acid, of auxin, cytokinins and strigolactones, and the carbon-nitrogen source-sink balance in cuttings are considered as important processes that are both, highly responsive to environmental inputs and decisive for the development of cuttings. Important modules and bottlenecks of cutting function are identified. Critical environmental inputs at stock plant and cutting level are highlighted and physiological outputs that can be used as quality attributes to monitor the functional capacity of cuttings and as response parameters to optimize the cutting environment are discussed. Facing the great genetic diversity of ornamental crops, a physiologically targeted approach is proposed to define bottleneck-specific plant groups. Components from the field of machine learning may help to mathematically describe the complex environmental response of specific plant species.
Collapse
|
45
|
Kumar A, Teja ES, Mathur V, Kumari R. Phosphate-Solubilizing Fungi: Current Perspective, Mechanisms and Potential Agricultural Applications. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
El Mansy SM, Nouh FAA, Mousa MK, Abdel-Azeem AM. Endophytic Fungi: Diversity, Abundance, and Plant Growth-Promoting Attributes. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Abo Nouh FA, Abo Nahas HH, Abdel-Azeem AM. Piriformospora indica: Endophytic Fungus for Salt Stress Tolerance and Disease Resistance. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S. Beneficial Endophytic Bacteria- Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Front Microbiol 2019; 10:2888. [PMID: 31921065 PMCID: PMC6930893 DOI: 10.3389/fmicb.2019.02888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Serendipita (=Piriformospora) indica is a fungal endophytic symbiont with the capabilities to enhance plant growth and confer resistance to different stresses. However, the application of this fungus in the field has led to inconsistent results, perhaps due to antagonism with other microbes. Here, we studied the impact of individual bacterial isolates from the endophytic bacterial community on the in vitro growth of S. indica. We further analyzed how combinations of bacteria and S. indica influence plant growth and protection against the phytopathogens Fusarium oxysporum and Rhizoctonia solani. Bacterial strains of the genera Bacillus, Enterobacter and Burkholderia negatively affected S. indica growth on plates, whereas Mycolicibacterium, Rhizobium, Paenibacillus strains and several other bacteria from different taxa stimulated fungal growth. To further explore the potential of bacteria positively interacting with S. indica, four of the most promising strains belonging to the genus Mycolicibacterium were selected for further experiments. Some dual inoculations of S. indica and Mycolicibacterium strains boosted the beneficial effects triggered by S. indica, further enhancing the growth of tomato plants, and alleviating the symptoms caused by the phytopathogens F. oxysporum and R. solani. However, some combinations of S. indica and bacteria were less effective than individual inoculations. By analyzing the genomes of the Mycolicibacterium strains, we revealed that these bacteria encode several genes predicted to be involved in the stimulation of S. indica growth, plant development and tolerance to abiotic and biotic stresses. Particularly, a high number of genes related to vitamin and nitrogen metabolism were detected. Taking into consideration multiple interactions on and inside plants, we showed in this study that some bacterial strains may induce beneficial effects on S. indica and could have an outstanding influence on the plant-fungus symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
49
|
Franken P, Takken FLW, Rep M. Transcript accumulation in a trifold interaction gives insight into mechanisms of biocontrol. THE NEW PHYTOLOGIST 2019; 224:547-549. [PMID: 31545885 DOI: 10.1111/nph.16141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Philipp Franken
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences Erfurt, Kühnhäuser Straße 101, 99090, Erfurt, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A. The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. THE NEW PHYTOLOGIST 2019; 224:886-901. [PMID: 31074884 DOI: 10.1111/nph.15904] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
In nature, beneficial and pathogenic fungi often simultaneously colonise plants. Despite substantial efforts to understand the composition of natural plant-microbe communities, the mechanisms driving such multipartite interactions remain largely unknown. Here we address how the interaction between the beneficial root endophyte Serendipita vermifera and the pathogen Bipolaris sorokiniana affects fungal behaviour and determines barley host responses using a gnotobiotic soil-based split-root system. Fungal confrontation in soil resulted in induction of B. sorokiniana genes involved in secondary metabolism and a significant repression of genes encoding putative effectors. In S. vermifera, genes encoding hydrolytic enzymes were strongly induced. This antagonistic response was not activated during the tripartite interaction in barley roots. Instead, we observed a specific induction of S. vermifera genes involved in detoxification and redox homeostasis. Pathogen infection but not endophyte colonisation resulted in substantial host transcriptional reprogramming and activation of defence. In the presence of S. vermifera, pathogen infection and disease symptoms were significantly reduced despite no marked alterations of the plant transcriptional response. The activation of stress response genes and concomitant repression of putative effector gene expression in B. sorokiniana during confrontation with the endophyte suggest a reduction of the pathogen's virulence potential before host plant infection.
Collapse
Affiliation(s)
- Debika Sarkar
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Ganga Jeena
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Shadab Nizam
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Lisa K Mahdi
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| |
Collapse
|