1
|
Xie X, Li C, Ban X, Yang H, Li Z. D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. Crit Rev Biotechnol 2024:1-20. [PMID: 38973014 DOI: 10.1080/07388551.2024.2368517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/15/2023] [Indexed: 07/09/2024]
Abstract
D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, P. R. China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, P. R. China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
2
|
Han Z, Li N, Xu H, Xu Z. Improved thermostability and robustness of L-arabinose isomerase by C-terminal elongation and its application in rare sugar production. Biochem Biophys Res Commun 2022; 637:224-231. [DOI: 10.1016/j.bbrc.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
3
|
Characterization of l-Arabinose Isomerase from Klebsiella pneumoniae and Its Application in the Production of d-Tagatose from d-Galactose. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
d-Tagatose, a functional sweetener, is converted from d-galactose by l-arabinose isomerase, which catalyzes the conversion of l-arabinose to l-ribulose. In this study, the araA gene encoding l-arabinose isomerase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli, and the expressed enzyme was purified and characterized. The purified l-arabinose isomerase, a soluble protein with 11.6-fold purification and a 22% final yield, displayed a specific activity of 1.8 U/mg for d-galactose and existed as a homohexamer of 336 kDa. The enzyme exhibited maximum activity at pH 8.0 and 40 °C in the presence of Mn2+ and relative activity for pentoses and hexoses in the order l-arabinose > d-galactose > l-ribulose > d-xylulose > d-xylose > d-tagatose > d-glucose. The thermal stability of recombinant E. coli cells expressing l-arabinose isomerase from K. pneumoniae was higher than that of the enzyme. Thus, the reaction conditions of the recombinant cells were optimized to pH 8.0, 50 °C, and 4 g/L cell concentration using 100 g/L d-galactose with 1 mM Mn2+. Under these conditions, 33.5 g/L d-tagatose was produced from d-galactose with 33.5% molar yield and 67 g/L/h productivity. Our findings will help produce d-tagatose using whole-cell reactions, extending its industrial application.
Collapse
|
4
|
Zhang S, Xu Z, Ma M, Zhao G, Chang R, Si H, Dai M. A novel Lactococcus lactis l-arabinose isomerase for d-tagatose production from lactose. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Ahmed A, Khan TA, Dan Ramdath D, Kendall CWC, Sievenpiper JL. Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials. Nutr Rev 2022; 80:255-270. [PMID: 34339507 PMCID: PMC8754252 DOI: 10.1093/nutrit/nuab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Rare sugars are monosaccharides and disaccharides (found in small quantities in nature) that have slight differences in their chemical structure compared with traditional sugars. Little is known about their unique physiological and cardiometabolic effects in humans. OBJECTIVE The objective of this study was to conduct a systematic review and synthesis of controlled intervention studies of rare sugars in humans, using PRISMA guidelines. DATA SOURCES MEDLINE and EMBASE were searched through October 1, 2020. Studies included both post-prandial (acute) and longer-term (≥1 week duration) human feeding studies that examined the effect of rare sugars (including allulose, arabinose, tagatose, trehalose, and isomaltulose) on cardiometabolic and physiological risk factors. DATA EXTRACTION In all, 50 studies in humans focusing on the 5 selected rare sugars were found. A narrative synthesis of the selected literature was conducted, without formal quality assessment or quantitative synthesis. DATA SYNTHESIS The narrative summary included the food source of each rare sugar, its effect in humans, and the possible mechanism of effect. Overall, these rare sugars were found to offer both short- and long-term benefits for glycemic control and weight loss, with effects differing between healthy individuals, overweight/obese individuals, and those with type 2 diabetes. Most studies were of small size and there was a lack of large randomized controlled trials that could confirm the beneficial effects of these rare sugars. CONCLUSION Rare sugars could offer an opportunity for commercialization as an alternative sweetener, especially for those who are at high cardiometabolic risk. SYSTEMATIC REVIEW REGISTRATION OSF registration no. 10.17605/OSF.IO/FW43D.
Collapse
Affiliation(s)
- Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - D Dan Ramdath
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Canada
| | - Cyril W C Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine St. Michael's Hospital, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Chen Q, Xu W, Wu H, Guang C, Zhang W, Mu W. An overview of D-galactose utilization through microbial fermentation and enzyme-catalyzed conversion. Appl Microbiol Biotechnol 2021; 105:7161-7170. [PMID: 34515844 DOI: 10.1007/s00253-021-11568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/05/2023]
Abstract
D-Galactose is an abundant carbohydrate monomer in nature and widely exists in macroalgae, plants, and dairy wastes. D-Galactose is useful as a raw material for biomass fuel production or low-calorie sweetener production, attracting increased attention. This article summarizes the studies on biotechnological processes for galactose utilization. Two main research directions of microbial fermentation and enzyme-catalyzed conversion from galactose-rich biomass are extensively reviewed. The review provides the recent discoveries for biofuel production from macroalgae, including the innovative methods in the pretreatment process and technological development in the fermentation process. As modern people pay more attention to health, enzyme technologies for low-calorie sweetener production are more urgently needed. D-Tagatose is a promising low-calorie alternative to sugar. We discuss the recent studies on characterization and genetic modification of L-arabinose isomerase to improve the bioconversion of D-galactose to D-tagatose. In addition, the trends and critical challenges in both research directions are outlined at the end. KEY POINTS: • The value and significance of galactose utilization are highlighted. • Biofuel production from galactose-rich biomass is accomplished by fermentation. • L-arabinose isomerase is a tool for bioconversion of D-galactose to D-tagatose.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi , 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
8
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
9
|
Suchý M, Charlton TA, Ben RN, Shuhendler AJ. Synthesis of natural/ 13C-enriched d-tagatose from natural/ 13C-enriched d-fructose. Carbohydr Res 2021; 507:108377. [PMID: 34303197 DOI: 10.1016/j.carres.2021.108377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
A concise, easily scalable synthesis of a rare ketohexose, d-tagatose, was developed, that is compatible with the preparation of d-[UL-13C6]tagatose. Epimerization of the widely available and inexpensive ketohexose d-fructose at the C-4 position via an oxidation/reduction (Dess-Martin periodinane/NaBH4) was a key step in the synthesis. Overall, fully protected natural d-tagatose (3.21 g) was prepared from d-fructose (9 g) on a 50 mmol scale in 23% overall yield, after five steps and two chromatographic purifications. d-[UL-13C6]Tagatose (92 mg) was prepared from d-[UL-13C6]fructose (465 mg, 2.5 mmol) in 16% overall yield after six steps and four chromatographic purifications.
Collapse
Affiliation(s)
- Mojmír Suchý
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thomas A Charlton
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert N Ben
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam J Shuhendler
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
10
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
11
|
High resolution and high throughput analytical methods for d-tagatose and process related impurities using capillary electrophoresis. Anal Biochem 2020; 609:113981. [PMID: 33035461 DOI: 10.1016/j.ab.2020.113981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
d-tagatose is a low calorie multifunctional rare ketohexose sugar with sweetness similar to that of sucrose and it has high potential benefits for food and pharmaceutical industries. It is found in traces in some fruits as a natural component. In view of its high demand as a substitute for sugar, mass production of d-tagatose through enzymatic conversion of Lactose to d-tagatose is adopted. The existing HPLC method has limitations with respect sensitivity and resolution in quantification and monitoring of d-tagatose in the presence of its process related impurities. In the present investigation a new robust, fast and green analytical technique has been developed based on capillary electrophoresis (CE) for the separation and quantification of d-tagatose in presence of other sugars: Lactose, d-glucose, d-galactose and d-talose. Optimum conditions are found to be: Back Ground Electrolyte (BGE): 36 mM of Na2HPO4 and 130 mM of NaOH; pH: 12.6; voltage: +18 kV for high resolution and -18 kV for high throughput methods with direct UV-Detector at 265 nm. At these optimum conditions, good separation between the sugars is achieved in less than 20 min for high resolution and less than 4 min for high throughput methods. The developed methodology is validated as per ICHQ2R1 guide lines and successfully applied for monitoring d-tagatose during the enzymatic conversion of Lactose/d-galactose to d-tagatose and also to determine the unknown amounts of d-tagatose in crystallized samples and further, it is used in identifying the d-tagatose in fruits.
Collapse
|
12
|
Expression and characterization of l-arabinose isomerase from Geobacillus stearothermophilus for improved activity under acidic condition. Protein Expr Purif 2020; 175:105692. [DOI: 10.1016/j.pep.2020.105692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/11/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022]
|
13
|
Characterization of an L-Arabinose Isomerase from Bacillus velezensis and Its Application for L-Ribulose and L-Ribose Biosynthesis. Appl Biochem Biotechnol 2020; 192:935-951. [PMID: 32617845 DOI: 10.1007/s12010-020-03380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
L-Ribulose and L-ribose are two high-value unnatural sugars that can be biosynthesized by sugar isomerases. In this paper, an L-arabinose isomerase (BvAI) from Bacillus velezensis CICC 24777 was cloned and overexpressed in Escherichia coli BL21 (DE3) strain. The maximum activity of recombinant BvAI was observed at 45 °C and pH 8.0, in the presence of 1.0 mM Mn2+. Approximately 207.2 g/L L-ribulose was obtained from 300 g/L L-arabinose in 1.5 h by E. coli harboring BvAI. In addition, approximately 74.25 g/L L-ribose was produced from 300 g/L L-arabinose in 7 h by E. coli co-expressing BvAI and L-RI from Actinotalea fermentans ATCC 43279 (AfRI). This study provides a feasible approach for producing L-ribose from L-arabinose using a co-expression system harboring L-Al and L-RI.
Collapse
|
14
|
Bortone N, Fidaleo M. Stabilization of immobilizedl‐arabinose isomerase for the production ofd‐tagatose fromd‐galactose. Biotechnol Prog 2020; 36:e3033. [DOI: 10.1002/btpr.3033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Nadia Bortone
- Department for Innovation in Biological, Agro‐food and Forest Systems University of Tuscia Viterbo Italy
| | - Marcello Fidaleo
- Department for Innovation in Biological, Agro‐food and Forest Systems University of Tuscia Viterbo Italy
| |
Collapse
|
15
|
Patel SN, Kaushal G, Singh SP. A Novel d-Allulose 3-Epimerase Gene from the Metagenome of a Thermal Aquatic Habitat and d-Allulose Production by Bacillus subtilis Whole-Cell Catalysis. Appl Environ Microbiol 2020; 86:e02605-19. [PMID: 31862716 PMCID: PMC7028978 DOI: 10.1128/aem.02605-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 12/19/2022] Open
Abstract
A novel d-allulose 3-epimerase gene (daeM) has been identified from the metagenomic resource of a hot-water reservoir. The enzyme epimerizes d-fructose into d-allulose, a functional sugar of rare abundance in nature. The metagenomic DNA fragment was cloned and expressed in Escherichia coli The purified recombinant protein (DaeM) was found to be metal dependent (Co2+ or Mn2+). It displayed the maximal levels of catalytic activity in a pH range of 6 to 11 and a temperature range of 75°C to 80°C. The enzyme exhibited remarkably high thermal stability at 60°C and 70°C, with half-life values of 9,900 and 3,240 min, respectively. To the best of our knowledge, this is the highest thermal stability demonstrated by a d-allulose 3-epimerase that has been characterized to date. The enzymatic treatment of 700 mg·ml-1 d-fructose yielded about 217 mg·ml-1 d-allulose, under optimal condition. The catalytic product was purified, and its nuclear magnetic resonance (NMR) spectra were found to be indistinguishable from those of standard d-allulose. For biomolecule production, the whole-cell catalysis procedure avoids the tedious process of extraction and purification of enzyme and also offers better biocatalyst stability. Further, it is desirable to employ safe-grade microorganisms for the biosynthesis of a product. The daeM gene was expressed intracellularly in Bacillus subtilis A whole-cell catalysis reaction performed with a reaction volume of 1 liter at 60°C yielded approximately 196 g·liter-1 d-allulose from 700 g·liter-1 d-fructose. Further, the whole recombinant cells were able to biosynthesize d-allulose in apple juice, mixed fruit juice, and honey.IMPORTANCE d-Allulose is a noncaloric sugar substitute with antidiabetes and antiobesity potential. With several characteristics of physiological significance, d-allulose has wide-ranging applications in the food and pharmacology industries. The development of a thermostable biocatalyst is an objective of mainstream research aimed at achieving industrial acceptability of the enzyme. Aquatic habitats of extreme temperatures are considered a potential metagenomic resource of heat-tolerant biocatalysts of industrial importance. The present study explored the thermal-spring metagenome of the Tattapani geothermal region, Chhattisgarh, India, discovering a novel d-allulose 3-epimerase gene, daeM, encoding an enzyme of high-level heat stability. The daeM gene was expressed in the microbial cells of a nonpathogenic and safe-grade species, B. subtilis, which was found to be capable of performing d-fructose to d-allulose interconversion via a whole-cell catalysis reaction. The results indicate that DaeM is a potential biocatalyst for commercial production of the rare sugar d-allulose. The study established that extreme environmental niches represent a genomic resource of functional sugar-related biocatalysts.
Collapse
Affiliation(s)
- Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Punjab, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, Punjab, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Punjab, India
| |
Collapse
|
16
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
17
|
Bober JR, Nair NU. Galactose to tagatose isomerization at moderate temperatures with high conversion and productivity. Nat Commun 2019; 10:4548. [PMID: 31591402 PMCID: PMC6779876 DOI: 10.1038/s41467-019-12497-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
There are many industrially-relevant enzymes that while active, are severely limited by thermodynamic, kinetic, or stability issues (isomerases, lyases, transglycosidases). In this work, we study Lactobacillus sakeil-arabinose isomerase (LsLAI) for d-galactose to d-tagatose isomerization—that is limited by all three reaction parameters. The enzyme demonstrates low catalytic efficiency, low thermostability at temperatures > 40 °C, and equilibrium conversion < 50%. After exploring several strategies to overcome these limitations, we show that encapsulating LsLAI in gram-positive Lactobacillus plantarum that is chemically permeabilized enables reactions at high rates, high conversions, and elevated temperatures. In a batch process, this system enables ~ 50% conversion in 4 h starting with 300 mM galactose (an average productivity of 37 mM h−1), and 85% conversion in 48 h. We suggest that such an approach may be invaluable for other enzymatic processes that are similarly kinetically-, thermodynamically-, and/or stability-limited. Production of tagatose, a sugar substitute, by isomerization of galactose suffers from unfavorable enzymatic kinetics, low enzyme stability, and low equilibrium constant. Here, the authors simultaneously overcome these limitations by encapsulating l-arabinose isomerase in permeabilized Lactobacillus plantarum.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tuts University, Medford, MA, 02155, USA
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tuts University, Medford, MA, 02155, USA.
| |
Collapse
|
18
|
Guo Z, Long L, Ding S. Characterization of a D-lyxose isomerase from Bacillus velezensis and its application for the production of D-mannose and L-ribose. AMB Express 2019; 9:149. [PMID: 31529161 PMCID: PMC6746899 DOI: 10.1186/s13568-019-0877-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/09/2019] [Indexed: 11/10/2022] Open
Abstract
D-Mannose and L-ribose are two important monosaccharides, which have attracted public attention recently because of their great application potentials in food, cosmetic and pharmaceutical industries. Sugar isomerases catalyze the sugar isomerization and therefore can be used as the biocatalysts for production of the high-value sugars from inexpensive sugars. L-arabinose isomerase catalyzes the conversion of L-arabinose to L-ribulose, while D-lyxose isomerase catalyzes L-ribulose and D-fructose to L-ribose and D-mannose, respectively. In this paper, a putative D-LI from Bacillus velezensis (BvLI) was identified, characterized and used to produce D-mannose and L-ribose from D-fructose and L-arabinose, respectively. The recombinant BvLI exhibited a maximum activity at 55 °C and pH 6.5, in the presence of 0.1 mM Co2+. Approximately 110.75 g/L D-mannose was obtained from 500 g/L D-fructose in 6 h by the recombinant BvLI, and approximately 105 g/L L-ribose was obtained from 500 g/L L-arabinose in 8 h by the successive biocatalysis of L-arabinose isomerase from Bacillus licheniformis (BlAI) and BvLI.
Collapse
|
19
|
Biochemical Characterization of Heat-Tolerant Recombinant L-Arabinose Isomerase from Enterococcus faecium DBFIQ E36 Strain with Feasible Applications in D-Tagatose Production. Mol Biotechnol 2019; 61:385-399. [PMID: 30919326 DOI: 10.1007/s12033-019-00161-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-Tagatose is a ketohexose, which presents unique properties as a low-calorie functional sweetener possessing a sweet flavor profile similar to D-sucrose and having no aftertaste. Considered a generally recognized as safe (GRAS) substance by FAO/WHO, D-tagatose can be used as an intermediate for the synthesis of other optically active compounds as well as an additive in detergent, cosmetic, and pharmaceutical formulations. This study reports important features for L-arabinose isomerase (EC 5.3.1.4) (L-AI) use in industry. We describe arabinose (araA) gene virulence analysis, gene isolation, sequencing, cloning, and heterologous overexpression of L-AI from the food-grade GRAS bacterium Enterococcus faecium DBFIQ E36 in Escherichia coli and assess biochemical properties of this recombinant enzyme. Recombinant L-AI (rL-AI) was one-step purified to homogeneity by Ni2+-agarose resin affinity chromatography and biochemical characterization revealed low identity with both thermophilic and mesophilic L-AIs but high degree of conservation in residues involved in substrate recognition. Optimal conditions for rL-AI activity were 50 °C, pH 5.5, and 0.3 mM Mn2+, exhibiting a low cofactor concentration requirement and an acidic optimum pH. Half-life at 45 °C and 50 °C were 1427 h and 11 h, respectively, and 21.5 h and 39.5 h at pH 4.5 and 5.6, respectively, showing the high stability of the enzyme in the presence of a metallic cofactor. Bioconversion yield for D-tagatose biosynthesis was 45% at 50 °C after 48 h. These properties highlight the technological potential of E. faecium rL-AI as biocatalyst for D-tagatose production.
Collapse
|
20
|
Schoenenberger B, Kind S, Meier R, Eggert T, Obkircher M, Wohlgemuth R. Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1634694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
21
|
Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H, Gao XD. Production of l-Ribulose Using an Encapsulated l-Arabinose Isomerase in Yeast Spores. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4868-4875. [PMID: 30995033 DOI: 10.1021/acs.jafc.9b00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rare sugar l-ribulose is produced from the abundant sugar l-arabinose by enzymatic conversion. An l-arabinose isomerase (AI) from Geobacillus thermodenitrificans was efficiently expressed and encapsulated in Saccharomyces cerevisiae spores. Deletion of the yeast OSW2 gene, which causes a mild defect in the integrity of the spore wall, substantially improved the activity of encapsulated AI, without damaging its superior enzymatic properties of thermostability, pH tolerance,and resistance toward SDS and proteinase treatments. In a 10 mL reaction, 100 mg of dry AI encapsulated in spores produced 250 mg of l-ribulose from 1 g of l-arabinose, indicating a 25% conversion rate. Notably, the product of l-ribulose was directly purified from the reaction solution with an approximately 91% recovery using a Ca2+ ion exchange column. Our results describe not only a facile approach for the production of l-ribulose but also a useful strategy for the enzymatic conversion of rare sugars in "Izumoring".
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yahui Gao
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
22
|
Torres P, Batista-Viera F. Production of d-tagatose and d-fructose from whey by co-immobilized enzymatic system. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Zheng Z, Xie J, Liu P, Li X, Ouyang J. Elegant and Efficient Biotransformation for Dual Production of d-Tagatose and Bioethanol from Cheese Whey Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:829-835. [PMID: 30638366 DOI: 10.1021/acs.jafc.8b05150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the dual production of valuable d-tagatose and bioethanol from lactose and cheese whey powder is presented. First, a one-pot biosynthesis involving lactose hydrolysis and d-galactose isomerization for d-tagatose production was established using crude enzymes of recombinant Escherichia coli with l-arabinose isomerase (L-AI) at 50 °C. Compared to the current enzymatic system, only L-AI was overexpressed, because of the unexpectedly thermotolerant β-galactosidase in E. coli BL21(DE3). Moreover, this high temperature rendered the d-glucose catabolism of E. coli inactive, while retaining all fermentable sugars for bioethanol fermentation. Thereafter, the mixed sugar syrup was fermented by Saccharomyces cerevisiae NL22. A total of 23.5 g/L d-tagatose and 26.9 g/L bioethanol was achieved from cheese whey powder containing 100 g/L lactose. This bioprocess not only provides an efficient method for the functionalization of byproduct whey, but also offsets the high production cost of d-tagatose and bioethanol.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Jiaxiao Xie
- College of Forestry , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Peng Liu
- College of Forestry , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Xin Li
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , People's Republic of China
| |
Collapse
|
24
|
Roy S, Chikkerur J, Roy SC, Dhali A, Kolte AP, Sridhar M, Samanta AK. Tagatose as a Potential Nutraceutical: Production, Properties, Biological Roles, and Applications. J Food Sci 2018; 83:2699-2709. [PMID: 30334250 DOI: 10.1111/1750-3841.14358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Nutraceuticals are gaining importance owing to their potential applications in numerous sectors including food and feed industries. Among the emerging nutraceuticals, d-tagatose occupies a significant niche because of its low calorific value, antidiabetic property and growth promoting effects on beneficial gut bacteria. As d-tagatose is present in minute quantities in naturally occurring food substances, it is produced mainly by chemical or biological means. Recently, attempts were made for bio-production of d-tagatose using l-arabinose isomerase enzyme to overcome the challenges of chemical process of production. Applications of d-tagatose for maintaining health and wellbeing are increasing due to growing consumer awareness and apprehension against modern therapeutic agents. This review outlines the current status on d-tagatose, particularly its production, properties, biological role, applications, and the future perspectives.
Collapse
Affiliation(s)
- Sohini Roy
- Jain Univ., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Jayaram Chikkerur
- Jain Univ., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Sudhir Chandra Roy
- Molecular Biology Unit, ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Arindam Dhali
- Omics Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Atul Puroshtam Kolte
- Omics Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Manpal Sridhar
- BE & ES Div., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| | - Ashis Kumar Samanta
- Feed Additives & Nutraceuticals Lab., ICAR-NIANP, Adugodi, Hosur Road, Bengaluru - 560 030, Karnataka, India
| |
Collapse
|
25
|
Laksmi FA, Arai S, Tsurumaru H, Nakamura Y, Saksono B, Tokunaga M, Ishibashi M. Improved substrate specificity for D-galactose of L-arabinose isomerase for industrial application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1084-1091. [PMID: 30282606 DOI: 10.1016/j.bbapap.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3-fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatose.
Collapse
Affiliation(s)
- Fina Amreta Laksmi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Shigeki Arai
- National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hirohito Tsurumaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Yoshitaka Nakamura
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Budi Saksono
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jalan Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Masao Tokunaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Matsujiro Ishibashi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
26
|
Isomerases and epimerases for biotransformation of pentoses. Appl Microbiol Biotechnol 2018; 102:7283-7292. [PMID: 29968034 DOI: 10.1007/s00253-018-9150-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Pentoses represent monosaccharides with five carbon atoms. They are organized into two main groups, aldopentoses and ketopentoses. There are eight aldopentoses and four ketopentoses and each ketopentose corresponds to two aldopentoses. Only D-xylose, D-ribose, and L-arabinose are natural sugars, but others belong to rare sugars that occur in very small quantities in nature. Recently, rare pentoses attract much attention because of their great potentials for commercial applications, especially as precursors of many important medical drugs. Pentoses Izumoring strategy provides a complete enzymatic approach to link all pentoses using four types of enzymes, including ketose 3-epimerases, aldose-ketose isomerases, polyol dehydrogenases, and aldose reductases. At least 10 types of epimerases and isomerases have been used for biotransformation of all aldopentoses and ketopentoses, and these enzymes are reviewed in detail in this article.
Collapse
|
27
|
Yeo IS, Shim WY, Kim JH. Construction of genetically engineered Candida tropicalis for conversion of l-arabinose to l-ribulose. J Biotechnol 2018; 274:9-14. [PMID: 29407417 DOI: 10.1016/j.jbiotec.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 11/15/2022]
Abstract
For the biological production of l-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce l-ribulose by fermentation with a glucose/l-arabinose mixture. For the uptake of l-arabinose as a substrate and conversion of l-arabinose to l-ribulose, two heterologous genes coding for l-arabinose transporter and l-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated l-arabinose transporter gene (STP2)-expressing strain exhibited a high l-arabinose uptake rate of 0.103 g/g cell/h and the expression of l-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of l-arabinose. This genetically engineered strain can be used for l-ribulose production by fermentation using mixed sugars of glucose and l-arabinose.
Collapse
Affiliation(s)
- In-Seok Yeo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Woo-Yong Shim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
28
|
Nguyen TK, Hong MG, Chang PS, Lee BH, Yoo SH. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener. PLoS One 2018; 13:e0196099. [PMID: 29684065 PMCID: PMC5912747 DOI: 10.1371/journal.pone.0196099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/08/2018] [Indexed: 11/18/2022] Open
Abstract
d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.
Collapse
Affiliation(s)
- Tien-Kieu Nguyen
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Moon-Gi Hong
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea
- * E-mail: (SHY); (BHL)
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
- * E-mail: (SHY); (BHL)
| |
Collapse
|
29
|
d-lyxose isomerase and its application for functional sugar production. Appl Microbiol Biotechnol 2018; 102:2051-2062. [DOI: 10.1007/s00253-018-8746-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
|
30
|
Guo Q, An Y, Yun J, Yang M, Magocha TA, Zhu J, Xue Y, Qi Y, Hossain Z, Sun W, Qi X. Enhanced d-tagatose production by spore surface-displayed l-arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. BIORESOURCE TECHNOLOGY 2018; 247:940-946. [PMID: 30060433 DOI: 10.1016/j.biortech.2017.09.187] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 06/08/2023]
Abstract
In the present study, a new strain of Lactobacillus brevis producing d-tagatose was isolated and identified. Then, the l-arabinose isomerase (L-AI) of this strain was displayed on the spore surface of Bacillus subtilis DB403 by using an anchoring protein CotG and a peptide linker (Gly-Gly-Gly-Gly-Ser). This displayed L-AI with high specific activity and stability was used as a novel immobilized biocatalyst for producing d-tagatose through batch and semi-continuous biotransformation. The conversion rate of d-tagatose from 125 g/L d-galactose was achieved 79.7% at 28 h, and the volumetric productivity reached 4.3 g/L/h at 20 h. Furthermore, the displayed L-AI showed a good performance on the reusability and remained 87% of the specific activity and 40.7% of the conversion rate after five recycles. A high efficient immobilized method for producing food-grade d-tagatose was established using spore surface-displayed L-AI.
Collapse
Affiliation(s)
- Qi Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110161, Liaoning, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Miaomiao Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tinashe A Magocha
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jingfei Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yanbo Xue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yilin Qi
- College of Science and Technology, Agricultural University of Hebei, 1 Bohai Road, Cangzhou 061100, Hebei, China
| | - Zabed Hossain
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
31
|
de Sousa M, Manzo RM, García JL, Mammarella EJ, Gonçalves LRB, Pessela BC. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis. Molecules 2017; 22:molecules22122164. [PMID: 29211024 PMCID: PMC6149694 DOI: 10.3390/molecules22122164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg-1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.
Collapse
Affiliation(s)
- Marylane de Sousa
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Ricardo M Manzo
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - José L García
- Center for Biological Research, CIB, Higher Council for Scientific Research, CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Enrique J Mammarella
- Food and Biotechnology Engineering Group, Institute of Technological Development for the Chemical Industry, National University of the Litoral (UNL), National Council of Scientific and Technical Research (CONICET), RN 168 Km 472 "Paraje El Pozo" S/N, S3000 Santa Fe, Argentina.
| | - Luciana R B Gonçalves
- Department of Chemical Engineering, Federal University of Ceará, Campus do Pici, BL 709, Fortaleza-CE 60455-760, Brazil.
| | - Benevides C Pessela
- Department of Food Biotechnology and Microbiology, Institute of Research in Food Sciences, CIAL, Higher Council for Scientific Research, CSIC, C/Nicolás Cabrera 9, UAM Campus, 28049 Madrid, Spain.
- Department of Engineering and Technology, Polytechnic Institute of Sciences and Technology, Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola.
| |
Collapse
|
32
|
Kim HM, Song Y, Wi SG, Bae HJ. Production of D -tagatose and bioethanol from onion waste by an intergrating bioprocess. J Biotechnol 2017; 260:84-90. [DOI: 10.1016/j.jbiotec.2017.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 11/17/2022]
|
33
|
van Rossum T, Muras A, Baur MJ, Creutzburg SC, van der Oost J, Kengen SW. A growth- and bioluminescence-based bioreporter for the in vivo detection of novel biocatalysts. Microb Biotechnol 2017; 10:625-641. [PMID: 28393499 PMCID: PMC5404197 DOI: 10.1111/1751-7915.12612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/28/2022] Open
Abstract
The use of bioreporters in high-throughput screening for small molecules is generally laborious and/or expensive. The technology can be simplified by coupling the generation of a desired compound to cell survival, causing only positive cells to stay in the pool of generated variants. Here, a dual selection/screening system was developed for the in vivo detection of novel biocatalysts. The sensor part of the system is based on the transcriptional regulator AraC, which controls expression of both a selection reporter (LeuB or KmR; enabling growth) for rapid reduction of the initially large library size and a screening reporter (LuxCDABE; causing bioluminescence) for further quantification of the positive variants. Of four developed systems, the best system was the medium copy system with KmR as selection reporter. As a proof of principle, the system was tested for the selection of cells expressing an l-arabinose isomerase derived from mesophilic Escherichia coli or thermophilic Geobacillus thermodenitrificans. A more than a millionfold enrichment of cells with l-arabinose isomerase activity was demonstrated by selection and exclusion of false positives by screening. This dual selection/screening system is an important step towards an improved detection method for small molecules, and thereby for finding novel biocatalysts.
Collapse
Affiliation(s)
- Teunke van Rossum
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Aleksandra Muras
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Marco J.J. Baur
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Sjoerd C.A. Creutzburg
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - John van der Oost
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| | - Servé W.M. Kengen
- Laboratory of MicrobiologyWageningen University and ResearchStippeneng 46708WE WageningenThe Netherlands
| |
Collapse
|
34
|
Enzymatic approaches to rare sugar production. Biotechnol Adv 2017; 35:267-274. [DOI: 10.1016/j.biotechadv.2017.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
|
35
|
Immobilized Trienzymatic System with Enhanced Stabilization for the Biotransformation of Lactose. Molecules 2017; 22:molecules22020284. [PMID: 28241449 PMCID: PMC6155631 DOI: 10.3390/molecules22020284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022] Open
Abstract
The use of ketohexose isomerases is a powerful tool in lactose whey processing, but these enzymes can be very sensitive and expensive. Development of immobilized/stabilized biocatalysts could be a further option to improve the process. In this work, β-galactosidase from Bacillus circulans, l-arabinose (d-galactose) isomerase from Enterococcus faecium, and d-xylose (d-glucose) isomerase from Streptomyces rubiginosus were immobilized individually onto Eupergit C and Eupergit C 250 L. Immobilized activity yields were over 90% in all cases. With the purpose of increasing thermostability of derivatives, two post-immobilization treatments were performed: alkaline incubation to favor the formation of additional covalent linkages, and blocking of excess oxirane groups by reacting with glycine. The greatest thermostability was achieved when alkaline incubation was carried out for 24 h, producing l-arabinose isomerase-Eupergit C derivatives with a half-life of 379 h and d-xylose isomerase-Eupergit C derivatives with a half-life of 554 h at 50 °C. Preliminary assays using immobilized and stabilized biocatalysts sequentially to biotransform lactose at pH 7.0 and 50 °C demonstrated improved performances as compared with soluble enzymes. Further improvements in ketohexose productivities were achieved when the three single-immobilizates were incubated simultaneously with lactose in a mono-reactor system.
Collapse
|
36
|
Efficient biotransformation of d-fructose to d-mannose by a thermostable d-lyxose isomerase from Thermosediminibacter oceani. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Shin KC, Sim DH, Seo MJ, Oh DK. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8146-8153. [PMID: 27734668 DOI: 10.1021/acs.jafc.6b03588] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Dong-Hyun Sim
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, South Korea
| |
Collapse
|
38
|
l-Ribose isomerase and mannose-6-phosphate isomerase: properties and applications for l-ribose production. Appl Microbiol Biotechnol 2016; 100:9003-9011. [DOI: 10.1007/s00253-016-7834-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 11/27/2022]
|
39
|
Zhang W, Yu S, Zhang T, Jiang B, Mu W. Recent advances in d -allulose: Physiological functionalities, applications, and biological production. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Mei W, Wang L, Zang Y, Zheng Z, Ouyang J. Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production. BMC Biotechnol 2016; 16:55. [PMID: 27363468 PMCID: PMC4929721 DOI: 10.1186/s12896-016-0286-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background L-arabinose isomerase (AI) is a crucial catalyst for the biotransformation of D-galactose to D-tagatose. In previous reports, AIs from thermophilic bacterial strains had been wildly researched, but the browning reaction and by-products formed at high temperatures restricted their applications. By contrast, AIs from mesophilic Bacillus strains have some different features including lower optimal temperatures and lower requirements of metallic cofactors. These characters will be beneficial to the development of a more energy-efficient and safer production process. However, the relevant data about the kinetics and reaction properties of Bacillus AIs in D-tagatose production are still insufficient. Thus, in order to support further applications of these AIs, a comprehensive characterization of a Bacillus AI is needed. Results The coding gene (1422 bp) of Bacillus coagulans NL01 AI (BCAI) was cloned and overexpressed in the Escherichia coli BL21 (DE3) strain. The enzymatic property test showed that the optimal temperature and pH of BCAI were 60 °C and 7.5 respectively. The raw purified BCAI originally showed high activity in absence of outsourcing metallic ions and its thermostability did not change in a low concentration (0.5 mM) of Mn2+ at temperatures from 70 °C to 90 °C. Besides these, the catalytic efficiencies (kcat/Km) for L-arabinose and D-galactose were 8.7 mM-1 min-1 and 1.0 mM-1 min-1 respectively. Under optimal conditions, the recombinant E. coli cell containing BCAI could convert 150 g L-1 and 250 g L-1 D-galactose to D-tagatose with attractive conversion rates of 32 % (32 h) and 27 % (48 h). Conclusions In this study, a novel AI from B. coagulans NL01was cloned, purified and characterized. Compared with other reported AIs, this AI could retain high proportions of activity at a broader range of temperatures and was less dependent on metallic cofactors such as Mn2+. Its substrate specificity was understood deeply by carrying out molecular modelling and docking studies. When the recombinant E. coli expressing the AI was used as a biocatalyst, D-tagatose could be produced efficiently in a simple one-pot biotransformation system. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wending Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lu Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ying Zang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaojuan Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forest Genetics & Biotechnology of the Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
41
|
Construction and co-expression of polycistronic plasmids encoding thermophilic l-arabinose isomerase and hyperthermophilic β-galactosidase for single-step production of d-tagatose. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Xu Z, Wang R, Liu C, Chi B, Gao J, Chen B, Xu H. A new l-arabinose isomerase with copper ion tolerance is suitable for creating protein–inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Adv 2016. [DOI: 10.1039/c5ra27035a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein–inorganic hybrid nanoflowers were prepared using Cu2+, PBS buffer, and a copper ion tolerant l-arabinose isomerase that was derived from Paenibacillus polymyxa (PPAI).
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| | - Jian Gao
- Yancheng Institute of Technology
- China
| | | | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing 210009
- PR China
- College of Food Science and Light Industry
- Nanjing Tech University
| |
Collapse
|
43
|
Chethana B, Lee D, Mushrif SH. First principles investigation into the metal catalysed 1,2 carbon shift reaction for the epimerization of sugars. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Engineering of Alicyclobacillus hesperidum L-arabinose isomerase for improved catalytic activity and reduced pH optimum using random and site-directed mutagenesis. Appl Biochem Biotechnol 2015; 177:1480-92. [PMID: 26335445 DOI: 10.1007/s12010-015-1828-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
A mutation, D478N, was obtained by an error-prone polymerase chain reaction using the L-arabinose isomerase (L-AI) gene from Alicyclobacillus hesperidum URH17-3-68 as the template. The mutated isomerase showed higher activity for D-galactose isomerization. The mutation site obtained from random mutagenesis was then introduced as a single-site mutation using site-directed mutagenesis. Single-site variants, D478N, D478Q, D478A, D478K, and D478R, were constructed. The optimum temperatures were all higher than 60 °C. D478A, D478N, and D478Q retained more than 80 % of the maximum relative activity of the wild-type L-AI at 75 °C. With the exception of the D478A variant, all variants showed decreased optimum pH values in the acidic range (6.0-6.5). All of the variant L-AIs could be significantly activated by the addition of Co(2+) and Mn(2+). D478N and D478Q showed higher catalytic efficiencies (k cat/K m) toward D-galactose than that of wild-type L-AI. In addition, the D478N and D478Q variants exhibited a much higher conversion ratio of D-galactose to D-tagatose at 6.0 than the wild-type L-AI. According to the molecular model, residue D478 was located on the surface of the enzyme and distant from the active site. It was supposed that the charged state of residue 478 may influence the optimum pH for substrate binding or isomerization.
Collapse
|
45
|
Mu W, Yu L, Zhang W, Zhang T, Jiang B. Isomerases for biotransformation of D-hexoses. Appl Microbiol Biotechnol 2015; 99:6571-84. [DOI: 10.1007/s00253-015-6788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
46
|
Immobilization of the recombinant (His) 6 -tagged l -arabinose isomerase from Thermotoga maritima on epoxy and cupper-chelate epoxy supports. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Krause M, Neubauer P, Wierenga RK. Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase. Protein Eng Des Sel 2015; 28:187-97. [PMID: 25767111 DOI: 10.1093/protein/gzv010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Through structure-based and directed evolution approaches, a new catalytic activity has been established on the (β/α)8 barrel enzyme triosephosphate isomerase (TIM). This work started from ml8bTIM, a monomeric variant of TIM, in which the phosphate-binding loop (loop-8) had been shortened. Structure analysis suggested an additional point mutation (V233A), converting ml8bTIM into A-TIM. A-TIM has no detectable TIM activity, but it binds the TIM transition state analog, 2-phosphoglycollate. In an in vivo selection approach, we aimed at transferring the activity of three sugar isomerases (L-arabinose isomerase (L-AI), D-xylose isomerase A (D-XI) and D-ribose-5-phosphate isomerase (D-RPI)) onto A-TIM. Escherichia coli knockout variants were constructed, lacking E. coli L-AI, D-XI and D-RPI activities, respectively. Through a systematic approach, new A-TIM variants were obtained only from selection experiments with the L-AI knockout strain. Selection for D-RPI activity was impossible because of an impaired strain due to the gene knockouts. The selection for D-XI activity was unsuccessful, showing the importance of the starting protein for obtaining new biocatalytic properties. The L-AI-directed evolution experiments show that A-TIM already has residual in vivo L-AI activity. Most of the mutations providing A-TIM with enhanced L-AI activity are located in the loops between β-strands and the subsequent α-helices.
Collapse
Affiliation(s)
- Mirja Krause
- Laboratory of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Insitute of Biotechnology, Ackerstr. 76, ACK 24, D-13355 Berlin, Germany
| | - Peter Neubauer
- Laboratory of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Insitute of Biotechnology, Ackerstr. 76, ACK 24, D-13355 Berlin, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|