1
|
Zhang XY, Zhao XM, Shi XY, Mei YJ, Ren XJ, Zhao XH. Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose. Biotechnol Lett 2024; 46:925-943. [PMID: 39340754 DOI: 10.1007/s10529-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Xylitol, as an important food additive and fine chemical, has a wide range of applications, including food, medicine, chemical, and feed. This review paper focuses on the research progress of xylitol biosynthesis, from overcoming the limitations of traditional chemical hydrogenation and xylose bioconversion, to the full biosynthesis of xylitol production using green and non-polluting glucose as substrate. In the review, the molecular strategies of wild strains to increase xylitol yield, as well as the optimization strategies and metabolic reconfiguration during xylitol biosynthesis are discussed. Subsequently, on the basis of existing studies, the paper further discusses the current status of research and future perspectives of xylitol production using glucose as a single substrate. The evolution of raw materials from xylose-based five-carbon sugars to glucose is not only cost-saving, but also safe and environmentally friendly, which brings new opportunities for the green industrial chain of xylitol.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China
| | - Xi-Min Zhao
- Zibo Occupational Disease Prevention and Control Hospital/Zibo Sixth People's Hospital, Shandong, China
| | - Xin-Yu Shi
- Zibo Product Quality Testing Research Institute, Shandong, China
| | - Ying-Jie Mei
- Zibo Institute for Food and Drug Control, Shandong, China
| | - Xiao-Jie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| | - Xin-He Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| |
Collapse
|
2
|
Zhang G, Zabed HM, Zhang Y, Li J, Yun J, Qi X. Random mutagenesis and transcriptomics-guided rational engineering in Zygosaccharomyces rouxii for elevating D-arabitol biosynthesis. BIORESOURCE TECHNOLOGY 2024; 400:130685. [PMID: 38599349 DOI: 10.1016/j.biortech.2024.130685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
D-arabitol, a versatile compound with applications in food, pharmaceutical, and biochemical industries, faces challenges in biomanufacturing due to poor chassis performance and unclear synthesis mechanisms. This study aimed to enhance the performance of Zygosaccharomyces rouxii to improve D-arabitol production. Firstly, a mutant strain Z. rouxii M075 obtained via atmospheric and room temperature plasma-mediated mutagenesis yielded 42.0 g/L of D-arabitol at 96 h, with about 50 % increase. Transcriptome-guided metabolic engineering of pathway key enzymes co-expression produced strain ZR-M3, reaching 48.9 g/L D-arabitol after 96 h fermentation. Finally, under optimized conditions, fed-batch fermentation of ZR-M3 in a 5 L bioreactor yielded an impressive D-arabitol titer of 152.8 g/L at 192 h, with a productivity of 0.8 g/L/h. This study highlights promising advancements in enhancing D-arabitol production, offering potential for more efficient biomanufacturing processes and wider industrial applications.
Collapse
Affiliation(s)
- Guoyan Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Yufei Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Guo F, Qiao Y, Xin F, Zhang W, Jiang M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol 2023; 41:1066-1079. [PMID: 36967258 DOI: 10.1016/j.tibtech.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Bioconversion of C1 feedstocks for chemical production offers a promising solution to global challenges such as the energy and food crises and climate change. The methylotroph Pichia pastoris is an attractive host system for the production of both recombinant proteins and chemicals from methanol. Recent studies have also demonstrated its potential for utilizing CO2 through metabolic engineering or coupling with electrocatalysis. This review focuses on the bioconversion of C1 feedstocks for chemical production using P. pastoris. Herein the challenges and feasible strategies for chemical production in P. pastoris are discussed. The potential of P. pastoris to utilize other C1 feedstocks - including CO2 and formate - is highlighted, and new insights from the perspectives of synthetic biology and material science are proposed.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Yangyi Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| |
Collapse
|
4
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
5
|
Huang J, An Y, Zabed HM, Ravikumar Y, Zhao M, Yun J, Zhang G, Zhang Y, Li X, Qi X. Enhanced Biosynthesis of D-Arabitol by Metschnikowia reukaufii Through Optimizing Medium Composition and Fermentation Conditions. Appl Biochem Biotechnol 2022; 194:3119-3135. [DOI: 10.1007/s12010-022-03910-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
6
|
Ravikumar Y, Razack SA, Ponpandian LN, Zhang G, Yun J, Huang J, Lee D, Li X, Dou Y, Qi X. Microbial hosts for production of D-arabitol: Current state-of-art and future prospects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
An Integrated Analysis of Intracellular Metabolites and Virulence Gene Expression during Biofilm Development of a Clinical Isolate of Candida tropicalis on Distinct Surfaces. Int J Mol Sci 2021; 22:ijms22169038. [PMID: 34445744 PMCID: PMC8396647 DOI: 10.3390/ijms22169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Emergence of Candida tropicalis, which causes potential life-threatening invasive candidiasis, is often associated with colonization of medical devices as biofilm. Biofilm plays an important role in the virulence of the pathogen because of its complex structure, which provides resistance to conventional antimicrobials. In this study, the metabolic response of a clinical strain of C. tropicalis colonizing three distinct surfaces (polytetrafluoroethylene (PTFE), polystyrene, and polycarbonate) as well as the expression of virulence and stress related genes (ALS3, Hsp21, SAP1, SAP2, SAP3, and CYR1), were explored. Our results showed that lesser biofilm was developed on PTFE compared to polystyrene and polycarbonate. GS-MS metabolic analysis identified a total of 36 metabolites in the intracellular extract of cells grown on polystyrene, polycarbonate, and PTFE, essentially belonging to central carbon metabolism, amino acids, and lipids metabolism. The metabolic analysis showed that saturated and unsaturated fatty acids are preferentially produced during biofilm development on polycarbonate, whereas trehalose and vitamin B6, known as cellular protectors against a variety of stressors, were characteristic of biofilm on PTFE. The results of the transcriptomic analysis consider the different degrees of colonization of the three substrates, being CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA, downregulated in PTFE biofilm compared to polycarbonate or polystyrene biofilms, while Hsp21 was upregulated in concomitance with the potential unfavorable conditions for biofilm formation on PTFE. Overall, this work provides new insights into the knowledge of C. tropicalis biofilm development on surfaces of medical relevance in the perspective of improving the management of Candida infections.
Collapse
|
8
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
9
|
Lacerda MP, Oh EJ, Eckert C. The Model System Saccharomyces cerevisiae Versus Emerging Non-Model Yeasts for the Production of Biofuels. Life (Basel) 2020; 10:E299. [PMID: 33233378 PMCID: PMC7700301 DOI: 10.3390/life10110299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganisms are effective platforms for the production of a variety of chemicals including biofuels, commodity chemicals, polymers and other natural products. However, deep cellular understanding is required for improvement of current biofuel cell factories to truly transform the Bioeconomy. Modifications in microbial metabolic pathways and increased resistance to various types of stress caused by the production of these chemicals are crucial in the generation of robust and efficient production hosts. Recent advances in systems and synthetic biology provide new tools for metabolic engineering to design strategies and construct optimal biocatalysts for the sustainable production of desired chemicals, especially in the case of ethanol and fatty acid production. Yeast is an efficient producer of bioethanol and most of the available synthetic biology tools have been developed for the industrial yeast Saccharomyces cerevisiae. Non-conventional yeast systems have several advantageous characteristics that are not easily engineered such as ethanol tolerance, low pH tolerance, thermotolerance, inhibitor tolerance, genetic diversity and so forth. Currently, synthetic biology is still in its initial steps for studies in non-conventional yeasts such as Yarrowia lipolytica, Kluyveromyces marxianus, Issatchenkia orientalis and Pichia pastoris. Therefore, the development and application of advanced synthetic engineering tools must also focus on these underexploited, non-conventional yeast species. Herein, we review the basic synthetic biology tools that can be applied to the standard S. cerevisiae model strain, as well as those that have been developed for non-conventional yeasts. In addition, we will discuss the recent advances employed to develop non-conventional yeast strains that are efficient for the production of a variety of chemicals through the use of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Maria Priscila Lacerda
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Carrie Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
- National Renewable Energy Laboratory (NREL), Biosciences Center, Golden, CO 80401, USA
| |
Collapse
|
10
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
11
|
Evaluation of Product Distribution in Chemostat and Batch Fermentation in Lactic Acid-Producing Komagataella phaffii Strains Utilizing Glycerol as Substrate. Microorganisms 2020; 8:microorganisms8050781. [PMID: 32455925 PMCID: PMC7285341 DOI: 10.3390/microorganisms8050781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
Lactic acid is the monomeric unit of polylactide (PLA), a bioplastic widely used in the packaging, automotive, food, and pharmaceutical industries. Previously, the yeast Komagataella phaffii was genetically modified for the production of lactate from glycerol. For this, the bovine L-lactate dehydrogenase- (LDH)-encoding gene was inserted and the gene encoding the pyruvate decarboxylase (PDC) was disrupted, resulting in the GLp strain. This showed a yield of 67% L-lactic acid and 20% arabitol as a by-product in batches with oxygen limitation. Following up on these results, the present work endeavored to perform a detailed study of the metabolism of this yeast, as well as perturbing arabitol synthesis in an attempt to increase lactic acid titers. The GLp strain was cultivated in a glycerol-limited chemostat at different dilution rates, confirming that the production of both lactic acid and arabitol is dependent on the specific growth rate (and consequently on the concentration of the limiting carbon source) as well as on the oxygen level. Moreover, disruption of the gene encoding arabitol dehydrogenase (ArDH) was carried out, resulting in an increase of 20% in lactic acid and a 50% reduction in arabitol. This study clarifies the underlying metabolic reasons for arabitol formation in K. phaffii and points to ways for improving production of lactic acid using K. phaffii as a biocatalyst.
Collapse
|
12
|
Razali SA, Shamsir MS. Characterisation of a catalytic triad and reaction selectivity in the dual mechanism of the catalyse hydride transfer in xylitol phosphate dehydrogenase. J Mol Graph Model 2020; 97:107548. [PMID: 32023508 DOI: 10.1016/j.jmgm.2020.107548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Xylitol is a high-value low-calorie sweetener used as sugar substitute in food and pharmaceutical industry. Xylitol phosphate dehydrogenase (XPDH) catalyses the conversion of d-xylulose 5-phosphate (XU5P) and d-ribulose 5-phosphate (RU5P) to xylitol and ribitol respectively in the presence of nicotinamide adenine dinucleotide hydride (NADH). Although these enzymes have been shown to produce xylitol and ribitol, there is an incomplete understanding of the mechanism of the catalytic events of these reactions and the detailed mechanism has yet to be elucidated. The main goal of this work is to analyse the conformational changes of XPDH-bound ligands such as zinc, NADH, XU5P, and RU5P to elucidate the key amino acids involved in the substrate binding. In silico modelling, comparative molecular dynamics simulations, interaction analysis and conformational study were carried out on three XPDH enzymes of the Medium-chain dehydrogenase (MDR) family in order to elucidate the atomistic details of conformational transition, especially on the open and closed state of XPDH. The analysis also revealed the possible mechanism of substrate specificity that are responsible in the catalyse hydride transfer are the residues His58 and Ser39 which would act as the proton donor for reduction of XU5P and RU5P respectively. The structural comparison and MD simulations displayed a significant difference in the conformational dynamics of the catalytic and coenzyme loops between Apo and XPDH-complexes and highlight the contribution of newly found triad residues. This study would assist future mutagenesis study and enzyme modification work to increase the catalysis efficiency of xylitol production in the industry.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Bioinformatics, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Bioinformatics Research Group (BIRG), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, 84600 Muar, Johor, Malaysia
| |
Collapse
|
13
|
Chi P, Wang S, Ge X, Bilal M, Fickers P, Cheng H. Efficient D-threitol production by an engineered strain of Yarrowia lipolytica overexpressing xylitol dehydrogenase gene from Scheffersomyces stipitis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MDG. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 2019; 39:924-943. [DOI: 10.1080/07388551.2019.1640658] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Priscila Vaz de Arruda
- Department of Bioprocess Engineering and Biotechnology-COEBB/TD, Universidade Tecnológica Federal do Paraná, Toledo, Brazil
| | - Luciane Sene
- Center for Exact and Technological Sciences, Universidade Estadual do Oeste de Paraná (UNIOESTE), Cascavel, Brazil
| | - Silvio Silvério da Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo, Lorena, Brazil
| | - Anuj Kumar Chandel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo, Lorena, Brazil
| | | |
Collapse
|
15
|
Wang X, Feng X, Lv B, Zhou A, Hou Y, Li C. Enhanced yeast surface display of β‐glucuronidase using dual anchor motifs for high‐temperature glycyrrhizin hydrolysis. AIChE J 2019. [DOI: 10.1002/aic.16629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xudong Wang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Anqi Zhou
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Yuhui Hou
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing China
| |
Collapse
|
16
|
Xu Y, Chi P, Bilal M, Cheng H. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 2019; 103:5143-5160. [PMID: 31101942 DOI: 10.1007/s00253-019-09881-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Abstract
Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Chang Z, Liu D, Yang Z, Wu J, Zhuang W, Niu H, Ying H. Efficient Xylitol Production from Cornstalk Hydrolysate Using Engineered Escherichia coli Whole Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13209-13216. [PMID: 30465421 DOI: 10.1021/acs.jafc.8b04666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Economic transformation of lignocellulose hydrolysate into valued-added products is of particular importance for energy and environmental issues. In this study, xylose reductase and glucose dehydrogenase were cloned into plasmid pETDuet-1 and then simultaneously expressed in Escherichia coli BL21(DE3), which was used as whole-cell catalyst for the first time to convert xylose into xylitol coupled with gluconate production. When tested with reconstituted xylose and glucose solution, 0.1 g/mL cells could convert 1 M xylose and 1 M glucose completely and produced 145.81 g/L xylitol with a yield of 0.97 (g/g) and 184.85 g/L gluconic acid with a yield of 1.03 (g/g) in 24 h. Subsequently, the engineered cells were applied in real cornstalk hydrolysate, which generated 30.88 g/L xylitol and 50.89 g/L gluconic acid. The cells were used without penetration treatment, and CaCO3 was used to effectively regulate the pH during the production, which further saved costs.
Collapse
Affiliation(s)
- Ziyue Chang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| | - Zhengjiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , No. 30, Puzhu South Road , Nanjing 211816 , China
| |
Collapse
|
18
|
Zhang H, Yun J, Zabed H, Yang M, Zhang G, Qi Y, Guo Q, Qi X. Production of xylitol by expressing xylitol dehydrogenase and alcohol dehydrogenase from Gluconobacter thailandicus and co-biotransformation of whole cells. BIORESOURCE TECHNOLOGY 2018; 257:223-228. [PMID: 29505981 DOI: 10.1016/j.biortech.2018.02.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 05/24/2023]
Abstract
In the present study, recombinant strains were constructed for xylitol production by cloning and expressing the novel xylitol dehydrogenase (xdh) and alcohol dehydrogenase (adh) genes in E. coli BL21 (DE3) from Gluconobacter thailandicus CGMCC1.3748. The optimum pH, temperature, specific activity and kinetic parameters were further investigated for purified XDH. The co-culture of G. thailandicus (30 g/L), BL21-xdh (20 g/L) and BL21-adh (20 g/L) produced 34.34 g/L of xylitol after 48 h in the presence of 40 g/L d-arabitol and 2% ethanol. The concentration of xylitol produced in this co-biotransformation was found to be 2.7-folds higher than the xylitol yield of G. thailandicus alone, while the yield was increased by 4.8% when compared to that of G. thailandicus mixed with BL21-xdh under the similar experimental conditions.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - H Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Miaomiao Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yilin Qi
- College of Science and Technology, Hebei Agricultural University, 1 Bohai Road, Cangzhou 061100, Hebei, China
| | - Qi Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
19
|
Metabolic engineering of Pichia pastoris. Metab Eng 2018; 50:2-15. [PMID: 29704654 DOI: 10.1016/j.ymben.2018.04.017] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Besides its use for efficient production of recombinant proteins the methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) has been increasingly employed as a platform to produce metabolites of varying origin. We summarize here the impressive methodological developments of the last years to model and analyze the metabolism of P. pastoris, and to engineer its genome and metabolic pathways. Efficient methods to insert, modify or delete genes via homologous recombination and CRISPR/Cas9, supported by modular cloning techniques, have been reported. An outstanding early example of metabolic engineering in P. pastoris was the humanization of protein glycosylation. More recently the cell metabolism was engineered also to enhance the productivity of heterologous proteins. The last few years have seen an increased number of metabolic pathway design and engineering in P. pastoris, mainly towards the production of complex (secondary) metabolites. In this review, we discuss the potential role of P. pastoris as a platform for metabolic engineering, its strengths, and major requirements for future developments of chassis strains based on synthetic biology principles.
Collapse
|
20
|
Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production. Bioengineering (Basel) 2018; 5:bioengineering5010017. [PMID: 29462904 PMCID: PMC5874883 DOI: 10.3390/bioengineering5010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris, a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris. To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.
Collapse
|
21
|
Exploiting Innate and Imported Fungal Capacity for Xylitol Production. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources. Microb Biotechnol 2017; 11:224-237. [PMID: 29160039 PMCID: PMC5743807 DOI: 10.1111/1751-7915.12871] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella spp.) is widely used as cell factory for recombinant protein production. In the past recent years, important breakthroughs in the systems-level quantitative analysis of its physiology have been achieved. This wealth of information has allowed the development of genome-scale metabolic models, which make new approaches possible for host cell and bioprocess engineering. Nevertheless, the predictive accuracy of the previous consensus model required to be upgraded and validated with new experimental data sets for P. pastoris growing on glycerol or methanol as sole carbon sources, two of the most relevant substrates for this cell factory. In this study, we have characterized P. pastoris growing in chemostat cultures using glycerol or methanol as sole carbon sources over a wide range of growth rates, thereby providing physiological data on the effect of growth rate and culture conditions on biomass macromolecular and elemental composition. In addition, these data sets were used to improve the performance of the P. pastoris consensus genomic-scale metabolic model iMT1026. Thereupon, new experimentally determined bounds, including the representation of biomass composition for these growth conditions, have been incorporated. As a result, here, we present version 3 (v3.0) of the consensus P. pastoris genome-scale metabolic model as an update of the iMT1026 model. The v3.0 model was validated for growth on glycerol and methanol as sole carbon sources, demonstrating improved prediction capabilities over an extended substrate range including two biotechnologically relevant carbon sources.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| |
Collapse
|
23
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
24
|
Saitua F, Torres P, Pérez-Correa JR, Agosin E. Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris. BMC SYSTEMS BIOLOGY 2017; 11:27. [PMID: 28222737 PMCID: PMC5320773 DOI: 10.1186/s12918-017-0408-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pichia pastoris shows physiological advantages in producing recombinant proteins, compared to other commonly used cell factories. This yeast is mostly grown in dynamic cultivation systems, where the cell's environment is continuously changing and many variables influence process productivity. In this context, a model capable of explaining and predicting cell behavior for the rational design of bioprocesses is highly desirable. Currently, there are five genome-scale metabolic reconstructions of P. pastoris which have been used to predict extracellular cell behavior in stationary conditions. RESULTS In this work, we assembled a dynamic genome-scale metabolic model for glucose-limited, aerobic cultivations of Pichia pastoris. Starting from an initial model structure for batch and fed-batch cultures, we performed pre/post regression diagnostics to ensure that model parameters were identifiable, significant and sensitive. Once identified, the non-relevant ones were iteratively fixed until a priori robust modeling structures were found for each type of cultivation. Next, the robustness of these reduced structures was confirmed by calibrating the model with new datasets, where no sensitivity, identifiability or significance problems appeared in their parameters. Afterwards, the model was validated for the prediction of batch and fed-batch dynamics in the studied conditions. Lastly, the model was employed as a case study to analyze the metabolic flux distribution of a fed-batch culture and to unravel genetic and process engineering strategies to improve the production of recombinant Human Serum Albumin (HSA). Simulation of single knock-outs indicated that deviation of carbon towards cysteine and tryptophan formation improves HSA production. The deletion of methylene tetrahydrofolate dehydrogenase could increase the HSA volumetric productivity by 630%. Moreover, given specific bioprocess limitations and strain characteristics, the model suggests that implementation of a decreasing specific growth rate during the feed phase of a fed-batch culture results in a 25% increase of the volumetric productivity of the protein. CONCLUSION In this work, we formulated a dynamic genome scale metabolic model of Pichia pastoris that yields realistic metabolic flux distributions throughout dynamic cultivations. The model can be calibrated with experimental data to rationally propose genetic and process engineering strategies to improve the performance of a P. pastoris strain of interest.
Collapse
Affiliation(s)
- Francisco Saitua
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
| | - Paulina Torres
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
| |
Collapse
|
25
|
Mattanovich D, Sauer M, Gasser B. Industrial Microorganisms: Pichia pastoris. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Diethard Mattanovich
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Michael Sauer
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| | - Brigitte Gasser
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
26
|
|
27
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism. PLoS One 2016; 11:e0148031. [PMID: 26812499 PMCID: PMC4734642 DOI: 10.1371/journal.pone.0148031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023] Open
Abstract
Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- * E-mail:
| |
Collapse
|
28
|
Abstract
Xylitol is the first rare sugar that has global market because of its excellent properties. Considering its superiority to chemosynthesis, biosynthesis of xylitol became hot issue in recent studies. The production of xylitol from glucose experienced a development from three-step process to two-step process, or even only one-step process. The microbial and enzymatic process involving key enzymes, molecular cloning and expression and transgenic bacteria construction is introduced in this paper. This study may provide novel thought to explore new resource for better control of biological reaction conditions and obtainment of higher xylitol yield.
Collapse
|