1
|
Liu Q, Li X, Wu M, Huang H, Chen Y. N 2O recovery from wastewater and flue gas via microbial denitrification: Processes and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174231. [PMID: 38917909 DOI: 10.1016/j.scitotenv.2024.174231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nitrous oxide (N2O) is increasingly regarded as a significant greenhouse gas implicated in global warming and the depletion of the ozone layer, yet it is also recognized as a valuable resource. This paper comprehensively reviews innovative microbial denitrification techniques for recovering N2O from nitrogenous wastewater and flue gas. Critical analysis is carried out on cutting-edge processes such as the coupled aerobic-anoxic nitrous decomposition operation (CANDO) process, semi-artificial photosynthesis, and the selective utilization of microbial strains, as well as flue gas absorption coupled with heterotrophic/autotrophic denitrification. These processes are highlighted for their potential to facilitate denitrification and enhance the recovery rate of N2O. The review integrates feasible methods for process control and optimization, and presents the underlying mechanisms for N2O recovery through denitrification, primarily achieved by suppressing nitrous oxide reductase (Nos) activity and intensifying competition for electron donors. The paper concludes by recognizing the shortcomings in existing technologies and proposing future research directions, with an emphasis on prioritizing the collection and utilization of N2O while considering environmental sustainability and economic feasibility. Through this review, we aim to inspire interest in the recovery and utilization of N2O, as well as the development and application of related technologies.
Collapse
Affiliation(s)
- Qimeng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meirou Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Chen R, Li J, Wang J, Yang W, Shen S, Dong F. Continuous NO Upcycling into Ammonia Promoted by SO 2 in Flue Gas: Poison Can Be a Gift. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12127-12134. [PMID: 37531586 DOI: 10.1021/acs.est.3c04192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Although ammonia (NH3) synthesis efficiency from the NO reduction reaction (NORR) is significantly promoted in recent years, one should note that NO is one of the major air pollutants in the flue gas. The limited NO conversion ratio is still the key challenge for the sustainable development of the NORR route, which potentially contributes more to contaminant emissions rather than its upcycling. Herein, we provide a simple but effective approach for continuous NO reduction into NH3, promoted by coexisting SO2 poison as a gift in the flue gas. It is significant to discover that SO2 plays a decisive role in elevating the capacity of NO absorption and reduction. A unique redox pair of SO2-NO is constructed, which contributes to the exceptionally high conversion ratio for both NO (97.59 ± 1.42%) and SO2 (99.24 ± 0.49%) in a continuous flow. The ultrahigh selectivity for both NO-to-NH3 upcycling (97.14 ± 0.55%) and SO2-to-SO42- purification (92.44 ± 0.71%) is achieved synchronously, demonstrating strong practicability for the value-added conversion of air contaminants. The molecular mechanism is revealed by comprehensive in situ technologies to identify the essential contribution of SO2 to NO upcycling. Besides, realistic practicality is realized by the efficient product recovery and resistance ability against various poisoning effects. The proposed strategy in this work not only achieves a milestone efficiency for NH3 synthesis from the NORR but also raises great concerns about contaminant resourcing in realistic conditions.
Collapse
Affiliation(s)
- Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Weiping Yang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| |
Collapse
|
3
|
Li J, Wang J, Shen S, Chen R, Liu M, Dong F. Beyond Purification: Highly Efficient and Selective Conversion of NO into Ammonia by Coupling Continuous Absorption and Photoreduction under Ambient Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5445-5452. [PMID: 36942694 DOI: 10.1021/acs.est.2c09669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although the selective catalytic reduction technology has been confirmed to be effective for nitrogen oxide (NOx) removal, green and sustainable NOx re-utilization under ambient conditions is still a great challenge. Herein, we develop an on-site system by coupling the continuous chemical absorption and photocatalytic reduction of NO in simulated flue gas (CNO = 500 ppm, GHSV = 18,000 h-1), which accomplishes an exceptional NO conversion into value-added ammonia with competitive conversion efficiency (89.05 ± 0.71%), ammonia production selectivity (95.58 ± 0.95%), and ammonia recovery efficiency (>90%) under ambient conditions. The anti-poisoning capacities, including the resistance against factors of H2O, SO2, and alkali/alkaline/heavy metals, are also achieved, which presents strong environmental practicability for treating NOx in flue gas. In addition, the critical roles of corresponding chemical absorption and catalytic reduction components are also revealed by in situ characterizations. The emerging strategy herein not only achieves a milestone efficiency for sustainable NO purification but also opens a new route for contaminant resourcing in the near future of carbon neutrality.
Collapse
Affiliation(s)
- Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha 410083, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
Wang Y, Gong Z, Xu X, Chen P, Zhao T, Hu W, Xu M, Li J, Huang S. Effects of various COD/NO ratios on NOx removal performance and microbial communities in a BTF-ABR integrated system. CHEMOSPHERE 2023; 321:138121. [PMID: 36775032 DOI: 10.1016/j.chemosphere.2023.138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In this study, we investigated the removal performance of NOx and stability of the biotrickling filter-anaerobic baffled reactor (BTF-ABR) integrated system at various chemical oxygen demand (COD)/NO ratios (12.18, 6.71, and 4.63 in stages 1, 2, and 3, respectively) under 3.5% O2 and 50 ± 0.5 °C conditions for the first time. The results showed that the maximum elimination capacity of NOx was 4.46, 8.16, and 11.58 g/(m3·h) in stages 1, 2, and 3, respectively. The minimum operating cost in terms of glucose was 4.79 g of glucose/g of NO. However, a COD/NO ratio of 12.18 resulted in a wastage of carbon sources, while a COD/NO ratio of 4.63 led to about 20 mg/m3 N2O emission at the end of the study. Highly bacteria diversity and positive co-occurrence networks at the COD/NO ratio of 6.71 were the main reasons for no intermediate accumulation or N2O emission. Analysis of real-time polymerase chain reaction (PCR) indicated that nirS and norB were more sensitive to the changes in the COD/NO ratios than other denitrifying genes, and the denitrifiers with nirS filled more ecological niches as the NOx increased. Furthermore, although the decrease in COD/NO ratio significantly impacted the microbial community structure, the NOx RE was stabilized at over 90% because the micro-aerobic environment produced by ABR combined highly diverse microbes and functions in BTF, as well as the coordinated expression of denitrifying genes. Achieving efficient, stable, and low-cost denitrification is feasible in this BTF-ABR integrated system.
Collapse
Affiliation(s)
- Yanling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Zerui Gong
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Xinyue Xu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Huang X, Zhou S, Li J, Wang X, Huang S, Sun G, Yang S, Xing J, Xu M. Complexing agents-free bioelectrochemical trickling systems for highly-efficient mesothermal NO removal: The role of extracellular polymer substances. BIORESOURCE TECHNOLOGY 2023; 368:128286. [PMID: 36368487 DOI: 10.1016/j.biortech.2022.128286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The biological treatments are promising for nitric oxide (NO) reduction, however, the biotechnology has long suffered from high demands of NO-complexing agents (i.e., Fe(II)EDTA), leading to extra operation costs. In this study, novel complexing agents-free bioelectrochemical systems have been developed for direct NO reduction. The electricity-driven bioelectrochemical trickling system (ED-BTS, a denitrifying biocathode driven by the external electricity and an acetate-consuming bioanode) achieved approximately 68% NO removal without any NO-complexing agents, superior to the bioanode-driven BTS and open-circuit BTS. The extracellular polymeric substances from the biofilms of ED-BTS contained more polysaccharides, humic substrates, and hydrophobic tryptophan that were beneficial for NO reduction. Additionally, the external electricity altered the microbial community toward more denitrifying bacteria and a higher abundance of NO reduction genes (nosZ and cnorB). This study provides a comprehensive understanding of microbial behaviors on the adsorption and reduction of NO and proposes a promising strategy for mesothermal NO biotreatment.
Collapse
Affiliation(s)
- Xingzhu Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaofeng Zhou
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jianjun Li
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jia Xing
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
6
|
Xu XJ, Wu YN, Xiao QY, Xie P, Ren NQ, Yuan YX, Lee DJ, Chen C. Simultaneous removal of NO X and SO 2 from flue gas in an integrated FGD-CABR system by sulfur cycling-mediated Fe(II)EDTA regeneration. ENVIRONMENTAL RESEARCH 2022; 205:112541. [PMID: 34915032 DOI: 10.1016/j.envres.2021.112541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Chemical absorption-biological reduction (CABR) process is an attractive method for NOX removal and Fe(II)EDTA regeneration is important to sustain high NOX removal. In this study a sustainable and eco-friendly sulfur cycling-mediated Fe(II)EDTA regeneration method was incorporated in the integrated biological flue gas desulfurization (FGD)-CABR system. Here, we investigated the NOX and SO2 removal efficiency of the system under three different flue gas flows (100 mL/min, 500 mL/min, and 1000 mL/min) and evaluated the feasibility of chemical Fe(III)EDTA reduction by sulfide in series of batch tests. Our results showed that complete SO2 removal was achieved at all the tested scenarios with sulfide, thiosulfate and S0 accumulation in the solution. Meanwhile, the total removal efficiency of NOX achieved ∼100% in the system, of which 3.2%-23.3% was removed in spray scrubber and 76.7%-96.5% in EGSB reactor along with no N2O emission. The optimal pH and S2-/Fe(III)EDTA for Fe(II)EDTA regeneration and S0 recovery was 8.0 and 1:2. The microbial community analysis results showed that the cooperation of heterotrophic denitrifier (Saprospiraceae_uncultured and Dechloromonas) and iron-reducing bacteria (Klebsiella and Petrimonas) in EGSB reactor and sulfide-oxidizing, nitrate-reducing bacteria (Azoarcus and Pseudarcobacter) in spray scrubber contributed to the efficient removal of NOX in flue gas.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yi-Ning Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Qing-Yang Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yi-Xing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
7
|
Wang Y, Li J, Huang S, Huang X, Hu W, Pu J, Xu M. Evaluation of NOx removal from flue gas and Fe(II)EDTA regeneration using a novel BTF-ABR integrated system. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125741. [PMID: 34088200 DOI: 10.1016/j.jhazmat.2021.125741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A promising process is under development for the removal of NOx and regeneration of Fe(II)EDTA in a novel biotrickling filter-anaerobic baffled reactor (BTF-ABR) integrated system at 50 ± 0.5 ℃. In this work, we investigated the NOx removal capacity of a BTF under different O2 concentrations (7.0 vol%, 5.25 vol% and 3.5 vol%), and tested the effect of an ABR on NOx removal and regeneration of Fe(II)EDTA. The results showed that the NOx removal capacity was significantly increased with the O2 concentration reduced from 7.0% to 3.5%. The microoxygen environment produced by the BTF-ABR integrated system was more conducive to the removal of NOx and regeneration of Fe(II)EDTA compared with that in the BTF. Real-time polymerase chain reaction (PCR) analysis showed that the coordinated expression of denitrification genes was the major reason for no N2O emission, along with no nitrate and nitrite accumulation. The 16S rRNA gene amplicon sequencing analysis showed that the cooperation of denitrifying bacteria (Klebsiella, Petrimonas, Rhodococcus and Ochrobactium) and iron-reducing bacteria (Klebsiella, Geobacter and Petrimonas) in the system was the key to the stable and efficient removal of NOx and the regeneration of Fe(II)EDTA simultaneously.
Collapse
Affiliation(s)
- Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Xingzhu Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Jia Pu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Liu N, Li YY, Ouyang DJ, Zou CY, Li W, Zhao JH, Li JX, Wang WJ, Hu JJ. Performance and Microbial Community Analysis of an Electrobiofilm Reactor Enhanced by Ferrous-EDTA. ACS OMEGA 2021; 6:17766-17775. [PMID: 34308012 PMCID: PMC8296010 DOI: 10.1021/acsomega.0c05876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The biological reduction of ferrous ethylenediaminetetraacetic acid (EDTA-FeII-NO and EDTA-FeIII) is an important process in the integrated electrobiofilm reduction method, and it has been regarded as a promising alternative method for removing NO x from industrial boiler flue gas. EDTA-FeII-NO and EDTA-FeIII are crucial substrates that should be biologically reduced at a high rate. However, they inhibit the reduction processes of one another when these two substrates are presented together, which might limit further promotion of the integrated method. In this study, an integrated electrobiofilm reduction system with high reduction rates of EDTA-FeII-NO and EDTA-FeIII was developed. The dynamic changes of microbial communities in the electrobiofilms were mainly investigated to analyze the changes during the reduction of these two substrates under different conditions. The results showed that compared to the conventional chemical absorption-biological reduction system, the reduction system exhibited better performance in terms of resistance to substrate shock loading and high microbial diversities. High-throughput sequencing analysis showed that Alicycliphilus, Enterobacteriaceae, and Raoultella were the dominant genera (>25% each) during the process of EDTA-FeII-NO reduction. Chryseobacterium had the ability to endure the shock loading of EDTA-FeIII, and the relative abundance of Chryseobacterium under abnormal operation conditions was up to 30.82%. Ochrobactrum was the main bacteria for reducing nitrate by electrons and the relative abundance still exhibited 16.11% under shock loading. Furthermore, higher microbial diversity and stable reactor operation were achieved when the concentrations of EDTA-FeII-NO and EDTA-FeIII approached the same value (9 mmol·L-1).
Collapse
Affiliation(s)
- Nan Liu
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Ying-ying Li
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Du-juan Ouyang
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Chang-yong Zou
- Key
Laboratory of Pollution Treatment and Resource, China National Light
Industry; Collaborative Innovation Center of Environmental Pollution
Control and Ecological Restoration, Department of Material and Chemical
Engineering, Zhengzhou University of Light
Industry, Zhengzhou 450001, Henan, P. R. China
| | - Wei Li
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
Institute of Industrial Ecology and Environment, College of Chemical
and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, P. R. China
| | - Ji-hong Zhao
- Henan
Radio & Television University, Zhengzhou 450001, P. R.
China
| | - Ji-xiang Li
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Wen-juan Wang
- Shanghai
Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, P. R. China
| | - Ja-jun Hu
- Shanghai
Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
9
|
Liu N, Li YY, Ouyang DJ, Guo R, Chen R, Li W, Li JX, Zhao JH. Study on NO x removal from simulated flue gas by an electrobiofilm reactor: EDTA-ferrous regeneration and biological kinetics mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2860-2870. [PMID: 32894445 DOI: 10.1007/s11356-020-10617-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The regeneration of EDTA-FeII is a key step in electrobiofilm reduction-integrated systems for NOx removal from industrial boiler flue gas. The current and carbon sources are proposed to be the two crucial electron donors for EDTA-FeII regeneration. These parameters strongly influence the reactivity of EDTA-FeII-generated products in the system. Therefore, their effects on EDTA-FeII-NO and EDTA-FeIII reduction and the EDTA-FeII generation mechanism were studied. The results showed that the electrobiofilm method has obvious advantages over biological or electrochemical methods used alone for EDTA-FeII regeneration. Under the optimal conditions at a current of 22.9A m-3 net cathode chamber, the rate of EDTA-FeII regeneration reached 98.35%. The glucose concentration is the primary factor influencing the reduction of both EDTA-FeII-NO and EDTA-FeIII, while the current significantly promotes both processes. Comparison of the Km values of the two substrates indicated that microbial activity was crucial to the reduction of EDTA-FeII-NO, but the biological reduction of EDTA-FeIII had a competitive influence on EDTA-FeII-NO reduction, which limited the abundance and effectiveness of the bacteria responsible for EDTA-FeII-NO reduction in the electrobiofilm system.
Collapse
Affiliation(s)
- Nan Liu
- China Key Laboratory of Light Industry Pollution Control and Recycling, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Ying-Ying Li
- China Key Laboratory of Light Industry Pollution Control and Recycling, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Du-Juan Ouyang
- China Key Laboratory of Light Industry Pollution Control and Recycling, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Rui Guo
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100029, People's Republic of China
| | - Run Chen
- China Key Laboratory of Light Industry Pollution Control and Recycling, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, People's Republic of China.
| | - Ji-Xiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Ji-Hong Zhao
- Henan Radio & Television University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
10
|
Sun C, Zhang Y, Qu Z, Zhou J. Simultaneous cobalt(III)-histidine reduction and aerobic denitrification by Paracoccus versutus LYM. BIORESOURCE TECHNOLOGY 2020; 310:123404. [PMID: 32334362 DOI: 10.1016/j.biortech.2020.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Cobalt(II)-histidine [Co(II)His] is potentially a better alternative to ferrous complexes in the chemical absorption-biological reduction (CABR) flue gas denitrification process in view of its higher oxygenation reversibility. Though with excellent O2-resistant ability, Co(II)His was still gradually oxidized into Co(III)His, losing NO binding capacity. Thus, Co(III)His biological reduction is an indispensable step in CABR process. Co(III)His reduction by Paracoccus versutus LYM under aerobic condition in the presence of nitrate or nitrite was investigated. Results indicated that simultaneous Co(III)His reduction and aerobic denitrification were achieved by strain LYM. Co(III)His reduction was significantly promoted by denitrification process, but dramatically inhibited by 5-15 mM sulfite. Co(II)His absorbent regeneration could be facilitated by adjusting O2 supply properly or adding nitrogen and carbon source regularly. These findings provide a basis for the application of Co(II)His as the absorbent in the CABR process and qualify P. versutus LYM as an applicable and competitive strain for this process.
Collapse
Affiliation(s)
- Chaoyue Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Sun C, Zhang Y, Qu Z, Zhou J. Effects of cobalt-histidine absorbent on aerobic denitrification by Paracoccus versutus LYM. AMB Express 2019; 9:202. [PMID: 31848761 PMCID: PMC6917670 DOI: 10.1186/s13568-019-0927-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
To overcome the problem that ferrous complexes are easily oxidized by O2 and then lose NO binding ability in the chemical absorption-biological reduction (CABR) process, cobalt(II)-histidine [Co(II)His] was proposed as an alternative. To evaluate the applicability of Co(II)His, the effects of CoHis absorbent on the aerobic denitrification by Paracoccus versutus LYM were investigated. Results indicated that His significantly promoted nitrite reduction. The inhibition effects of CoHis absorbent could be substantially alleviated by increasing the initial His/Co2+ to 4 or higher. CoHis with concentrations of 4, 8, 12, 16 and 20 mM presented no distinct effect on nitrite reduction, but slightly inhibited the reduction of nitrate, resulting in longer lag of nitrate reduction, and obviously promoted the growth of strain LYM. In the presence of 5, 10, 15 and 20 mM CoHis absorbent, the main denitrification product was N2 (not less than 95.0%). This study is of significance in verifying the applicability of Co(II)His in the CABR process, and provides a referable CoHis absorbent concentration as 20 mM with an initial His/Co2+ of 4 for the future experiments.
Collapse
|
12
|
Chen J, He J, Wang X, Hrynsphan D, Wu J, Chen J, Yao J. Reduction of Fe II(EDTA)-NO by Mn powder in wet flue gas denitrification technology: stoichiometry, kinetics, and thermodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36933-36941. [PMID: 31745767 DOI: 10.1007/s11356-019-06901-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Conversion of FeII(EDTA)-NO or FeIII(EDTA) into FeII(EDTA) is a key process in a wet flue gas denitrification technology with FeII(EDTA) solution. In this work, the stoichiometry, kinetics, and thermodynamics of FeII(EDTA)-NO reduction by Mn powder were investigated. We first studied the FeII(EDTA)-NO reduction and product distribution to speculate a possible stoichiometry of FeII(EDTA)-NO reduction by Mn powder. Then, the effects of major influencing factors, such as pH value, temperature, and Mn concentration, were studied. The pseudo-second-order model was established to describe the FeII(EDTA)-NO reduction. Simultaneously, according to Arrhenius and Eyring-Polanyi equations, the reaction activation energy (Ea), enthalpy of activation (∆H‡), and entropy of activation (∆S‡) were calculated as 23.68 kJ/mol, 21.148 kJ/mol, and - 149.728 J/(k mol), respectively. Additionally, simultaneous reduction of FeIII(EDTA) and FeII(EDTA)-NO was investigated to better study the mechanism of FeII(EDTA) regeneration, suggesting that there was a competition between the two reduction processes. Finally, a simple schematic mechanism of NO absorption by FeII(EDTA) combined with regeneration of manganese ion and ammonium was proposed. These fundamental researches could offer a valuable guidance for wet flue gas denitrification technology with FeII(EDTA) solution.
Collapse
Affiliation(s)
- Jun Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jinjia He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, 220030, Minsk, Belarus
| | - Jiali Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiachao Yao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
13
|
Jiang W, Xu Q, Wei X. Use of cobalt(II) chelates of monothiol-containing ligands for the removal of nitric oxide. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:50-57. [PMID: 30978630 DOI: 10.1016/j.jhazmat.2019.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
It is first reported herein that cobalt(II) complexes solution of monothiol-containing multidentate ligands are used to remove low concentration of nitric oxide (NO). These chelating ligands are water-soluble amines, alcohols or acids which containing at least one -SH group, include those of cysteine, mercaptosuccinic acid, mercaptoethanesulfonate, mercaptopropionic acid and the like. These -SH compounds when coordinated with cobalt ions, forming complexes are very effective for NO removal. The results indicate that the side group (methyl, carboxyl, carboxymethyl) on α-carbon atom of ligands contribute to the denitration of the chelate solution, whereas the substituents on sulfur atom of ligands deactivate the complexation system. In addition, we have found that several monothiol compounds with simple molecule structure and low cost exhibit good performance in denitration, and some of cobalt thiol complexes are more valuable in removing NO than ferrous thiol complexes.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xionghui Wei
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Jiang W, Wang X, Xu Q, Xiao J, Wei X. The regeneration of Fe-EDTA denitration solutions by nanoscale zero-valent iron. RSC Adv 2019; 9:132-138. [PMID: 35521621 PMCID: PMC9059285 DOI: 10.1039/c8ra08992b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/09/2018] [Indexed: 11/29/2022] Open
Abstract
Fe(ii) ethylenediaminetetraacetate (EDTA) chelate solution is generally considered to be an effective nitric oxide (NO) absorbent. However, since the ferrous active site is occupied by nitric oxide and the ferrous chelate is oxidized to ferric chelate by oxygen in air, its absorption capacity will gradually decrease with the NO absorption process. Here, we propose a method for regenerating the NO-attenuated Fe(ii)EDTA solution by adding nanoscale zero-valent iron (NZVI) under three different pH conditions. Furthermore, compared with the commercially available iron powder, NZVI was also found to be effective not only for the regeneration of expired Fe-EDTA solution but also for the reduction of Fe(iii) EDTA solution. According to the results obtained herein, different acidity levels of solution, from weakly acidic to near neutral, are all suitable for the regeneration–absorption process. NZVI is very effective for the regeneration of the inactive Fe chelate solution in the NO absorption process.![]()
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaolong Wang
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Qiang Xu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Jianbai Xiao
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xionghui Wei
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
15
|
Merker D, Böhm L, Oßberger M, Klüfers P, Kraume M. Mass Transfer in Reactive Bubbly Flows - A Single-Bubble Study. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Merker
- Technische Universität Berlin; Chair of Chemical and Process Engineering, Sekr. FH 6-1; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Lutz Böhm
- Technische Universität Berlin; Chair of Chemical and Process Engineering, Sekr. FH 6-1; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Martin Oßberger
- Ludwig-Maximilians-Universität München; Chair of Inorganic Chemistry; Butenandtstrasse 5-13, Haus D 81377 München Germany
| | - Peter Klüfers
- Ludwig-Maximilians-Universität München; Chair of Inorganic Chemistry; Butenandtstrasse 5-13, Haus D 81377 München Germany
| | - Matthias Kraume
- Technische Universität Berlin; Chair of Chemical and Process Engineering, Sekr. FH 6-1; Strasse des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
16
|
Zheng M, Li C, Liu S, Gui M, Ni J. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:571-578. [PMID: 27469045 DOI: 10.1016/j.jhazmat.2016.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Conventional biological removal of nitrogen oxides (NOx) from flue gas has been severely restricted by the presence of oxygen. This paper presents an efficient alternative for NOx removal at varying oxygen levels using the newly isolated bacterial strain Pseudomonas aeruginosa PCN-2 which was capable of aerobic and anoxic denitrification. Interestingly, nitric oxide (NO), as the obligatory intermediate, was negligibly accumulated during nitrate and nitrite reduction. Moreover, normal nitrate reduction with decreasing NO accumulation was realized under O2 concentration ranging from 0 to 100%. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that high efficient NO removal was attributed to the coordinate regulation of gene expressions including napA (for periplasmic nitrate reductase), nirS (for cytochrome cd1 nitrite reductase) and cnorB (for NO reductase). Further batch experiments demonstrated the immobilized strain PCN-2 possessed high capability of removing NO and nitrogen dioxide (NO2) at O2 concentration of 0-10%. A biotrickling filter established with present strain achieved high NOx removal efficiencies of 91.94-96.74% at inlet NO concentration of 100-500ppm and O2 concentration of 0-10%, which implied promising potential applications in purifying NOx contaminated flue gas.
Collapse
Affiliation(s)
- Maosheng Zheng
- MOE Key Laboratory of Regional Energy Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| | - Can Li
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Shufeng Liu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Mengyao Gui
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
17
|
Chen J, Gu S, Zheng J, Chen J. Simultaneous removal of SO2 and NO in a rotating drum biofilter coupled with complexing absorption by FeII(EDTA). Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Chen J, Wang J, Zheng J, Chen J. Prediction and inhibition of the N2O accumulation in the BioDeNO x process for NO x removal from flue gas. Bioprocess Biosyst Eng 2016; 39:1859-1865. [DOI: 10.1007/s00449-016-1660-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/30/2016] [Indexed: 11/30/2022]
|
19
|
Zhao J, Xia Y, Li M, Li S, Li W, Zhang S. A Biophysicochemical Model for NO Removal by the Chemical Absorption-Biological Reduction Integrated Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8705-8712. [PMID: 27442232 DOI: 10.1021/acs.est.6b01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemical absorption-biological reduction (CABR) integrated process is regarded as a promising technology for NOx removal from flue gas. To advance the scale-up of the CABR process, a mathematic model based on mass transfer with reaction in the gas, liquid, and biofilm was developed to simulate and predict the NOx removal by the CABR system in a biotrickling filter. The developed model was validated by the experimental results and subsequently was used to predict the system performance under different operating conditions, such as NO and O2 concentration and gas and liquid flow rate. NO distribution in the gas phase along the biotrickling filter was also modeled and predicted. On the basis of the modeling results, the liquid flow rate and total iron concentration were optimized to achieve >90% NO removal efficiency. Furthermore, sensitivity analysis of the model revealed that the performance of the CABR process was controlled by the bioreduction activity of Fe(III)EDTA. This work will provide the guideline for the design and operation of the CABR process in the industrial application.
Collapse
Affiliation(s)
- Jingkai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University , Yuquan Campus, Hangzhou 310027, China
| | - Yinfeng Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University , Yuquan Campus, Hangzhou 310027, China
| | - Meifang Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University , Yuquan Campus, Hangzhou 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University , Yuquan Campus, Hangzhou 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University , Yuquan Campus, Hangzhou 310027, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology , Hangzhou 310032, China
| |
Collapse
|
20
|
Xia Y, Zhao J, Li M, Zhang S, Li S, Li W. Bioelectrochemical Reduction of Fe(II)EDTA-NO in a Biofilm Electrode Reactor: Performance, Mechanism, and Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3846-3851. [PMID: 26900881 DOI: 10.1021/acs.est.5b05861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A biofilm electrode reactor (BER) is proposed to effectively regenerate Fe(II)EDTA, a solvent for NOx removal from flue gas, from Fe(II)EDTA-NO, a spent solution. In this study, the performance, mechanism, and kinetics of the bioelectrochemical reduction of Fe(II)EDTA-NO were investigated. The pathways of Fe(II)EDTA-NO reduction were investigated via determination of nitrogen element balance in the BER and an abiotic electrode reactor. The experimental results indicate that the chelated NO (Fe(II)EDTA-NO) is reduced to N2 with N2O as an intermediate. However, the oxidation of NO occurred in the absence of Fe(II)EDTA in abiotic reactors. Furthermore, the accumulation of N2O was suppressed with the help of electricity. The preponderant electron donor for reduction of Fe(II)EDTA-NO was also confirmed via analysis of the electron conservation. About 87% of Fe(II)EDTA-NO was reduced using Fe(II)EDTA as the electron donor in the presence of both glucose and cathode electrons while the cathode electrons were utilized for the reduction of Fe(III)EDTA to Fe(II)EDTA. Michaelis-Menten kinetic constants of bioelectrochemical reduction of Fe(II)EDTA-NO were also calculated. The maximum reduction rate of Fe(II)EDTA-NO was 13.04 mol m(-3) h(-1), which is 50% higher than that in a conventional biofilter.
Collapse
Affiliation(s)
- Yinfeng Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus) , Hangzhou, 310027, China
- Institute of Environmental Engineering, Zhejiang University (Zijingang Campus) , Hangzhou, 310058, China
| | - Jingkai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus) , Hangzhou, 310027, China
| | - Meifang Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus) , Hangzhou, 310027, China
| | - Shihan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus) , Hangzhou, 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus) , Hangzhou, 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus) , Hangzhou, 310027, China
- Institute of Environmental Engineering, Zhejiang University (Zijingang Campus) , Hangzhou, 310058, China
| |
Collapse
|
21
|
Li W, Zhao J, Zhang L, Xia Y, Liu N, Li S, Zhang S. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process. Sci Rep 2016; 6:18876. [PMID: 26743930 PMCID: PMC4705534 DOI: 10.1038/srep18876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022] Open
Abstract
A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.,Institute of Environmental Engineering, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Jingkai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.,Zhejiang Industrial Environmental Protection Design &Research Institute Co., Ltd., Hangzhou, 310035, China
| | - Yinfeng Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.,Institute of Environmental Engineering, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Nan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Shihan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| |
Collapse
|
22
|
Deng S, Zhuang K, Xu B, Ding Y, Yu L, Fan Y. Promotional effect of iron oxide on the catalytic properties of Fe–MnOx/TiO2 (anatase) catalysts for the SCR reaction at low temperatures. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01217a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The surface interaction of the iron-improved MnOx/TiO2 (anatase) catalyst for the selective catalytic reduction of nitric oxide was studied. The role of iron was investigated through detailed experiments.
Collapse
Affiliation(s)
- Shengcai Deng
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Jiangsu Provincial Key Laboratory of Nanotechnology
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Ke Zhuang
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Jiangsu Provincial Key Laboratory of Nanotechnology
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Bolian Xu
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Jiangsu Provincial Key Laboratory of Nanotechnology
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Yuanhua Ding
- Jiangsu Key Laboratory of Environmental Materials and Environmental Engineering
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| | - Lei Yu
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Jiangsu Provincial Key Laboratory of Nanotechnology
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOE
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Jiangsu Provincial Key Laboratory of Nanotechnology
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
23
|
He F, Deng X, Chen M. Kinetics of FeIIIEDTA complex reduction with iron powder under aerobic conditions. RSC Adv 2016. [DOI: 10.1039/c6ra05222c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The kinetic model of FeIIIEDTA complex reduction with iron powder under aerobic condition is deduced and validated. It was .
Collapse
Affiliation(s)
- Feiqiang He
- Department of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Xianhe Deng
- Department of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Min Chen
- Department of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| |
Collapse
|
24
|
Re-acclimation performance and microbial characteristics of a thermophilic biofilter for NOx removal from flue gas. Appl Microbiol Biotechnol 2015; 99:6879-87. [PMID: 25900192 DOI: 10.1007/s00253-015-6585-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Currently, a novel chemical absorption-biological reduction (CABR) integrated process, employing Fe(II)EDTA as a solvent, is being under development to reduce the cost of NOx removal from flue gas. In this work, the NO removal profile, re-acclimation performance, and microbial characteristics in a thermophilic biofilter were investigated at the conditions typical to CABR process. The biofilter comprised of four layers of packing material with a surface area of 1200 m(2) m(-3). Experimental results revealed that the biofilter could remove 95 % of the fed NO at typical flue gas conditions. As the gas residence time varied from 90 to 15 s, the NO removal efficiency decreased from 100 to 56.5 % due to the NO mass transfer limitation. The longer period of the biofilter shutdown required more time for its re-acclimation. For example, after 8-day shutdown, the biofilter was re-acclimated in 32 h. Denaturing gradient gel electrophoresis analysis of PCR-amplified product showed that Pseudomonas, a group of denitrifier, was dominant in the biofilter. Because the Pseudomonas was abundant at the bottom layer of packed-bed, the bottom layer contributed to 60-70 % of the total NO removal. In addition, Pseudomonas gradually faded away along the gas flow path from the bottom to the top of biofilter, resulting in a significant decrease in NO removal at the other three packed-bed layers. These observed results will provide the process engineering and scale-up data with respect to the biofilter operations to help advance the CABR process to pilot-scale testing.
Collapse
|
25
|
Li W, Xia Y, Zhao J, Liu N, Li S, Zhang S. Generation, utilization, and transformation of cathode electrons for bioreduction of Fe(III)EDTA in a biofilm electrode reactor related to NOx removal from flue gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4530-4535. [PMID: 25799265 DOI: 10.1021/es5058488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A chemical absorption-biological reduction (CABR) integrated system, which employs iron chelate as a solvent, is under development for NOx removal from flue gas. Biofilm electrode reactor (BER) is deemed as a promising bioreactor to regenerate the iron chelate. Although it has been proved that BER can significantly enhance the bioreduction of Fe(III)EDTA, the bioelectrochemistry mechanism involved in the bioreduction of Fe(III)EDTA remains unknown. This work aims to explore this mechanism via the analysis of the generation, utilization, and transformation of cathode electrons in the BER. The results indicate that the generation of cathode electrons follows Faraday's law. The generated cathode electrons were used to produce H2 and directly reduce Fe(III)EDTA in the BER. Meanwhile, the produced H2 served as an electron donor for bioreduction of Fe(III)EDTA. The excess H2 product was transformed to simple organics, e.g., methanol by the hydrogen autotrophy of Pseudomonas under the inorganic and anaerobic conditions. Overall, this work revealed that the reduction of Fe(III)EDTA in the BER was enhanced by both direct electrochemical reduction and indirect bioreduction using H2 as an intermediate. It is also interesting that the excess H2 product was transformed to methanol for microbial metabolism and energy storage in the BER.
Collapse
Affiliation(s)
- Wei Li
- †Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
- ‡Institute of Environmental Engineering, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Yinfeng Xia
- †Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
- ‡Institute of Environmental Engineering, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Jingkai Zhao
- †Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Nan Liu
- †Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Sujing Li
- †Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Shihan Zhang
- †Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| |
Collapse
|