1
|
Ingelman H, Heffernan JK, Harris A, Brown SD, Shaikh KM, Saqib AY, Pinheiro MJ, de Lima LA, Martinez KR, Gonzalez-Garcia RA, Hawkins G, Daleiden J, Tran L, Zeleznik H, Jensen RO, Reynoso V, Schindel H, Jänes J, Simpson SD, Köpke M, Marcellin E, Valgepea K. Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness. N Biotechnol 2024; 83:1-15. [PMID: 38871051 DOI: 10.1016/j.nbt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microbes able to convert gaseous one-carbon (C1) waste feedstocks are increasingly important to transition to the sustainable production of renewable chemicals and fuels. Acetogens are interesting biocatalysts since gas fermentation using Clostridium autoethanogenum has been commercialised. However, most acetogen strains need complex nutrients, display slow growth, and are not robust for bioreactor fermentations. In this work, we used three different and independent adaptive laboratory evolution (ALE) strategies to evolve the wild-type C. autoethanogenum to grow faster, without yeast extract and to be robust in operating continuous bioreactor cultures. Multiple evolved strains with improved phenotypes were isolated on minimal media with one strain, named "LAbrini", exhibiting superior performance regarding the maximum specific growth rate, product profile, and robustness in continuous cultures. Whole-genome sequencing of the evolved strains identified 25 mutations. Of particular interest are two genes that acquired seven different mutations across the three ALE strategies, potentially as a result of convergent evolution. Reverse genetic engineering of mutations in potentially sporulation-related genes CLAU_3129 (spo0A) and CLAU_1957 recovered all three superior features of our ALE strains through triggering significant proteomic rearrangements. This work provides a robust C. autoethanogenum strain "LAbrini" to accelerate phenotyping and genetic engineering and to better understand acetogen metabolism.
Collapse
Affiliation(s)
- Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | - Asfand Yar Saqib
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Marina J Pinheiro
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Karen Rodriguez Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | - Ricardo A Gonzalez-Garcia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | | | | | | | | | - Jürgen Jänes
- Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | | | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
2
|
Yan X, He Q, Geng B, Yang S. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. BIODESIGN RESEARCH 2024; 6:0052. [PMID: 39434802 PMCID: PMC11491672 DOI: 10.34133/bdr.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Microbial cell factories (MCFs) are extensively used to produce a wide array of bioproducts, such as bioenergy, biochemical, food, nutrients, and pharmaceuticals, and have been regarded as the "chips" of biomanufacturing that will fuel the emerging bioeconomy era. Biotechnology advances have led to the screening, investigation, and engineering of an increasing number of microorganisms as diverse MCFs, which are the workhorses of biomanufacturing and help develop the bioeconomy. This review briefly summarizes the progress and strategies in the development of robust and efficient MCFs for sustainable and economic biomanufacturing. First, a comprehensive understanding of microbial chassis cells, including accurate genome sequences and corresponding annotations; metabolic and regulatory networks governing substances, energy, physiology, and information; and their similarity and uniqueness compared with those of other microorganisms, is needed. Moreover, the development and application of effective and efficient tools is crucial for engineering both model and nonmodel microbial chassis cells into efficient MCFs, including the identification and characterization of biological parts, as well as the design, synthesis, assembly, editing, and regulation of genes, circuits, and pathways. This review also highlights the necessity of integrating automation and artificial intelligence (AI) with biotechnology to facilitate the development of future customized artificial synthetic MCFs to expedite the industrialization process of biomanufacturing and the bioeconomy.
Collapse
Affiliation(s)
| | | | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| |
Collapse
|
3
|
Nabila DS, Chan R, Syamsuri RRP, Nurlilasari P, Wan-Mohtar WAAQI, Ozturk AB, Rossiana N, Doni F. Biobutanol production from underutilized substrates using Clostridium: Unlocking untapped potential for sustainable energy development. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100250. [PMID: 38974669 PMCID: PMC11225672 DOI: 10.1016/j.crmicr.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The increasing demand for sustainable energy has brought biobutanol as a potential substitute for fossil fuels. The Clostridium genus is deemed essential for biobutanol synthesis due to its capability to utilize various substrates. However, challenges in maintaining fermentation continuity and achieving commercialization persist due to existing barriers, including butanol toxicity to Clostridium, low substrate utilization rates, and high production costs. Proper substrate selection significantly impacts fermentation efficiency, final product quality, and economic feasibility in Clostridium biobutanol production. This review examines underutilized substrates for biobutanol production by Clostridium, which offer opportunities for environmental sustainability and a green economy. Extensive research on Clostridium, focusing on strain development and genetic engineering, is essential to enhance biobutanol production. Additionally, critical suggestions for optimizing substrate selection to enhance Clostridium biobutanol production efficiency are also provided in this review. In the future, cost reduction and advancements in biotechnology may make biobutanol a viable alternative to fossil fuels.
Collapse
Affiliation(s)
- Devina Syifa Nabila
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Rosamond Chan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | | | - Puspita Nurlilasari
- Department of Agro-industrial Technology, Faculty of Agro-industrial Technology, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah Bilal Ozturk
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Türkiye
| | - Nia Rossiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| |
Collapse
|
4
|
Palaniswamy S, Ashoor S, Eskasalam SR, Jang YS. Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives. Front Bioeng Biotechnol 2023; 11:1272429. [PMID: 37954017 PMCID: PMC10634440 DOI: 10.3389/fbioe.2023.1272429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density. Sustainable management of lignocellulosic biomass waste and its utilization in fermentation are viable alternatives to produce butanol via the promising microbial catalyst clostridia. This review provides an overview of lignocellulosic biomass waste management, focusing on recent advances in strain development for butanol production from renewable biomass with an emphasis on future perspectives.
Collapse
Affiliation(s)
- Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Selim Ashoor
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Syafira Rizqi Eskasalam
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
5
|
Robles A, Sundar SV, Mohana Rangan S, Delgado AG. Butanol as a major product during ethanol and acetate chain elongation. Front Bioeng Biotechnol 2023; 11:1181983. [PMID: 37274171 PMCID: PMC10233103 DOI: 10.3389/fbioe.2023.1181983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Chain elongation is a relevant bioprocess in support of a circular economy as it can use a variety of organic feedstocks for production of valuable short and medium chain carboxylates, such as butyrate (C4), caproate (C6), and caprylate (C8). Alcohols, including the biofuel, butanol (C4), can also be generated in chain elongation but the bioreactor conditions that favor butanol production are mainly unknown. In this study we investigated production of butanol (and its precursor butyrate) during ethanol and acetate chain elongation. We used semi-batch bioreactors (0.16 L serum bottles) fed with a range of ethanol concentrations (100-800 mM C), a constant concentration of acetate (50 mM C), and an initial total gas pressure of ∼112 kPa. We showed that the butanol concentration was positively correlated with the ethanol concentration provided (up to 400 mM C ethanol) and to chain elongation activity, which produced H2 and further increased the total gas pressure. In bioreactors fed with 400 mM C ethanol and 50 mM C acetate, a concentration of 114.96 ± 9.26 mM C butanol (∼2.13 g L-1) was achieved after five semi-batch cycles at a total pressure of ∼170 kPa and H2 partial pressure of ∼67 kPa. Bioreactors with 400 mM C ethanol and 50 mM C acetate also yielded a butanol to butyrate molar ratio of 1:1. At the beginning of cycle 8, the total gas pressure was intentionally decreased to ∼112 kPa to test the dependency of butanol production on total pressure and H2 partial pressure. The reduction in total pressure decreased the molar ratio of butanol to butyrate to 1:2 and jolted H2 production out of an apparent stall. Clostridium kluyveri (previously shown to produce butyrate and butanol) and Alistipes (previously linked with butyrate production) were abundant amplicon sequence variants in the bioreactors during the experimental phases, suggesting the microbiome was resilient against changes in bioreactor conditions. The results from this study clearly demonstrate the potential of ethanol and acetate-based chain elongation to yield butanol as a major product. This study also supports the dependency of butanol production on limiting acetate and on high total gas and H2 partial pressures.
Collapse
Affiliation(s)
- Aide Robles
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
- Engineering Research Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ, United States
| | - Skanda Vishnu Sundar
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
| | - Srivatsan Mohana Rangan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
- Engineering Research Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ, United States
| | - Anca G. Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
- Engineering Research Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Jang YS, Kim WJ, Im JA, Palaniswamy S, Yao Z, Lee HL, Yoon YR, Seong HJ, Papoutsakis ET, Lee SY. Efforts to install a heterologous Wood-Ljungdahl pathway in Clostridium acetobutylicum enable the identification of the native tetrahydrofolate (THF) cycle and result in early induction of solvents. Metab Eng 2023; 77:188-198. [PMID: 37054966 DOI: 10.1016/j.ymben.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/05/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Here, we report the construction of a Clostridium acetobutylicum strain ATCC 824 (pCD07239) by heterologous expression of carbonyl branch genes (CD630_0723∼CD630_0729) from Clostridium difficile, aimed at installing a heterologous Wood-Ljungdahl pathway (WLP). As part of this effort, in order to validate the methyl branch of the WLP in the C. acetobutylicum, we performed 13C-tracing analysis on knockdown mutants of four genes responsible for the formation of 5-methyl-tetrahydrofolate (5-methyl-THF) from formate: CA_C3201, CA_C2310, CA_C2083, and CA_C0291. While C. acetobutylicum 824 (pCD07239) could not grow autotrophically, in heterotrophic fermentation, it began producing butanol at the early growth phase (OD600 of 0.80; 0.162 g/L butanol). In contrast, solvent production in the parent strain did not begin until the early stationary phase (OD600 of 7.40). This study offers valuable insights for future research on biobutanol production during the early growth phase.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea.
| | - Won Jun Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jung Ae Im
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Zhuang Yao
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Haeng Lim Lee
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Ye Rin Yoon
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Hyeon Jeong Seong
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Eleftherios T Papoutsakis
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA; Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE, 19716, USA
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Riaz S, Mazhar S, Abidi SH, Syed Q, Abbas N, Saleem Y, Nadeem AA, Maryam M, Essa R, Ashfaq S. Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications. Arch Microbiol 2022; 204:672. [PMID: 36251102 DOI: 10.1007/s00203-022-03284-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
The growing population increases the need to develop advanced biological methods for utilizing renewable and sustainable resources to produce environmentally friendly biofuels. Currently, energy resources are limited for global demand and are constantly depleting and creating environmental problems. Some higher chain alcohols, like butanol and ethanol, processing similar properties to gasoline, can be alternate sources of biofuel. However, the industrial production of these alcohols remains challenging because they cannot be efficiently produced by microbes naturally. Therefore, butanol is the most interesting biofuel candidate with a higher octane number produced naturally by microbes through Acetone-Butanol-Ethanol fermentation. Feedstock selection as the substrate is the most crucial step in biobutanol production. Lignocellulosic biomass has been widely used to produce cellulosic biobutanol using agricultural wastes and residue. Specific necessary pretreatments, fermentation strategies, bioreactor designing and kinetics, and modeling can also enhance the efficient production of biobutanol. The recent genetic engineering approaches of gene knock in, knock out, and overexpression to manipulate pathways can increase the production of biobutanol in a user friendly host organism. So far various genetic manipulation techniques like antisense RNA, TargeTron Technology and CRISPR have been used to target Clostridium acetobutylicum for biobutanol production. This review summarizes the recent research and development for the efficient production of biobutanol in various aspects.
Collapse
Affiliation(s)
- Sana Riaz
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan.
| | - Sania Mazhar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Syed Hussain Abidi
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan.,Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories, Islamabad, Pakistan.,Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Naaz Abbas
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Yasar Saleem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Abad Ali Nadeem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Maria Maryam
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ramsha Essa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Saira Ashfaq
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
8
|
Re A, Mazzoli R. Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microb Biotechnol 2022; 16:238-261. [PMID: 36168663 PMCID: PMC9871528 DOI: 10.1111/1751-7915.14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
In the last decades, fermentative production of n-butanol has regained substantial interest mainly owing to its use as drop-in-fuel. The use of lignocellulose as an alternative to traditional acetone-butanol-ethanol fermentation feedstocks (starchy biomass and molasses) can significantly increase the economic competitiveness of biobutanol over production from non-renewable sources (petroleum). However, the low cost of lignocellulose is offset by its high recalcitrance to biodegradation which generally requires chemical-physical pre-treatment and multiple bioreactor-based processes. The development of consolidated processing (i.e., single-pot fermentation) can dramatically reduce lignocellulose fermentation costs and promote its industrial application. Here, strategies for developing microbial strains and consortia that feature both efficient (hemi)cellulose depolymerization and butanol production will be depicted, that is, rational metabolic engineering of native (hemi)cellulolytic or native butanol-producing or other suitable microorganisms; protoplast fusion of (hemi)cellulolytic and butanol-producing strains; and co-culture of (hemi)cellulolytic and butanol-producing microbes. Irrespective of the fermentation feedstock, biobutanol production is inherently limited by the severe toxicity of this solvent that challenges process economic viability. Hence, an overview of strategies for developing butanol hypertolerant strains will be provided.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTorinoItaly,Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| |
Collapse
|
9
|
Chang WL, Hou W, Xu M, Yang ST. High-rate continuous n-butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single-pass fibrous bed bioreactor. Biotechnol Bioeng 2022; 119:3474-3486. [PMID: 36059064 DOI: 10.1002/bit.28223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Biobutanol produced in acetone-butanol-ethanol (ABE) fermentation at batch mode cannot compete with chemically derived butanol because of the low reactor productivity. Continuous fermentation can dramatically enhance productivity and lower capital and operating costs but are rarely used in industrial fermentation because of increased risks in culture degeneration, cell washout, and contamination. In this study, cells of the asporogenous Clostridium acetobutylicum ATCC55025 were immobilized in a single-pass fibrous-bed bioreactor (FBB) for continuous production of butanol from glucose and butyrate at various dilution rates. Butyric acid in the feed medium helped maintaining cells in the solventogenic phase for stable continuous butanol production. At the dilution rate of 1.88 h-1 , butanol was produced at 9.55 g/L with a yield of 0.24 g/g and productivity of 16.8 g/L/h, which was the highest productivity ever achieved for biobutanol fermentation and an 80-fold improvement over the conventional ABE fermentation. The extremely high productivity was attributed to the high density of viable cells (~100 g/L at >70% viability) immobilized in the fibrous matrix, which also enabled the cells to better tolerate butanol and butyric acid. The FBB was stable for continuous operation for an extended period of over one month. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei-Lun Chang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Wenjie Hou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA.,College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengmeng Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
10
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
11
|
A clean in-frame knockout system for gene deletion in Acetobacterium woodii. J Biotechnol 2022; 353:9-18. [PMID: 35659892 DOI: 10.1016/j.jbiotec.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
Abstract
Acetogenic bacteria produce acetate following the fixation of CO2 via the Wood-Ljungdahl pathway. As such, they represent excellent process organisms for the production of novel chemicals and fuels from this waste greenhouse gas. Acetobacterium woodii is the model acetogen and numerous studies have been conducted investigating its biochemistry, gas consumption and use as a production chassis. However, there are a dearth of available tools for A. woodii gene modification which limits the research options available for genetic studies. Here, the previously proposed Clostridia Roadmap is implemented in A. woodii leading to the derivation of a knockout system for the generation of clean, in-frame deletions. The replicon of the Gram-positive plasmid pCD6 that originated in Clostridioides difficile was identified as being replication-defective in A. woodii, a property that was exploited to construct a pseudo-suicide knockout plasmid which was used to generate an auxotrophic, pyrE mutant. This allowed the subsequent use of a heterologous pyrE gene (from Clostridium acetobutylicum) as a counter selection marker and the deletion of a number of genes by allelic exchange. Specific mutants generated were affected in growth on glucose, fructose and ethanol as a consequence of deletion of fruA, pstG and adhE, respectively.
Collapse
|
12
|
Butanol Production by a Novel Efficient Method Using Mixed Cultures of Clostridium beijerinckii and Arthrobacter sp. in Stirred-Tank and Gas-Lift Bioreactors. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arthrobacter sp. BCC 72131, an obligate aerobic bacterium, was used to create anaerobic conditions, and Clostridium beijerinckii TISTR 1461 was used as a butanol producer in an acetone-butanol–ethanol (ABE) fermentation. Sweet sorghum juice (SSJ) medium containing 60 g/L of total sugar supplemented with 1.27 g/L of (NH4)2SO4 was used as a butanol production (BP) medium. Arthrobacter sp. was inoculated into the BP medium in 1-L screw-capped bottles. After 2, 4, 6 and 12 h of Arthrobacter sp. cultivation at 30 °C, C. beijerinckii was transferred into the BP medium to start butanol production at 37 °C. The results showed that C. beijerinckii inoculation after 6 h of Arthrobacter sp. cultivation gave the highest butanol titer (PB) at 12.56 g/L, with a butanol yield (YB/S) and volumetric butanol productivity (QB) of 0.34 g/g and 0.23 g/L·h, respectively. These values are approximately 10–27% higher than those of the control experiment using a single culture of C. beijerinckii TISTR 1461 and oxygen-free nitrogen (OFN) gas flushing to create anaerobic conditions. Field emission scanning electron microscopic (FE-SEM) images of Clostridium cells, as well as protein and free amino nitrogen concentrations in the broth during butanol fermentation were also studied to confirm the results. The butanol fermentation was then carried out in a 5.6-L stirred-tank and a 1.2-L low-cost gas-lift bioreactor by the mixed cultures using the optimal time of Clostridium inoculation. The PB, YB/S and QB values obtained were not significantly different from those in the 1-L screw-capped bottles. Hence, Arthrobacter sp. can be used as a novel method to create anaerobic conditions instead of a traditional method employing OFN gas flushing. Using mixed cultures of Arthrobacter sp. BCC 72131 and C. beijerinckii TISTR 1461 is a practical method to produce butanol on a large-scale, both in complex and low-cost bioreactors.
Collapse
|
13
|
Monaghan TI, Baker JA, Krabben P, Davies ET, Jenkinson ER, Goodhead IB, Robinson GK, Shepherd M. Deletion of glyceraldehyde-3-phosphate dehydrogenase (gapN) in Clostridium saccharoperbutylacetonicum N1-4(HMT) using CLEAVE™ increases the ATP pool and accelerates solvent production. Microb Biotechnol 2021; 15:1574-1585. [PMID: 34927803 PMCID: PMC9049615 DOI: 10.1111/1751-7915.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022] Open
Abstract
The development and advent of mutagenesis tools for solventogenic clostridial species in recent years has allowed for the increased refinement of industrially relevant strains. In this study we have utilised CLEAVE™, a CRISPR/Cas genome editing system developed by Green Biologics Ltd., to engineer a strain of Clostridium saccharoperbutylacetonicum N1-4(HMT) with potentially useful solvents titres and energy metabolism. As one of two enzymes responsible for the conversion of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglyceric acid in glycolysis, it was hypothesised that deletion of gapN would increase ATP and NADH production that could in turn improve solvent production. Herein, whole genome sequencing has been used to evaluate CLEAVE™ and the successful knockout of gapN, demonstrating a clean knockout with no other detectable variations from the wild type sequence. Elevated solvent levels were detected during the first 24 h of batch fermentation, indicating an earlier shift to solventogenesis. A 2.4-fold increase in ATP concentration was observed, and quantitation of NAD(P)H derivatives revealed a more reducing cytoplasm for the gapN strain. These findings expand our understanding of clostridium carbon metabolism and report a new approach to optimising biofuel production.
Collapse
Affiliation(s)
- Taylor I Monaghan
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Joseph A Baker
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Preben Krabben
- Green Biologics Ltd, R&D Labs, 154AH Brook Drive, Milton Park, Abingdon, OX14 4SD, UK
| | - E Timothy Davies
- Green Biologics Ltd, R&D Labs, 154AH Brook Drive, Milton Park, Abingdon, OX14 4SD, UK
| | - Elizabeth R Jenkinson
- Green Biologics Ltd, R&D Labs, 154AH Brook Drive, Milton Park, Abingdon, OX14 4SD, UK
| | - Ian B Goodhead
- School of Science, Engineering & Environment, University of Salford, Lancashire, M5 4WT, UK
| | - Gary K Robinson
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
14
|
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Adv 2021; 58:107889. [PMID: 34929313 DOI: 10.1016/j.biotechadv.2021.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.
Collapse
Affiliation(s)
- Petra Patakova
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic.
| | - Barbora Branska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Maryna Vasylkivska
- University of Chemistry and Technology Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | | | - Jana Musilova
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Ivo Provaznik
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| | - Karel Sedlar
- Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
| |
Collapse
|
15
|
Du G, Zhu C, Wu Y, Kang W, Xu M, Yang ST, Xue C. Effects of orphan histidine kinases on clostridial sporulation progression and metabolism. Biotechnol Bioeng 2021; 119:226-235. [PMID: 34687217 DOI: 10.1002/bit.27968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Solventogenesis and sporulation of clostridia are the main responsive adaptations to the acidic environment during acetone-butanol-ethanol (ABE) fermentation. It was hypothesized that five orphan histidine kinases (HKs) including Cac3319, Cac0323, Cac0903, Cac2730, and Cac0437 determined the cell fates between sporulation and solventogenesis. In this study, the comparative genomic analysis revealed that a mutation in cac0437 appeared to contribute to the nonsporulating feature of ATCC 55025. Hence, the individual and interactive roles of five HKs in regulating cell growth, metabolism, and sporulation were investigated. The fermentation results of mutants with different HK expression levels suggested that cac3319 and cac0437 played critical roles in regulating sporulation and acids and butanol biosynthesis. Morphological analysis revealed that cac3319 knockout abolished sporulation (Stage 0) whereas cac3319 overexpression promoted spore development (Stage VII), and cac0437 knockout initiated but blocked sporulation before Stage II, indicating the progression of sporulation was altered through engineering HKs. By combinatorial HKs knockout, the interactive effects between two different HKs were investigated. This study elucidated the regulatory roles of HKs in clostridial differentiation and demonstrated that HK engineering can be effectively used to control sporulation and enhance butanol biosynthesis.
Collapse
Affiliation(s)
- Guangqing Du
- Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Chao Zhu
- Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Youduo Wu
- Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Wei Kang
- Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Mengmeng Xu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Chuang Xue
- Engineering Research Center of Application and Transformation for Synthetic Biology, School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| |
Collapse
|
16
|
Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources. Biochem Soc Trans 2021; 48:2283-2293. [PMID: 32897293 DOI: 10.1042/bst20200603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Butanol is an important chemical and potential fuel. For more than 100 years, acetone-butanol-ethanol (ABE) fermentation of Clostridium strains has been the most successful process for biological butanol production. In recent years, other microbes have been engineered to produce butanol as well, among which Escherichia coli was the best one. Considering the crude oil price fluctuation, minimizing the cost of butanol production is of highest priority for its industrial application. Therefore, using cheaper feedstocks instead of pure sugars is an important project. In this review, we summarized butanol production from different renewable resources, such as industrial and food waste, lignocellulosic biomass, syngas and other renewable resources. This review will present the current progress in this field and provide insights for further engineering efforts on renewable butanol production.
Collapse
|
17
|
Bai SK, Hong Y, Wu YR. Emerging technologies for genetic modification of solventogenic clostridia: From tool to strategy development. BIORESOURCE TECHNOLOGY 2021; 334:125222. [PMID: 33951568 DOI: 10.1016/j.biortech.2021.125222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Solventogenic clostridia has been considered as one of the most potential microbial cell factories for biofuel production in the biorefinery industry. However, the inherent shortcomings of clostridia strains such as low productivity, by-products formation and toxic tolerance still strongly restrict the large-scale application. Therefore, concerns regarding the genetic modification of solventogenic clostridia have spurred interests into the development of modern gene-editing tools. In this review, we summarize the latest advances of genetic tools involved in modifying solventogenic clostridia. Following a systematic comparison on their respective characteristics, we then review the corresponding strategies for overcoming the obstacles to the enhanced production. Discussing the progress of other microbial cell factories for solventogenesis, we finally describe the key challenges and trends with valuable recommendations for future large-scale biosolvent industrial application.
Collapse
Affiliation(s)
- Sheng-Kai Bai
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Ying Hong
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
18
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zhu C, Du G, Zhang J, Xue C. A high-efficient strategy for combinatorial engineering paralogous gene family: A case study on histidine kinases in Clostridium. Biotechnol Bioeng 2021; 118:2770-2780. [PMID: 33871069 DOI: 10.1002/bit.27796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 11/10/2022]
Abstract
Microorganisms harbor bulks of functionally similar or undefined genes, which belong to paralogous gene family. There is a necessity of exploring combinatorial or interactive functions of these genes, but conventional loss-of-function strategy with one-by-one rounds suffers extremely low efficiency for generating mutant libraries with all gene permutations. Here, taking histidine kinases (HKs) in Clostridium acetobutylicum as a proof-of-concept, we developed a multi-plasmid cotransformation strategy for generating all theoretical HKs combinations in one round. For five HKs with 31 theoretical combinations, the library containing 22 mutants within all the possible HKs-inactivated combinations was constructed with 11 days compared to 242 days by conventional strategy, while the other 9 combinations cannot survive. Six mutants with the enhanced butanol production and tolerance were obtained with changes of cell development during fermentation, one of which could produce 54.2% more butanol (56.4% more solvents), while the butanol production of other mutants was unchanged or decreased. The cotransformation strategy demonstrated potentials for fast exploring pleiotropic function of paralogous family genes in cell survival, cell development, and target product metabolism.
Collapse
Affiliation(s)
- Chao Zhu
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Guangqing Du
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Jie Zhang
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China
| | - Chuang Xue
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| |
Collapse
|
20
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
21
|
Bao T, Hou W, Wu X, Lu L, Zhang X, Yang ST. Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing. Biotechnol Bioeng 2021; 118:2703-2718. [PMID: 33844271 DOI: 10.1002/bit.27789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/06/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023]
Abstract
Cellulosic n-butanol from renewable lignocellulosic biomass has gained increased interest. Previously, we have engineered Clostridium cellulovorans, a cellulolytic acidogen, to overexpress the bifunctional butyraldehyde/butanol dehydrogenase gene adhE2 from C. acetobutylicum for n-butanol production from crystalline cellulose. However, butanol production by this engineered strain had a relatively low yield of approximately 0.22 g/g cellulose due to the coproduction of ethanol and acids. We hypothesized that strengthening the carbon flux through the central butyryl-CoA biosynthesis pathway and increasing intracellular NADH availability in C. cellulovorans adhE2 would enhance n-butanol production. In this study, thiolase (thlACA ) from C. acetobutylicum and 3-hydroxybutyryl-CoA dehydrogenase (hbdCT ) from C. tyrobutyricum were overexpressed in C. cellulovorans adhE2 to increase the flux from acetyl-CoA to butyryl-CoA. In addition, ferredoxin-NAD(P)+ oxidoreductase (fnr), which can regenerate the intracellular NAD(P)H and thus increase butanol biosynthesis, was also overexpressed. Metabolic flux analyses showed that mutants overexpressing these genes had a significantly increased carbon flux toward butyryl-CoA, which resulted in increased production of butyrate and butanol. The addition of methyl viologen as an electron carrier in batch fermentation further directed more carbon flux towards n-butanol biosynthesis due to increased reducing equivalent or NADH. The engineered strain C. cellulovorans adhE2-fnrCA -thlACA -hbdCT produced n-butanol from cellulose at a 50% higher yield (0.34 g/g), the highest ever obtained in batch fermentation by any known bacterial strain. The engineered C. cellulovorans is thus a promising host for n-butanol production from cellulosic biomass in consolidated bioprocessing.
Collapse
Affiliation(s)
- Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Wenjie Hou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA.,College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Xuefeng Wu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Lu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xian Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Kato J, Takemura K, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Murakami K, Nakashimada Y. Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical. AMB Express 2021; 11:59. [PMID: 33891189 PMCID: PMC8065083 DOI: 10.1186/s13568-021-01220-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022] Open
Abstract
Gas fermentation is one of the promising bioprocesses to convert CO2 or syngas to important chemicals. Thermophilic gas fermentation of volatile chemicals has the potential for the development of consolidated bioprocesses that can simultaneously separate products during fermentation. This study reports the production of acetone from CO2 and H2, CO, or syngas by introducing the acetone production pathway using acetyl–coenzyme A (Ac-CoA) and acetate produced via the Wood–Ljungdahl pathway in Moorella thermoacetica. Reducing the carbon flux from Ac-CoA to acetate through genetic engineering successfully enhanced acetone productivity, which varied on the basis of the gas composition. The highest acetone productivity was obtained with CO–H2, while autotrophic growth collapsed with CO2–H2. By adding H2 to CO, the acetone productivity from the same amount of carbon source increased compared to CO gas only, and the maximum specific acetone production rate also increased from 0.04 to 0.09 g-acetone/g-dry cell/h. Our development of the engineered thermophilic acetogen M. thermoacetica, which grows at a temperature higher than the boiling point of acetone (58 °C), would pave the way for developing a consolidated process with simplified and cost-effective recovery via condensation following gas fermentation.
Collapse
|
23
|
Gao Y, Zhou X, Zhang MM, Liu YJ, Guo XP, Lei CR, Li WJ, Lu D. Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol 2021; 105:2455-2472. [PMID: 33606076 DOI: 10.1007/s00253-021-11174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023]
Abstract
Butanol inhibits bacterial activity by destroying the cell membrane of Clostridium acetobutylicum strains and altering functionality. Butanol toxicity also results in destruction of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS), thereby preventing glucose transport and phosphorylation and inhibiting transmembrane transport and assimilation of sugars, amino acids, and other nutrients. In this study, based on the addition of exogenous butanol, the tangible macro indicators of changes in the carbon ion beam irradiation-mutant Y217 morphology were observed using scanning electron microscopy (SEM). The mutant has lower microbial adhesion to hydrocarbon (MATH) value than C. acetobutylicum ATCC 824 strain. FDA fluorescence intensity and conductivity studies demonstrated the intrinsically low membrane permeability of the mutant membrane, with membrane potential remaining relatively stable. Monounsaturated FAs (MUFAs) accounted for 35.17% of the mutant membrane, and the saturated fatty acids (SFA)/unsaturated fatty acids (UFA) ratio in the mutant cell membrane was 1.65. In addition, we conducted DNA-level analysis of the mutant strain Y217. Expectedly, through screening, we found gene mutant sites encoding membrane-related functions in the mutant, including ATP-binding cassette (ABC) transporter-related genes, predicted membrane proteins, and the PTS transport system. It is noteworthy that an unreported predicted membrane protein (CAC 3309) may be related to changes in mutant cell membrane properties. KEY POINTS: • Mutant Y217 exhibited better membrane integrity and permeability. • Mutant Y217 was more resistant to butanol toxicity. • Some membrane-related genes of mutant Y217 were mutated.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Ya-Jun Liu
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xiao-Peng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Wen-Jian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China. .,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China.
| |
Collapse
|
24
|
Seo SO, Lu T, Jin YS, Blaschek HP. A comparative phenotypic and genomic analysis of Clostridium beijerinckii mutant with enhanced solvent production. J Biotechnol 2021; 329:49-55. [PMID: 33556425 DOI: 10.1016/j.jbiotec.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
The acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia has a long history of industrial butanol production. The Clostridium beijerinckii mutant BA101 has been widely studied for ABE fermentation owing to its enhanced butanol production capacity. Here, we characterized the BA101 mutant under controlled environmental conditions in parallel with the parental strain C. beijerinckii NCIMB 8052. To investigate the correlation between phenotype and genotype, we carried out the genome sequencing of BA101. Through comparative genomic analysis, several mutations in the genes encoding transcriptional regulator, sensor kinase, and phosphatase were identified in the BA101 genome as well as other sibling mutants. Among them, the SNP in the Cbei_3078 gene encoding PAS/PAC sensor hybrid histidine kinase was unique to the BA101 strain. The identified mutations relevant to the observed physiological behaviors of BA101 could be potential genetic targets for rational engineering of solventogenic clostridia toward desired phenotypes.
Collapse
Affiliation(s)
- Seung-Oh Seo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Ting Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hans P Blaschek
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
Butanol Tolerance of Lactiplantibacillus plantarum: A Transcriptome Study. Genes (Basel) 2021; 12:genes12020181. [PMID: 33514005 PMCID: PMC7911632 DOI: 10.3390/genes12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Biobutanol is a promising alternative fuel with impaired microbial production thanks to its toxicity. Lactiplantibacillus plantarum (L. plantarum) is among the few bacterial species that can naturally tolerate 3% (v/v) butanol. This study aims to identify the genetic factors involved in the butanol stress response of L. plantarum by comparing the differential gene expression in two strains with very different butanol tolerance: the highly resistant Ym1, and the relatively sensitive 8-1. During butanol stress, a total of 319 differentially expressed genes (DEGs) were found in Ym1, and 516 in 8-1. Fifty genes were upregulated and 54 were downregulated in both strains, revealing the common species-specific effects of butanol stress: upregulation of multidrug efflux transporters (SMR, MSF), toxin-antitoxin system, transcriptional regulators (TetR/AcrR, Crp/Fnr, and DeoR/GlpR), Hsp20, and genes involved in polysaccharide biosynthesis. Strong inhibition of the pyrimidine biosynthesis occurred in both strains. However, the strains differed greatly in DEGs responsible for the membrane transport, tryptophan synthesis, glycerol metabolism, tRNAs, and some important transcriptional regulators (Spx, LacI). Uniquely upregulated in the butanol-resistant strain Ym1 were the genes encoding GntR, GroEL, GroES, and foldase PrsA. The phosphoenolpyruvate flux and the phosphotransferase system (PTS) also appear to be major factors in butanol tolerance.
Collapse
|
26
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
27
|
Jiang Y, Wu R, Lu J, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Quantitative proteomic analysis to reveal expression differences for butanol production from glycerol and glucose by Clostridium sp. strain CT7. Microb Cell Fact 2021; 20:12. [PMID: 33422075 PMCID: PMC7797090 DOI: 10.1186/s12934-021-01508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium sp. strain CT7 is a new emerging microbial cell factory with high butanol production ratio owing to its non-traditional butanol fermentation mode with uncoupled acetone and 1,3-propanediol formation. Significant changes of metabolic products profile were shown in glycerol- and glucose-fed strain CT7, especially higher butanol and lower volatile fatty acids (VFAs) production occurred from glycerol-fed one. However, the mechanism of this interesting phenomenon was still unclear. To better elaborate the bacterial response towards glycerol and glucose, the quantitative proteomic analysis through iTRAQ strategy was performed to reveal the regulated proteomic expression levels under different substrates. Proteomics data showed that proteomic expression levels related with carbon metabolism and solvent generation under glycerol media were highly increased. In addition, the up-regulation of hydrogenases, ferredoxins and electron-transferring proteins may attribute to the internal redox balance, while the earlier triggered sporulation response in glycerol-fed media may be associated with the higher butanol production. This study will pave the way for metabolic engineering of other industrial microorganisms to obtain efficient butanol production from glycerol.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Ruofan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, P. R. China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211800, Nanjing, P.R. China.
| |
Collapse
|
28
|
Li W, Cheng C, Cao G, Yang ST, Ren N. Comparative transcriptome analysis of Clostridium tyrobutyricum expressing a heterologous uptake hydrogenase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142022. [PMID: 33370888 DOI: 10.1016/j.scitotenv.2020.142022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Clostridium tyrobutyricum is a promising microbial cell factory to produce biofuels. In this study, an uptake hydrogenase (hyd2293) from Ethanoligenens harbinense was overexpressed in C. tyrobutyricum and significantly affected the redox reactions and metabolic profiles. Compared to the parental strain (Ct-WT), the mutant strain Ct-Hyd2293 produced ~34% less butyrate, ~148% more acetate, and ~11% less hydrogen, accompanied by the emerging genesis of butanol. Comparative transcriptome analysis revealed that 666 genes were significantly differentially expressed after the overexpression of hyd2293, including 82 up-regulated genes and 584 down-regulated genes. The up-regulated genes were mainly involved in carbohydrate and energy metabolisms while the down-regulated genes were distributed in nearly all pathways. Genes involved in glucose transportation, glycolysis, different fermentation pathways and hydrogen metabolism were studied and the gene expression changes showed the mechanism of the metabolic flux redistribution in Ct-Hyd2293. The overexpression of uptake hydrogenase redirected electrons from hydrogen and butyrate to butanol. The key enzymes participating in the energy conservation and sporulation were also identified and their transcription levels were generally reduced. This study demonstrated the transcriptomic responses of C. tyrobutyricum to the expression of a heterologous uptake hydrogenase, which provided a better understanding of the metabolic characteristics of C. tyrobutyricum and demonstrated the potential role of redox manipulation in metabolic engineering for biofuel productions.
Collapse
Affiliation(s)
- Weiming Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chi Cheng
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
30
|
Vees CA, Neuendorf CS, Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020; 47:753-787. [PMID: 32894379 PMCID: PMC7658081 DOI: 10.1007/s10295-020-02296-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures containing H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility operates continuously, the acetone-butanol-ethanol (ABE) fermentation is traditionally operated in batch mode. This review highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current industrial bioproduction of solvents.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christian Simon Neuendorf
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
31
|
Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, Wang Y. Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. BIORESOURCE TECHNOLOGY 2020; 312:123532. [PMID: 32502888 DOI: 10.1016/j.biortech.2020.123532] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Furan aldehydes and phenolic compounds generated during biomass pretreatment can inhibit fermentation for biofuel production. Efflux pumps actively transport small molecules out of cells, thus sustaining normal microbial metabolism. Pseudomonas putida has outstanding tolerance to butanol and other small molecules, and we hypothesize that its efflux pump could play essential roles for such robustness. Here, we overexpressed efflux pump genes from P. putida to enhance tolerance of hyper-butanol producing Clostridium saccharoperbutylacetonicum to fermentation inhibitors. Interestingly, overexpression of the whole unit resulted in decreased tolerance, while overexpression of the subunit (srpB) alone exerted significant enhanced robustness of the strain. Compared to the control, the engineered strain had enhanced capability to grow in media containing 17% more furfural or 50% more ferulic acid, and produced ~14 g/L butanol (comparable to fermentation under regular conditions without inhibitors). This study provided valuable reference for boosting microbial robustness towards efficient biofuel production from lignocellulosic materials.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; School of Chemistry, National University (UNA), Heredia, Costa Rica
| | - Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Luz-Estela de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
32
|
Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. World J Microbiol Biotechnol 2020; 36:138. [PMID: 32794091 DOI: 10.1007/s11274-020-02914-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Acidogenic clostridia naturally producing acetic and butyric acids has attracted high interest as a novel host for butyrate and n-butanol production. Among them, Clostridium tyrobutyricum is a hyper butyrate-producing bacterium, which re-assimilates acetate for butyrate biosynthesis by butyryl-CoA/acetate CoA transferase (CoAT), rather than the phosphotransbutyrylase-butyrate kinase (PTB-BK) pathway widely found in clostridia and other microbial species. To date, C. tyrobutyricum has been engineered to overexpress a heterologous alcohol/aldehyde dehydrogenase, which converts butyryl-CoA to n-butanol. Compared to conventional solventogenic clostridia, which produce acetone, ethanol, and butanol in a biphasic fermentation process, the engineered C. tyrobutyricum with a high metabolic flux toward butyryl-CoA produced n-butanol at a high yield of > 0.30 g/g and titer of > 20 g/L in glucose fermentation. With no acetone production and a high C4/C2 ratio, butanol was the only major fermentation product by the recombinant C. tyrobutyricum, allowing simplified downstream processing for product purification. In this review, novel metabolic engineering strategies to improve n-butanol and butyrate production by C. tyrobutyricum from various substrates, including glucose, xylose, galactose, sucrose, and cellulosic hydrolysates containing the mixture of glucose and xylose, are discussed. Compared to other recombinant hosts such as Clostridium acetobutylicum and Escherichia coli, the engineered C. tyrobutyricum strains with higher butyrate and butanol titers, yields and productivities are the most promising hosts for potential industrial applications.
Collapse
|
33
|
Wu Y, Wang Z, Xin X, Bai F, Xue C. Synergetic Engineering of Central Carbon, Energy, and Redox Metabolisms for High Butanol Production and Productivity by Clostridium acetobutylicum. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Youduo Wu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian 116024, China
| | - Zhenzhong Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Xin
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Wen Z, Ledesma‐Amaro R, Lu M, Jiang Y, Gao S, Jin M, Yang S. Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial
Clostridium
community. Biotechnol Bioeng 2020; 117:2008-2022. [DOI: 10.1002/bit.27333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology Nanjing China
| | | | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology Nanjing China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological SciencesChinese Academy of Sciences Zhejiang China
- Shanghai TaoYuSheng Biotechnology Co., Ltd. Shanghai China
| | - Shuliang Gao
- Zhejiang Huarui Biotechnology Co., Ltd. Zhejiang China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology Nanjing China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological SciencesChinese Academy of Sciences Zhejiang China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences Shanghai China
| |
Collapse
|
35
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
36
|
Luo H, Zheng P, Bilal M, Xie F, Zeng Q, Zhu C, Yang R, Wang Z. Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136399. [PMID: 31923698 DOI: 10.1016/j.scitotenv.2019.136399] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is considered abundant renewable feedstock to constitute a green and environmentally friendly approach for biofuels (bio-butanol) production as an effective substitute for fossil resources. However, a variety of fermentable inhibitors can be generated in hydrolysates during the biomass pretreatment process. Among them, phenolics including phenolic acids and phenolic aldehydes are the most toxic inhibitors to solventogenic clostridia for bio-butanol production. This study elucidates the physiological mechanism of Clostridium acetobutylicum ATCC 824 response to phenolic inhibitors by the integration of kinetics and transcriptional analysis. Butanol fermentations were stressed by 0.4 g/L phenolic acids or 0.4 g/L phenolic aldehydes at 12 h at the beginning of solventogenesis. With post-stress for 12 h, butanol titer was 7.01 g/L in fermentation with phenolic acid stress, while only 5.82 g/L butanol was produced in the case of phenolic aldehydes stress. Reductions in the two fermentations were 27.6% and 40.0% in comparison with the control (without stress), indicated that phenolic aldehydes had a stronger inhibitory effect on solvents synthesis in C. acetobutylicum than phenolic acids. Additionally, the transcriptional analysis revealed that phenolics altered the gene expression profiles related to membrane transporters such as ATP-binding cassette (ABC)-transporter and phosphotransferase system (PTS), glycolysis, and heat shock proteins. The lower expression levels of PTS-related genes might result in reduced glucose consumption and finally inhibited solvents synthesis under phenolic aldehydes stress. Some genes encoding histidine kinase (CA_C0323, CA_C0903, and CA_C3319) were also affected by phenolics, which might inhibit sporulation. In conclusion, our results provide valuable guidance for the construction of robust strain to efficiently produce bio-butanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Panli Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Chun Zhu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
37
|
Xin X, Cheng C, Du G, Chen L, Xue C. Metabolic Engineering of Histidine Kinases in Clostridium beijerinckii for Enhanced Butanol Production. Front Bioeng Biotechnol 2020; 8:214. [PMID: 32266241 PMCID: PMC7098912 DOI: 10.3389/fbioe.2020.00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Clostridium beijerinckii, a promising industrial microorganism for butanol production, suffers from low butanol titer and lack of high-efficiency genetical engineering toolkit. A few histidine kinases (HKs) responsible for Spo0A phosphorylation have been demonstrated as functionally important components in regulating butanol biosynthesis in solventogenic clostridia such as C. acetobutylicum, but no study about HKs has been conducted in C. beijerinckii. In this study, six annotated but uncharacterized candidate HK genes sharing partial homologies (no less than 30%) with those in C. acetobutylicum were selected based on sequence alignment. The encoding region of these HK genes were deleted with CRISPR-Cas9n-based genome editing technology. The deletion of cbei2073 and cbei4484 resulted in significant change in butanol biosynthesis, with butanol production increased by 40.8 and 17.3% (13.8 g/L and 11.5 g/L vs. 9.8 g/L), respectively, compared to the wild-type. Faster butanol production rates were observed, with butanol productivity greatly increased by 40.0 and 20.0%, respectively, indicating these two HKs are important in regulating cellular metabolism in C. beijerinckii. In addition, the sporulation frequencies of two HKs inactivated strains decreased by 96.9 and 77.4%, respectively. The other four HK-deletion (including cbei2087, cbei2435, cbei4925, and cbei1553) mutant strains showed few phenotypic changes compared with the wild-type. This study demonstrated the role of HKs on sporulation and solventogenesis in C. beijerinckii, and provided a novel engineering strategy of HKs for improving metabolite production. The hyper-butanol-producing strains generated in this study have great potentials in industrial biobutanol production.
Collapse
Affiliation(s)
- Xin Xin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Guangqing Du
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lijie Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
38
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
39
|
Wen Z, Li Q, Liu J, Jin M, Yang S. Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microb Biotechnol 2020; 13:410-422. [PMID: 31448546 PMCID: PMC7017829 DOI: 10.1111/1751-7915.13478] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Butanol is an important bulk chemical, as well as a promising renewable gasoline substitute, that is commonly produced by solventogenic Clostridia. The main cost of cellulosic butanol fermentation is caused by cellulases that are required to saccharify lignocellulose, since solventogenic Clostridia cannot efficiently secrete cellulases. However, cellulolytic Clostridia can natively degrade lignocellulose and produce ethanol, acetate, butyrate and even butanol. Therefore, cellulolytic Clostridia offer an alternative to develop consolidated bioprocessing (CBP), which combines cellulase production, lignocellulose hydrolysis and co-fermentation of hexose/pentose into butanol in one step. This review focuses on CBP advances for butanol production of cellulolytic Clostridia and various synthetic biotechnologies that drive these advances. Moreover, the efforts to optimize the CBP-enabling cellulolytic Clostridia chassis are also discussed. These include the development of genetic tools, pentose metabolic engineering and the improvement of butanol tolerance. Designer cellulolytic Clostridia or consortium provide a promising approach and resource to accelerate future CBP for butanol production.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Qi Li
- College of Life SciencesSichuan Normal UniversityLongquan, Chengdu610101China
| | - Jinle Liu
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Mingjie Jin
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Sheng Yang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- Huzhou Center of Industrial BiotechnologyShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai200032China
| |
Collapse
|
40
|
Huang J, Du Y, Bao T, Lin M, Wang J, Yang ST. Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis. BIORESOURCE TECHNOLOGY 2019; 292:121969. [PMID: 31415989 DOI: 10.1016/j.biortech.2019.121969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The production of biofuels such as butanol is usually limited by the availability of inexpensive raw materials and high substrate cost. Using food crops as feedstock in the biorefinery industry has been criticized for its competition with food supply, causing food shortage and increased food prices. In this study, cassava bagasse as an abundant, renewable, and inexpensive byproduct from the cassava starch industry was used for n-butanol production. Cassava bagasse hydrolysate containing mainly glucose was obtained after treatments with dilute acid and enzymes (glucoamylases and cellulases) and then supplemented with corn steep liquor for use as substrate in repeated-batch fermentation with engineered Clostridium tyrobutyricum CtΔack-adhE2 in a fibrous-bed bioreactor. Stable butanol production with high titer (>15.0 g/L), yield (>0.30 g/g), and productivity (~0.3 g/L∙h) was achieved, demonstrating the feasibility of an economically competitive process for n-butanol production from cassava bagasse for industrial application.
Collapse
Affiliation(s)
- Jin Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Yinming Du
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Sedlar K, Kolek J, Gruber M, Jureckova K, Branska B, Csaba G, Vasylkivska M, Zimmer R, Patakova P, Provaznik I. A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:243. [PMID: 31636702 PMCID: PMC6790243 DOI: 10.1186/s13068-019-1584-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND One of the main obstacles preventing solventogenic clostridia from achieving higher yields in biofuel production is the toxicity of produced solvents. Unfortunately, regulatory mechanisms responsible for the shock response are poorly described on the transcriptomic level. Although the strain Clostridium beijerinckii NRRL B-598, a promising butanol producer, has been studied under different conditions in the past, its transcriptional response to a shock caused by butanol in the cultivation medium remains unknown. RESULTS In this paper, we present a transcriptional response of the strain during a butanol challenge, caused by the addition of butanol to the cultivation medium at the very end of the acidogenic phase, using RNA-Seq. We resequenced and reassembled the genome sequence of the strain and prepared novel genome and gene ontology annotation to provide the most accurate results. When compared to samples under standard cultivation conditions, samples gathered during butanol shock represented a well-distinguished group. Using reference samples gathered directly before the addition of butanol, we identified genes that were differentially expressed in butanol challenge samples. We determined clusters of 293 down-regulated and 301 up-regulated genes whose expression was affected by the cultivation conditions. Enriched term "RNA binding" among down-regulated genes corresponded to the downturn of translation and the cluster contained a group of small acid-soluble spore proteins. This explained phenotype of the culture that had not sporulated. On the other hand, up-regulated genes were characterized by the term "protein binding" which corresponded to activation of heat-shock proteins that were identified within this cluster. CONCLUSIONS We provided an overall transcriptional response of the strain C. beijerinckii NRRL B-598 to butanol shock, supplemented by auxiliary technologies, including high-pressure liquid chromatography and flow cytometry, to capture the corresponding phenotypic response. We identified genes whose regulation was affected by the addition of butanol to the cultivation medium and inferred related molecular functions that were significantly influenced. Additionally, using high-quality genome assembly and custom-made gene ontology annotation, we demonstrated that this settled terminology, widely used for the analysis of model organisms, could also be applied to non-model organisms and for research in the field of biofuels.
Collapse
Affiliation(s)
- Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Markus Gruber
- Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 Munich, Germany
| | - Katerina Jureckova
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Gergely Csaba
- Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 Munich, Germany
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Ralf Zimmer
- Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 Munich, Germany
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
| |
Collapse
|
42
|
COMPUTER RECOGNITION OF CHEMICAL SUBSTANCES BASED ON THEIR ELECTROPHYSIOLOGICAL CHARACTERISTICS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Li J, Du Y, Bao T, Dong J, Lin M, Shim H, Yang ST. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. BIORESOURCE TECHNOLOGY 2019; 289:121749. [PMID: 31323711 DOI: 10.1016/j.biortech.2019.121749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Acetone-butanol-ethanol fermentation suffers from high substrate cost and low butanol titer and yield. In this study, engineered Clostridium tyrobutyricum CtΔack-adhE2 immobilized in a fibrous-bed bioreactor was used for butanol production from glucose and xylose present in the hydrolysates of low-cost lignocellulosic biomass including corn fiber, cotton stalk, soybean hull, and sugarcane bagasse. The biomass hydrolysates obtained after acid pretreatment and enzymatic hydrolysis were supplemented with corn steep liquor and used in repeated-batch fermentations. Butanol production with high titer (∼15 g/L), yield (∼0.3 g/g), and productivity (∼0.3 g/L∙h) was obtained from cotton stalk, soybean hull, and sugarcane bagasse hydrolysates, while corn fiber hydrolysate with higher inhibitor contents gave somewhat inferior results. The fermentation process was stable for long-term operation without any noticeable degeneration, demonstrating its potential for industrial application. A techno-economic analysis showed that n-butanol could be produced from lignocellulosic biomass using this novel fermentation process at ∼$2.5/gal for biofuel application.
Collapse
Affiliation(s)
- Jing Li
- College of Biology & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Yinming Du
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Jie Dong
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Hojae Shim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
|
45
|
Wen Z, Lu M, Ledesma-Amaro R, Li Q, Jin M, Yang S. TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnol J 2019; 15:e1900284. [PMID: 31475782 DOI: 10.1002/biot.201900284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Clostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium. The application of TargeTron technology in solventogenic Clostridium is academically reported in 2007 and this tool has been introduced in various clostridia as it is easy to operate, time saving, and reliable. TargeTron has made great progress in solventogenic Clostridium in the aspects of acetone-butanol-ethanol (ABE) fermentation pathway modification, important functional genes identification, and xylose metabolic pathway analysis and reconstruction. In the review, 12 years' advances of TargeTron technology applicable in solventogenic Clostridium, including its principle, technical characteristics, application, and efforts to expand its capabilities, or to avoid potential drawbacks, are revisisted. Some other technologies as putative competitors or collaborators are also discussed. It is believed that TargeTron combined with CRISPR/Cas-assisted gene/base editing and gene-expression regulation system will make a better future for clostridial genetic modification.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | - Qi Li
- College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, 610101, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Zhejiang, 313000, China
| |
Collapse
|
46
|
Zhao C, Sinumvayo JP, Zhang Y, Li Y. Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng 2019; 55:111-119. [DOI: 10.1016/j.ymben.2019.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
|
47
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Cheng C, Lin M, Jiang W, Zhao J, Li W, Yang ST. Development of an in vivo fluorescence based gene expression reporter system for Clostridium tyrobutyricum. J Biotechnol 2019; 305:18-22. [PMID: 31472166 DOI: 10.1016/j.jbiotec.2019.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
C. tyrobutyricum, an acidogenic Clostridium, has aroused increasing interest due to its potential to produce biofuel efficiently. However, construction of recombinant C. tyrobutyricum for enhanced biofuel production has been impeded by the limited genetic engineering tools. In this study, a flavin mononucleotide (FMN)-dependent fluorescent protein Bs2-based gene expression reporter system was developed to monitor transformation and explore in vivo strength and regulation of various promoters in C. tyrobutyricum and C. acetobutylicum. Unlike green fluorescent protein (GFP) and its variants, Bs2 can emit green light without oxygen, which makes it extremely suitable for promoter screening and transformation confirmation in organisms grown anaerobically. The expression levels of bs2 under thiolase promoters from C. tyrobutyricum and C. acetobutylicum were measured and compared based on fluorescence intensities. The capacities of the two promoters in driving secondary alcohol dehydrogenase (adh) gene for isopropanol production in C. tyrobutyricum were distinguished, confirming that this reporter system is a convenient, effective and reliable tool for promoter strength assay and real time monitoring in C. tyrobutyricum, while demonstrating the feasibility of producing isopropanol in C. tyrobutyricum for the first time.
Collapse
Affiliation(s)
- Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 Woodruff Ave., Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Wenyan Jiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 Woodruff Ave., Columbus, OH 43210, USA
| | - Jingbo Zhao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 Woodruff Ave., Columbus, OH 43210, USA
| | - Weiming Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 Woodruff Ave., Columbus, OH 43210, USA; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 Woodruff Ave., Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Bao T, Zhao J, Li J, Liu X, Yang ST. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases. BIORESOURCE TECHNOLOGY 2019; 285:121316. [PMID: 30959389 DOI: 10.1016/j.biortech.2019.121316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/22/2023]
Abstract
With high cellulolytic and acetic/butyric acids production abilities, Clostridium cellulovorans is promising for use to produce cellulosic n-butanol. Here, we introduced three different aldehyde/alcohol dehydrogenases encoded by bdhB, adhE1, and adhE2 from Clostridium acetobutylicum into C. cellulovorans and studied their effects on ethanol and n-butanol production. Compared to AdhE2, AdhE1 was more specific for n-butanol biosynthesis over ethanol. Co-expressing adhE1 with bdhB produced a comparable amount of butanol but significantly less ethanol, leading to a high butanol/ethanol ratio of 7.0 and 5.6 (g/g) in glucose and cellulose fermentation, respectively. Co-expressing adhE1 or adhE2 with bdhB did not increase butanol production because the activity of BdhB was limited by the NADPH availability in C. cellulovorans. Overall, the strain overexpressing adhE2 alone produced the most n-butanol (4.0 g/L, yield: 0.22 ± 0.01 g/g). Based on the insights from this study, further metabolic engineering of C. cellulovorans for cellulosic n-butanol production is suggested.
Collapse
Affiliation(s)
- Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA
| | - Jingbo Zhao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA
| | - Jing Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA; College of Biology & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China
| | - Xin Liu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA; School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
50
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|