1
|
Cao Z, Jiang Y, Li J, Zheng T, Lin C, Shen Z. Transgenic Soybean for Production of Thermostable α-Amylase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1539. [PMID: 38891347 PMCID: PMC11174511 DOI: 10.3390/plants13111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Alpha-amylases are crucial hydrolase enzymes which have been widely used in food, feed, fermentation, and pharmaceutical industries. Methods for low-cost production of α-amylases are highly desirable. Soybean seed, functioning as a bioreactor, offers an excellent platform for the mass production of recombinant proteins for its ability to synthesize substantial quantities of proteins. In this study, we generated and characterized transgenic soybeans expressing the α-amylase AmyS from Bacillus stearothermophilus. The α-amylase expression cassettes were constructed for seed specific expression by utilizing the promoters of three different soybean storage peptides and transformed into soybean via Agrobacterium-mediated transformation. The event with the highest amylase activity reached 601 U/mg of seed flour (one unit is defined as the amount of enzyme that generates 1 micromole reducing ends per min from starch at 65 °C in pH 5.5 sodium acetate buffer). The optimum pH, optimum temperature, and the enzymatic kinetics of the soybean expressed enzyme are similar to that of the E. coli expressed enzyme. However, the soybean expressed α-amylase is glycosylated, exhibiting enhanced thermostability and storage stability. Soybean AmyS retains over 80% activity after 100 min at 75 °C, and the transgenic seeds exhibit no significant activity loss after one year of storage at room temperature. The accumulated AmyS in the transgenic seeds represents approximately 15% of the total seed protein, or about 4% of the dry seed weight. The specific activity of the transgenic soybean seed flour is comparable to many commercial α-amylase enzyme products in current markets, suggesting that the soybean flour may be directly used for various applications without the need for extraction and purification.
Collapse
Affiliation(s)
- Zhenyan Cao
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.C.); (Y.J.); (J.L.); (T.Z.); (C.L.)
| | - Ye Jiang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.C.); (Y.J.); (J.L.); (T.Z.); (C.L.)
| | - Jiajie Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.C.); (Y.J.); (J.L.); (T.Z.); (C.L.)
| | - Ting Zheng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.C.); (Y.J.); (J.L.); (T.Z.); (C.L.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.C.); (Y.J.); (J.L.); (T.Z.); (C.L.)
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.C.); (Y.J.); (J.L.); (T.Z.); (C.L.)
| |
Collapse
|
2
|
Zhou Z, Liao B, Wang S, Tang J, Zhao H, Tong M, Li K, Xiong S. Improved Production of Anti-FGF-2 Nanobody Using Pichia pastoris and Its Effect on Antiproliferation of Keratinocytes and Alleviation of Psoriasis. Arch Immunol Ther Exp (Warsz) 2023; 71:20. [PMID: 37632545 DOI: 10.1007/s00005-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 08/28/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is not only an angiogenic factor, but also a mitogen for epidermal keratinocytes. FGF-2 has been shown to be positively immunoreactive in the basal layer of psoriatic lesions. In previous work, we used the Escherichia coli (E. coli) expression system to biosynthesize a biologically active anti-FGF-2 nanobody (Nb) screened by phage display technology, but the low yield limited its clinical application. In this study, we aimed to increase the yield of anti-FGF-2 Nb, and evaluate its therapeutic potential for psoriasis by inhibiting FGF-2-mediated mitogenic signaling in psoriatic epidermal keratinocytes. We demonstrated a 16-fold improvement in the yield of anti-FGF-2 Nb produced in the Pichia pastoris (P. pastoris) compared to the E. coli expression system. In vitro, the FGF-2-induced HaCaT cell model (FHCM) was established to mimic the key feature of keratinocyte overproliferation in psoriasis. Anti-FGF-2 Nb was able to effectively inhibit the proliferation and migration of FHCM. In vivo, anti-FGF-2 Nb attenuated the severity of imiquimod (IMQ)-induced psoriatic lesions in mice, and also improved the inflammatory microenvironment by inhibiting the secretion of inflammatory cytokines (IL-1β, IL-6, IL-23, and TNF-α), chemokines (CXCL1 and CCL20), and neutrophil infiltration in skin lesions. These were mainly related to the suppression of FGF-2-mediated mitogenic signaling in psoriatic keratinocytes. In conclusion, we have improved the production of anti-FGF-2 Nb and demonstrated the modality of attenuating the abnormal proliferative behavior of psoriatic keratinocytes by inhibiting FGF-2-mediated mitogenic signaling, which offers the possibility of treating psoriasis.
Collapse
Affiliation(s)
- Zhenlong Zhou
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Baixin Liao
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shengli Wang
- Institute of Biomedical Transformation, School of Basic Medicine and Public Health, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Tang
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hui Zhao
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mingjie Tong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Keting Li
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Sheng Xiong
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
3
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Front Microbiol 2023; 14:1191553. [PMID: 37362936 PMCID: PMC10288326 DOI: 10.3389/fmicb.2023.1191553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, an acidophilic GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 2.0-fold increase, 67.5 ± 1.95 U/mL). TaMan5 displayed the highest specificity toward locust bean gum (Km = 1.34 mg/mL, Vmax = 749.14 μmol/min/mg) at pH 4.0 and 65°C. Furthermore, TaMan5 displayed remarkable tolerance to acidic environments, retaining over 80% of its original activity at pH 3.0-5.0. The activity of TaMan5 was remarkably decreased by Cu2+, Mn2+, and SDS, while Fe2+/Fe3+ improved the enzyme activity. A thin-layer chromatography (TLC) analysis of the action model showed that TaMan5 could rapidly degrade mannan/MOS into mannobiose without mannose via hydrolysis action as well as transglycosylation. Site-directed mutagenesis results suggested that Glu205, Glu313, and Asp357 of TaMan5 are crucial catalytic residues, with Asp152 playing an auxiliary function. Additionally, TaMan5 and commercial α-galactosidase displayed a remarkable synergistic effect on the degradation of galactomannans. This study provided a novel β-mannanase with ideal characteristics and can be considered a potential candidate for the production of bioactive polysaccharide mannobiose.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
4
|
Li C, Cao H, Wu W, Meng G, Zhao C, Cao Y, Yuan J. Expression and characterization of α-L-arabinofuranosidase derived from Aspergillus awamori and its enzymatic degradation of corn byproducts with xylanase. BIORESOURCE TECHNOLOGY 2023:129278. [PMID: 37290707 DOI: 10.1016/j.biortech.2023.129278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
In this study, α-L-arabinofuranosidase (AF) from Aspergillus awamori was heterologously expressed in Pichia pastoris X33, with a 1-fold increase in AF activity after codon and vector optimization. AF remained stable at 60-65 °C and displayed a broad pH stability range of 2.5-8.0. It also demonstrated considerable resistance to pepsin and trypsin. Furthermore, compared with xylanase alone, AF with xylanase exhibited a marked synergistic effect in the degradation of expanded corn bran, corn bran, and corn distillers' dried grains with solubles, reducing sugars by 3.6-fold, 1.4-fold, and 6.5-fold, respectively, with the degree of synergy increasing to 4.61, 2.44, and 5.4, respectively, while in vitro dry matter digestibility values were 17.6%, 5.2%, and 8.8%, respectively. After enzymatic saccharification, corn byproducts were converted to prebiotic xylo-oligosaccharides and arabinoses, thereby demonstrating the favorable properties of AF in the degradation of corn biomass and its byproducts.
Collapse
Affiliation(s)
- Chunyue Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Meng
- Ningxia Eppen Biotech Co., Ltd., China Agricultural University, Beijing 100193, China
| | - Chunguang Zhao
- Ningxia Eppen Biotech Co., Ltd., China Agricultural University, Beijing 100193, China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Chen N, Yang S, You D, Shen J, Ruan B, Wu M, Zhang J, Luo X, Tang H. Systematic genetic modifications of cell wall biosynthesis enhanced the secretion and surface-display of polysaccharide degrading enzymes in Saccharomyces cerevisiae. Metab Eng 2023; 77:273-282. [PMID: 37100192 DOI: 10.1016/j.ymben.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Saccharomyces cerevisiae is a robust cell factory to secrete or surface-display cellulase and amylase for the conversion of agricultural residues into valuable chemicals. Engineering the secretory pathway is a well-known strategy for overproducing these enzymes. Although cell wall biosynthesis can be tightly linked to the secretory pathway by regulation of all involved processes, the effect of its modifications on protein production has not been extensively studied. In this study, we systematically studied the effect of engineering cell wall biosynthesis on the activity of cellulolytic enzyme β-glucosidase (BGL1) by comparing seventy-nine gene knockout S. cerevisiae strains and newly identified that inactivation of DFG5, YPK1, FYV5, CCW12 and KRE1 obviously improved BGL1 secretion and surface-display. Combinatorial modifications of these genes, particularly double deletion of FVY5 and CCW12, along with the use of rich medium, increased the activity of secreted and surface-displayed BGL1 by 6.13-fold and 7.99-fold, respectively. Additionally, we applied this strategy to improve the activity of the cellulolytic cellobiohydrolase and amylolytic α-amylase. Through proteomic analysis coupled with reverse engineering, we found that in addition to the secretory pathway, regulation of translation processes may also involve in improving enzyme activity by engineering cell wall biosynthesis. Our work provides new insight into the construction of a yeast cell factory for efficient production of polysaccharide degrading enzymes.
Collapse
Affiliation(s)
- Nanzhu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuo Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology, 3501 Daxue Road, Jinan, 250353, China
| | - Dawei You
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Banlai Ruan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mei Wu
- Synceres Biosciences (Shenzhen) Co., Ltd, Nanshan Medical Device Industrial Park, Nanhai Avenue, Shenzhen, 518067, China
| | - Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zha ZQ, You S, Hu YH, Zhang F, Chen YW, Wang J. Asn57 N-glycosylation promotes the degradation of hemicellulose by β-1,3-1,4-glucanase from Rhizopus homothallicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8707-8721. [PMID: 35366731 DOI: 10.1007/s11356-022-19959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
N-glycosylation alters the properties of different enzymes in different ways. Rhizopus homothallicus was first described as an environmental isolate from desert soil in Guatemala. A new gene encoding glucanase RhGlu16B was identified in R. homothallicus. It had high specific activity (9673 U/mg) when barley glucan was used as a substrate, and β-glucan is hemicellulose that is abundant in nature. RhGlu16B has only one N-glycosylation site in its Ala55-Gly64 loop. It was found that N-glycosylation increased its Tm value and catalytic efficiency by 5.1 °C and 59%, respectively. Adding N-glycosylation to the same region of GH16 family glucanases TlGlu16A (from Talaromyces leycettanus) increased its thermostability and catalytic efficiency by 6.4 °C and 38%, respectively. In a verification experiment using GH16 family glucanases BisGlu16B (from Bisporus) in which N-glycosylation was removed, N-glycosylation also appeared to promote thermostability and catalytic efficiency. N-glycosylation reduced the overall root mean square deviation of the enzyme structure, creating rigidity and increasing overall thermostability. This study provided a reference for the molecular modification of GH16 family glucanases and guided the utilization of β-glucan in hemicellulose.
Collapse
Affiliation(s)
- Zi-Qian Zha
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Yang-Hao Hu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Fang Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Yi-Wen Chen
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, People's Republic of China.
| |
Collapse
|
7
|
Sun X, Liang Y, Wang Y, Zhang H, Zhao T, Yao B, Luo H, Huang H, Su X. Simultaneous manipulation of multiple genes within a same regulatory stage for iterative evolution of Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:26. [PMID: 35248141 PMCID: PMC8898424 DOI: 10.1186/s13068-022-02122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/19/2022] [Indexed: 11/12/2022]
Abstract
Background While there is growing interest in developing non-canonical filamentous fungi as hosts for producing secretory proteins, genetic engineering of filamentous fungi for improved expression often relies heavily on the understanding of regulatory mechanisms. Results In this study, using the cellulase-producing filamentous fungus Trichoderma reesei as a model system, we designed a semi-rational strategy by arbitrarily dividing the regulation of cellulase production into three main stages-transcription, secretion, and cell metabolism. Selected regulatory or functional genes that had been experimentally verified or predicted to enhance cellulase production were overexpressed using strong inducible or constitutive promoters, while those that would inhibit cellulase production were repressed via RNAi-mediated gene silencing. A T. reesei strain expressing the surface-displayed DsRed fluorescent protein was used as the recipient strain. After three consecutive rounds of engineering, the cellulase activity increased to up to 4.35-fold and the protein concentration increased to up to 2.97-fold in the genetically modified strain. Conclusions We demonstrated that, as a proof-of-concept, selected regulatory or functional genes within an arbitrarily defined stage could be pooled to stimulate secretory cellulase production, and moreover, this method could be iteratively used for further improvement. This method is semi-rational and can essentially be used in filamentous fungi with little regulatory information. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02122-0.
Collapse
|
8
|
Chun J, Bai J, Ryu S. Yeast Surface Display System for Facilitated Production and Application of Phage Endolysin. ACS Synth Biol 2020; 9:508-516. [PMID: 32119773 DOI: 10.1021/acssynbio.9b00360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bacteriophage endolysin is one of the potential alternatives of conventional antibiotics, but the intrinsic limitations of the bacterial expression system may undermine the comprehensive application of this therapeutic protein. To circumvent such limitations, we adopted a yeast surface display system as a novel expression platform for endolysin. Endolysin LysSA11 from staphylococcal phage SA11 was expressed and surface-displayed in Saccharomyces cerevisiae to exhibit sufficient antimicrobial activity against Staphylococcus aureus. Without any protein isolation or purification procedures, we showed that direct treatment of LysSA11-displaying yeast cells could accomplish a 5-log reduction of viable Staphylococcus aureus within 3 h. Furthermore, the surface-displayed LysSA11 exhibited superior stability over the soluble form of purified LysSA11 during 14 days of storage in a refrigerated environment. We suggest that the yeast surface display system is an efficient, stable, and straightforward platform for the production and antibacterial applications of endolysin.
Collapse
Affiliation(s)
- Jihwan Chun
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jaewoo Bai
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Wang N, Wang KY, Xu F, Li G, Liu D. The effect of N-glycosylation on the expression of the tetanus toxin fragment C in Pichia pastoris. Protein Expr Purif 2019; 166:105503. [PMID: 31550499 DOI: 10.1016/j.pep.2019.105503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
The N-glycosylation process that occurs in the Pichia pastoris protein expression system can have a significant effect on the yield of heterologous glycoproteins secreted from the yeast. The basis of the effect of N-glycosylation on yield, however, has not been elucidated. In order to investigate the effect of N-glycosylation on heterologous protein production, site-directed mutation was performed on five potential N-glycosylation sites of the tetanus toxin fragment C (TetC). Unaltered TetC (wild-TetC) and eight mutants, in which different numbers and locations of N-glycosylation sites were altered, were expressed in P. pastoris GS115. The recombinant target proteins presented different levels of N-glycosylation. The wild Tet-C and 4 mutations sites of putative N-glycosylation (4Gly mutant: N280Q) had the highest level of secreted protein, while 1 mutation of putative N-glycosylation sites (1Gly mutant: N39/64/85/205Q) had the highest level of intracellular, non-secreted heterologous protein. Reducing the number of native N-glycosylation sites decreased the level of glycosylation, as well as the level of secretion. Introduction of a N-glycosylation site at position 320, however, also reduced the level of expression and secretion of recombinant protein. These results indicate that the number and location of N-glycosylation sites jointly have an effect on the expression and secretion of heterologous glycoproteins in P. pastoris.
Collapse
Affiliation(s)
- Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kevin Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, 74014, USA.
| | - Fangfang Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - GangQiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - DeHu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Zhang Y, Min Z, Qin Y, Ye DQ, Song YY, Liu YL. Efficient Display of Aspergillus niger β-Glucosidase on Saccharomyces cerevisiae Cell Wall for Aroma Enhancement in Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5169-5176. [PMID: 30997795 DOI: 10.1021/acs.jafc.9b00863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to evaluate the potential application of cell-surface-displayed β-glucosidase (BGL) in wine aroma enhancement. Gene cassettes for the surface display of Aspergillus niger BGL were constructed using different promoters ( GPD and SED1) and glycosylphosphatidylinositol (GPI) anchoring regions (Sag1, Sed1, and Cwp2). The differences in surface-display cassettes, the tolerance of the displayed BGL to typical winemaking conditions, and the hydrolysis capacity for the liberation of grape aroma glycosides were analyzed. Results revealed that simultaneous utilization of GPD promoter and Sed1 anchoring domain achieved the highest BGL activity. The displayed BGL exhibited relatively high activity at pH 3.0 and at glucose concentration below 2.5% (w/v), compared to commercial enzyme (AR 2000), but exhibited no significant difference under varying ethanol concentrations. Furthermore, the surface-displayed BGL presented better ability to release free terpenols compared to AR 2000. Therefore, a surface-display system could provide a new viable solution for enhancing wine aroma.
Collapse
Affiliation(s)
- Yang Zhang
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Zhuo Min
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Yi Qin
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Dong-Qing Ye
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Yu-Yang Song
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Yan-Lin Liu
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| |
Collapse
|
11
|
RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:9324-9332. [PMID: 31000602 DOI: 10.1073/pnas.1820561116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cellular machinery that supports protein synthesis and secretion lies at the foundation of cell factory-centered protein production. Due to the complexity of such cellular machinery, the challenge in generating a superior cell factory is to fully exploit the production potential by finding beneficial targets for optimized strains, which ideally could be used for improved secretion of other proteins. We focused on an approach in the yeast Saccharomyces cerevisiae that allows for attenuation of gene expression, using RNAi combined with high-throughput microfluidic single-cell screening for cells with improved protein secretion. Using direct experimental validation or enrichment analysis-assisted characterization of systematically introduced RNAi perturbations, we could identify targets that improve protein secretion. We found that genes with functions in cellular metabolism (YDC1, AAD4, ADE8, and SDH1), protein modification and degradation (VPS73, KTR2, CNL1, and SSA1), and cell cycle (CDC39), can all impact recombinant protein production when expressed at differentially down-regulated levels. By establishing a workflow that incorporates Cas9-mediated recombineering, we demonstrated how we could tune the expression of the identified gene targets for further improved protein production for specific proteins. Our findings offer a high throughput and semirational platform design, which will improve not only the production of a desired protein but even more importantly, shed additional light on connections between protein production and other cellular processes.
Collapse
|
12
|
de Paiva DP, Rocha TB, Rubini MR, Nicola AM, Reis VCB, Torres FAG, de Moraes LMP. A study on the use of strain-specific and homologous promoters for heterologous expression in industrial Saccharomyces cerevisiae strains. AMB Express 2018; 8:82. [PMID: 29785587 PMCID: PMC5962522 DOI: 10.1186/s13568-018-0613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023] Open
Abstract
Polymorphism is well known in Saccharomyces cerevisiae strains used for different industrial applications, however little is known about its effects on promoter efficiency. In order to test this, five different promoters derived from an industrial and a laboratory (S288c) strain were used to drive the expression of eGFP reporter gene in both cells. The ADH1 promoter (PADH1) in particular, which showed more polymorphism among the promoters analyzed, also exhibited the highest differences in intracellular fluorescence production. This was further confirmed by Northern blot analysis. The same behavior was also observed when the gene coding for secreted α-amylase from Cryptococcus flavus was placed under the control of either PADH1. These results underline the importance of the careful choice of the source of the promoter to be used in industrial yeast strains for heterologous expression.
Collapse
|
13
|
Zubieta MP, Contesini FJ, Rubio MV, Gonçalves AEDSS, Gerhardt JA, Prade RA, Damasio ARDL. Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microb Biotechnol 2018; 11:346-358. [PMID: 29316319 PMCID: PMC5812239 DOI: 10.1111/1751-7915.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.
Collapse
Affiliation(s)
- Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | | | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOKUSA
| | | |
Collapse
|
14
|
Recent advances in enhanced enzyme activity, thermostability and secretion by N-glycosylation regulation in yeast. Biotechnol Lett 2018; 40:847-854. [DOI: 10.1007/s10529-018-2526-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
15
|
Moderate Expression of SEC16 Increases Protein Secretion by Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.03400-16. [PMID: 28476767 DOI: 10.1128/aem.03400-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is widely used to produce biopharmaceutical proteins. However, the limited capacity of the secretory pathway may reduce its productivity. Here, we increased the secretion of a heterologous α-amylase, a model protein used for studying the protein secretory pathway in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species resulting from the heterologous α-amylase production was reduced. A genome-wide expression analysis indicated decreased endoplasmic reticulum stress in the strain that moderately overexpressed SEC16, which was consistent with a decreased volume of the endoplasmic reticulum. Additionally, fewer mitochondria were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance.IMPORTANCE There is an increasing demand for recombinant proteins to be used as enzymes and pharmaceuticals. The yeast Saccharomyces cerevisiae is a cell factory that is widely used to produce recombinant proteins. Our study revealed that moderate overexpression of SEC16 increased recombinant protein secretion in S. cerevisiae This new strategy can be combined with other targets to engineer cell factories to efficiently produce protein in the future.
Collapse
|
16
|
Xu S, Zhang GY, Zhang H, Kitajima T, Nakanishi H, Gao XD. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Fact 2016; 15:179. [PMID: 27769287 PMCID: PMC5073930 DOI: 10.1186/s12934-016-0575-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
Abstract
Background To humanize yeast N-glycosylation pathways, genes involved in yeast specific hyper-mannosylation must be disrupted followed by the introduction of genes catalyzing the synthesis, transport, and addition of human sugars. However, deletion of these genes, for instance, OCH1, which initiates hyper-mannosylation, could cause severe defects in cell growth, morphogenesis and response to environmental challenges. Results In this study, overexpression of RHO1, which encodes the Rho1p small GTPase, is confirmed to partially recover the growth defect of Saccharomyces cerevisiae Δalg3Δoch1 double mutant strain. In addition, transmission electron micrographs indicated that the cell wall structure of RHO1-expressed cells have an enhanced glucan layer and also a recovered mannoprotein layer, revealing the effect of Rho1p GTPase on cell wall biosynthesis. Similar complementation phenotypes have been confirmed by overexpression of the gene that encodes Fks2 protein, a catalytic subunit of a 1,3-β-glucan synthase. Besides the recovery of cell wall structure, the RHO1-overexpressed Δalg3Δoch1 strain also showed improved abilities in temperature tolerance, osmotic potential and drug sensitivity, which were not observed in the Δalg3Δoch1-FKS2 cells. Moreover, RHO1 overexpression could also increase N-glycan site occupancy and the amount of secreted glycoproteins. Conclusions Overexpression of RHO1 in ‘humanized’ glycoprotein producing yeasts could significantly facilitate its future industrial applications for the production of therapeutic glycoproteins. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sha Xu
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ge-Yuan Zhang
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huijie Zhang
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Toshihiko Kitajima
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Hideki Nakanishi
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiao-Dong Gao
- School of Biotechnology, Key Laboratory of Glycobiology and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
17
|
5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 101:241-251. [DOI: 10.1007/s00253-016-7891-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/25/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
|
18
|
Tang H, Wang S, Wang J, Song M, Xu M, Zhang M, Shen Y, Hou J, Bao X. N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Sci Rep 2016; 6:25654. [PMID: 27156860 PMCID: PMC4860636 DOI: 10.1038/srep25654] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, β-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion.
Collapse
Affiliation(s)
- Hongting Tang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Shenghuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Jiajing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Meihui Song
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Mengyang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Mengying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
19
|
Kitagawa T, Okita H, Baron B, Tokuda K, Nakamura M, Wang Y, Akada J, Hoshida H, Akada R, Kuramitsu Y, Nakamura K. Mutant screening for oncogenes of Ewing's sarcoma using yeast. Appl Microbiol Biotechnol 2015; 99:6737-44. [PMID: 25936378 DOI: 10.1007/s00253-015-6621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 11/30/2022]
Abstract
Many fusion genes, which are the result of chromosomal translocation and work as an oncogene, have been recently identified, but their mode of actions is still unclear. Here, we performed a yeast mutant screening for oncogenes of Ewing's sarcoma to easily identify essential regions responsible for fusion protein functions using a yeast genetic system. Three kinds of oncogenes including EWS/FLI1, EWS/ERG, and EWS/E1AF exhibited growth inhibition in yeast. In this screening, we identified 13 single amino acid substitution mutants which could suppress growth inhibition by oncogenes. All of the point mutation positions of the EWS/ETS family proteins were located within the ETS domain, which is responsible for the interaction with a specific DNA motif. Eight-mutated residues within the ETS domain matched to 13 completely conserved amino acid residues in the human ETS domains. Moreover, mutants also showed reduced transcriptional activities on the DKK2 promoter, which is upregulated by the EWS/ETS family, compared to that of the wild type. These results suggest that the ETS domain in the EWS/ETS family proteins may be a primary target for growth inhibition of Ewing's sarcoma and that this yeast screening system can be applied for the functional screening of the oncogenes.
Collapse
Affiliation(s)
- Takao Kitagawa
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Screening of accurate clones for gene synthesis in yeast. J Biosci Bioeng 2015; 119:251-9. [DOI: 10.1016/j.jbiosc.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022]
|
21
|
Enhanced expression of recombinant elastase in Pichia pastoris through the substitution of Thr for Ser in Asn-Xaa-Ser sequons. Appl Biochem Biotechnol 2014; 175:428-35. [PMID: 25308616 DOI: 10.1007/s12010-014-1284-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
N-glycosylation usually occurs at the Asn-Xaa-Ser/Thr sequon of glycoproteins in Pichia pastoris, exerting great effects on expression efficiency; however, Asn-Xaa-Thr is more efficiently glycosylated than Asn-Xaa-Ser. In this study, the role of the two sequons in the expression of recombinant elastase (rPAE) was investigated. At N43, N212, and N280 of rPAE, Asn-Xaa-Thr was substituted for the native Asn-Xaa-Ser sequon through site-directed mutagenesis, and the two sequon forms were introduced into rPAE at N36 and N264. As expected, substitution at N36, N43, N212, and N280 enhanced the degree of N-glycosylation. At N212 or N280, substitution increased rPAE production effectively by 43 and 25 %, respectively. In comparison, at N36, N43, and N264, the change inhibited rPAE expression to varying extents; specifically, substitution at N36 resulted in a 31 % decrease, while substitution at N43 or N264 resulted in a decrease of less than 9 %. It is suggested that the effect of the substitution of Asn-Xaa-Thr for Asn-Xaa-Ser on rPAE expression is roughly related to the role of the original Asn-Xaa-Ser sequon. As the conversion of Ser to Thr at N-glycosylation sites through site-directed mutagenesis is easily achieved, it is a feasible means of improving the expression of recombinant proteins in P. pastoris.
Collapse
|
22
|
Enhanced expression of recombinant elastase in Pichia pastoris through addition of N-glycosylation sites to the propeptide. Biotechnol Lett 2014; 36:2467-71. [PMID: 25048243 DOI: 10.1007/s10529-014-1620-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
N-Glycosylation is a common form of protein post-translational modification in Pichia pastoris and greatly affects folding and secretion. The propeptide of the Pseudomonas aeruginosa elastase (PAE) is indispensable for proper folding and secretion of the enzyme. We have studied the effect of introducing N-glycosylation sites to the propeptide of the recombinant elastase (rPAE) on its expression levels in P. pastoris. Addition of N-glycosylation sites to the propeptide at N51 or N93 enhanced rPAE production levels by 104 or 57%, respectively, while addition at N11 or N127 led to a 25 or 50% decrease, respectively. The introduced N-glycosylation sites in the propeptide at these four sites exerted a null effect on the N-glycosylation degree of mature rPAE.
Collapse
|
23
|
Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat BMA, Nonklang S, Nakamura M, Akada R. Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 2013; 31:29-46. [PMID: 24307396 DOI: 10.1002/yea.2993] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/06/2022] Open
Abstract
The cloning of DNA fragments into vectors or host genomes has traditionally been performed using Escherichia coli with restriction enzymes and DNA ligase or homologous recombination-based reactions. We report here a novel DNA cloning method that does not require DNA end processing or homologous recombination, but that ensures highly accurate cloning. The method exploits the efficient non-homologous end-joining (NHEJ) activity of the yeast Kluyveromyces marxianus and consists of a novel functional marker selection system. First, to demonstrate the applicability of NHEJ to DNA cloning, a C-terminal-truncated non-functional ura3 selection marker and the truncated region were PCR-amplified separately, mixed and directly used for the transformation. URA3(+) transformants appeared on the selection plates, indicating that the two DNA fragments were correctly joined by NHEJ to generate a functional URA3 gene that had inserted into the yeast chromosome. To develop the cloning system, the shortest URA3 C-terminal encoding sequence that could restore the function of a truncated non-functional ura3 was determined by deletion analysis, and was included in the primers to amplify target DNAs for cloning. Transformation with PCR-amplified target DNAs and C-terminal truncated ura3 produced numerous transformant colonies, in which a functional URA3 gene was generated and was integrated into the chromosome with the target DNAs. Several K. marxianus circular plasmids with different selection markers were also developed for NHEJ-based cloning and recombinant DNA construction. The one-step DNA cloning method developed here is a relatively simple and reliable procedure among the DNA cloning systems developed to date.
Collapse
Affiliation(s)
- Hisashi Hoshida
- Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Tokiwadai, Ube, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|