1
|
Gafni A, Rubin-Blum M, Murrell C, Vigderovich H, Eckert W, Larke-Mejía N, Sivan O. Survival strategies of aerobic methanotrophs under hypoxia in methanogenic lake sediments. ENVIRONMENTAL MICROBIOME 2024; 19:44. [PMID: 38956741 PMCID: PMC11218250 DOI: 10.1186/s40793-024-00586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Microbial methane oxidation, methanotrophy, plays a crucial role in mitigating the release of the potent greenhouse gas methane from aquatic systems. While aerobic methanotrophy is a well-established process in oxygen-rich environments, emerging evidence suggests their activity in hypoxic conditions. However, the adaptability of these methanotrophs to such environments has remained poorly understood. Here, we explored the genetic adaptability of aerobic methanotrophs to hypoxia in the methanogenic sediments of Lake Kinneret (LK). These LK methanogenic sediments, situated below the oxidic and sulfidic zones, were previously characterized by methane oxidation coupled with iron reduction via the involvement of aerobic methanotrophs. RESULTS In order to explore the adaptation of the methanotrophs to hypoxia, we conducted two experiments using LK sediments as inoculum: (i) an aerobic "classical" methanotrophic enrichment with ambient air employing DNA stable isotope probing (DNA-SIP) and (ii) hypoxic methanotrophic enrichment with repeated spiking of 1% oxygen. Analysis of 16S rRNA gene amplicons revealed the enrichment of Methylococcales methanotrophs, being up to a third of the enriched community. Methylobacter, Methylogaea, and Methylomonas were prominent in the aerobic experiment, while hypoxic conditions enriched primarily Methylomonas. Using metagenomics sequencing of DNA extracted from these experiments, we curated five Methylococcales metagenome-assembled genomes (MAGs) and evaluated the genetic basis for their survival in hypoxic environments. A comparative analysis with an additional 62 Methylococcales genomes from various environments highlighted several core genetic adaptations to hypoxia found in most examined Methylococcales genomes, including high-affinity cytochrome oxidases, oxygen-binding proteins, fermentation-based methane oxidation, motility, and glycogen use. We also found that some Methylococcales, including LK Methylococcales, may denitrify, while metals and humic substances may also serve as electron acceptors alternative to oxygen. Outer membrane multi-heme cytochromes and riboflavin were identified as potential mediators for the utilization of metals and humic material. These diverse mechanisms suggest the ability of methanotrophs to thrive in ecological niches previously thought inhospitable for their growth. CONCLUSIONS Our study sheds light on the ability of enriched Methylococcales methanotrophs from methanogenic LK sediments to survive under hypoxia. Genomic analysis revealed a spectrum of genetic capabilities, potentially enabling these methanotrophs to function. The identified mechanisms, such as those enabling the use of alternative electron acceptors, expand our understanding of methanotroph resilience in diverse ecological settings. These findings contribute to the broader knowledge of microbial methane oxidation and have implications for understanding and potential contribution methanotrophs may have in mitigating methane emissions in various environmental conditions.
Collapse
Affiliation(s)
- Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Maxim Rubin-Blum
- Israel Limnology and Oceanography Research, Tel Shikmona, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | | | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Xu K, Yan Z, Tao C, Wang F, Zheng X, Ma Y, Sun Y, Zheng Y, Jia Z. A novel bioprospecting strategy via 13C-based high-throughput probing of active methylotrophs inhabiting oil reservoir surface soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171686. [PMID: 38485026 DOI: 10.1016/j.scitotenv.2024.171686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China.
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China
| | - Yan Zheng
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Xu K, Tao C, Gu L, Zheng X, Ma Y, Yan Z, Sun Y, Cai Y, Jia Z. Identifying Active Rather than Total Methanotrophs Inhabiting Surface Soil Is Essential for the Microbial Prospection of Gas Reservoirs. Microorganisms 2024; 12:372. [PMID: 38399776 PMCID: PMC10892661 DOI: 10.3390/microorganisms12020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Methane-oxidizing bacteria (MOB) have long been recognized as an important bioindicator for oil and gas exploration. However, due to their physiological and ecological diversity, the distribution of MOB in different habitats varies widely, making it challenging to authentically reflect the abundance of active MOB in the soil above oil and gas reservoirs using conventional methods. Here, we selected the Puguang gas field of the Sichuan Basin in Southwest China as a model system to study the ecological characteristics of methanotrophs using culture-independent molecular techniques. Initially, by comparing the abundance of the pmoA genes determined by quantitative PCR (qPCR), no significant difference was found between gas well and non-gas well soils, indicating that the abundance of total MOB may not necessarily reflect the distribution of the underlying gas reservoirs. 13C-DNA stable isotope probing (DNA-SIP) in combination with high-throughput sequencing (HTS) furthermore revealed that type II methanotrophic Methylocystis was the absolutely predominant active MOB in the non-gas-field soils, whereas the niche vacated by Methylocystis was gradually filled with type I RPC-2 (rice paddy cluster-2) and Methylosarcina in the surface soils of gas reservoirs after geoscale acclimation to trace- and continuous-methane supply. The sum of the relative abundance of RPC-2 and Methylosarcina was then used as specific biotic index (BI) in the Puguang gas field. A microbial anomaly distribution map based on the BI values showed that the anomalous zones were highly consistent with geological and geophysical data, and known drilling results. Therefore, the active but not total methanotrophs successfully reflected the microseepage intensity of the underlying active hydrocarbon system, and can be used as an essential quantitative index to determine the existence and distribution of reservoirs. Our results suggest that molecular microbial techniques are powerful tools for oil and gas prospecting.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Lei Gu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; (C.T.); (L.G.); (X.Z.); (Y.M.)
- SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China
- Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi 214126, China
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China;
| | - Yuanfeng Cai
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
- State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
4
|
Hartman WH, Bueno de Mesquita CP, Theroux SM, Morgan-Lang C, Baldocchi DD, Tringe SG. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient. mSystems 2024; 9:e0093623. [PMID: 38170982 PMCID: PMC10804969 DOI: 10.1128/msystems.00936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.
Collapse
Affiliation(s)
| | | | | | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis D. Baldocchi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. The Bacterial Microbiome of the Coral Skeleton Algal Symbiont Ostreobium Shows Preferential Associations and Signatures of Phylosymbiosis. MICROBIAL ECOLOGY 2023; 86:2032-2046. [PMID: 37002423 PMCID: PMC10497448 DOI: 10.1007/s00248-023-02209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Ostreobium, the major algal symbiont of the coral skeleton, remains understudied despite extensive research on the coral holobiont. The enclosed nature of the coral skeleton might reduce the dispersal and exposure of residing bacteria to the outside environment, allowing stronger associations with the algae. Here, we describe the bacterial communities associated with cultured strains of 5 Ostreobium clades using 16S rRNA sequencing. We shed light on their likely physical associations by comparative analysis of three datasets generated to capture (1) all algae associated bacteria, (2) enriched tightly attached and potential intracellular bacteria, and (3) bacteria in spent media. Our data showed that while some bacteria may be loosely attached, some tend to be tightly attached or potentially intracellular. Although colonised with diverse bacteria, Ostreobium preferentially associated with 34 bacterial taxa revealing a core microbiome. These bacteria include known nitrogen cyclers, polysaccharide degraders, sulphate reducers, antimicrobial compound producers, methylotrophs, and vitamin B12 producers. By analysing co-occurrence networks of 16S rRNA datasets from Porites lutea and Paragoniastrea australensis skeleton samples, we show that the Ostreobium-bacterial associations present in the cultures are likely to also occur in their natural environment. Finally, our data show significant congruence between the Ostreobium phylogeny and the community composition of its tightly associated microbiome, largely due to the phylosymbiotic signal originating from the core bacterial taxa. This study offers insight into the Ostreobium microbiome and reveals preferential associations that warrant further testing from functional and evolutionary perspectives.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Tasmania, 7000, Victoria, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
7
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
8
|
Xiao Y, Wu K, Batool SS, Wang Q, Chen H, Zhai X, Yu Z, Huang J. Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from Methylopila sp. M107 and its broad metal selectivity. Front Microbiol 2023; 14:1191436. [PMID: 37560521 PMCID: PMC10409515 DOI: 10.3389/fmicb.2023.1191436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca2+)-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the Km value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K+) and calcium (Ca2+), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca2+-dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qingqun Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xingyu Zhai
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Ruff SE, Humez P, de Angelis IH, Diao M, Nightingale M, Cho S, Connors L, Kuloyo OO, Seltzer A, Bowman S, Wankel SD, McClain CN, Mayer B, Strous M. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nat Commun 2023; 14:3194. [PMID: 37311764 DOI: 10.1038/s41467-023-38523-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Around 50% of humankind relies on groundwater as a source of drinking water. Here we investigate the age, geochemistry, and microbiology of 138 groundwater samples from 95 monitoring wells (<250 m depth) located in 14 aquifers in Canada. The geochemistry and microbiology show consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities. Older groundwaters, especially in aquifers with organic carbon-rich strata, contain on average more cells (up to 1.4 × 107 mL-1) than younger groundwaters, challenging current estimates of subsurface cell abundances. We observe substantial concentrations of dissolved oxygen (0.52 ± 0.12 mg L-1 [mean ± SE]; n = 57) in older groundwaters that seem to support aerobic metabolisms in subsurface ecosystems at an unprecedented scale. Metagenomics, oxygen isotope analyses and mixing models indicate that dark oxygen is produced in situ via microbial dismutation. We show that ancient groundwaters sustain productive communities and highlight an overlooked oxygen source in present and past subsurface ecosystems of Earth.
Collapse
Affiliation(s)
- S Emil Ruff
- Department of Geoscience, University of Calgary, Calgary, Canada.
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Pauline Humez
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Isabella Hrabe de Angelis
- Department of Geoscience, University of Calgary, Calgary, Canada
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, Canada
| | | | - Sara Cho
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Liam Connors
- Department of Geoscience, University of Calgary, Calgary, Canada
| | | | - Alan Seltzer
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Samuel Bowman
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Cynthia N McClain
- Department of Geoscience, University of Calgary, Calgary, Canada
- Alberta Environment and Protected Areas, Calgary, Canada
- Alberta Biodiversity Monitoring Institute, Edmonton, Canada
| | - Bernhard Mayer
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Canada
| |
Collapse
|
10
|
Yuan ZF, Zhou YJ, Zou L, Chen Z, Gustave W, Duan D, Kappler A, Tang X, Xu J. pH dependence of arsenic speciation in paddy soils: The role of distinct methanotrophs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120880. [PMID: 36528201 DOI: 10.1016/j.envpol.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a priority environmental pollutant in paddy field. The coupling of arsenate (As(V)) reduction with anaerobic methane (CH4) oxidation was recently demonstrated in paddy soils and has been suggested to serve as a critical driver for As transformation and mobilization. However, whether As(V)-dependent CH4 oxidation is driven by distinct methanotrophs under different pH conditions remains unclear. Here, we investigated the response of As(V)-dependent CH4 oxidation to pH shifts (pH 5.5-8.0) by employing isotopically labelled CH4. Furthermore, the underlying mechanisms were also investigated in well-controlled anoxic soil suspension incubations. Our results showed that As(V)-dependent CH4 oxidation is highly sensitive to pH changes (1.6-6.8 times variation of arsenite formation). A short-term (0-10 d) pH shift from near-neutral pH to acidic conditions (i.e., pH 5.5, -85% arsenite formation) had an inhibitory effect on As(V)-dependent CH4 oxidation. However, prolonged acidic conditions (i.e., >15 d) had no significant influence on As(V)-dependent CH4 oxidation. The microbial analyses indicated that As reduction in paddies can be driven by anaerobic CH4 oxidation archaea (ANME) and methanotrophs. And, methanotrophs may serve as a critical driver for As(V)-dependent CH4 oxidation. Moreover, type I methanotrophs Methylobacter were more active in oxidizing CH4 than type II methanotrophs Methylocystis when the pH ≥ 6.5. However, Methylocystis had a higher tolerance to soil acidification than Methylobacter. This study illustrates that As(V)-dependent CH4 oxidation could be dominated by distinct methanotrophs along with pH shifts, which eventually enhances As release in paddy soils.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Jie Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lina Zou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Williamson Gustave
- Chemistry, Environmental & Life Sciences, University of the Bahamas, New Providence, Nassau, Bahamas
| | - Dechao Duan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, 72076, Germany
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Kanukollu S, Remus R, Rücker AM, Buchen-Tschiskale C, Hoffmann M, Kolb S. Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species. ENVIRONMENTAL MICROBIOME 2022; 17:35. [PMID: 35794633 PMCID: PMC9258066 DOI: 10.1186/s40793-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Managed grasslands are global sources of atmospheric methanol, which is one of the most abundant volatile organic compounds in the atmosphere and promotes oxidative capacity for tropospheric and stratospheric ozone depletion. The phyllosphere is a favoured habitat of plant-colonizing methanol-utilizing bacteria. These bacteria also occur in the rhizosphere, but their relevance for methanol consumption and ecosystem fluxes is unclear. Methanol utilizers of the plant-associated microbiota are key for the mitigation of methanol emission through consumption. However, information about grassland plant microbiota members, their biodiversity and metabolic traits, and thus key actors in the global methanol budget is largely lacking. RESULTS We investigated the methanol utilization and consumption potentials of two common plant species (Festuca arundinacea and Taraxacum officinale) in a temperate grassland. The selected grassland exhibited methanol formation. The detection of 13C derived from 13C-methanol in 16S rRNA of the plant microbiota by stable isotope probing (SIP) revealed distinct methanol utilizer communities in the phyllosphere, roots and rhizosphere but not between plant host species. The phyllosphere was colonized by members of Gamma- and Betaproteobacteria. In the rhizosphere, 13C-labelled Bacteria were affiliated with Deltaproteobacteria, Gemmatimonadates, and Verrucomicrobiae. Less-abundant 13C-labelled Bacteria were affiliated with well-known methylotrophs of Alpha-, Gamma-, and Betaproteobacteria. Additional metagenome analyses of both plants were consistent with the SIP results and revealed Bacteria with methanol dehydrogenases (e.g., MxaF1 and XoxF1-5) of known but also unusual genera (i.e., Methylomirabilis, Methylooceanibacter, Gemmatimonas, Verminephrobacter). 14C-methanol tracing of alive plant material revealed divergent potential methanol consumption rates in both plant species but similarly high rates in the rhizosphere and phyllosphere. CONCLUSIONS Our study revealed the rhizosphere as an overlooked hotspot for methanol consumption in temperate grasslands. We further identified unusual new but potentially relevant methanol utilizers besides well-known methylotrophs in the phyllosphere and rhizosphere. We did not observe a plant host-specific methanol utilizer community. Our results suggest that our approach using quantitative SIP and metagenomics may be useful in future field studies to link gross methanol consumption rates with the rhizosphere and phyllosphere microbiome.
Collapse
Affiliation(s)
- Saranya Kanukollu
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Rainer Remus
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Caroline Buchen-Tschiskale
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Present Address: Johann Heinrich von Thünen-Institut, Institute of Climate-Smart Agriculture, Braunschweig, Germany
| | - Mathias Hoffmann
- Isotope Biogeochemistry and Gas Fluxes, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, RA1 Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
12
|
Lalinská-Voleková B, Majerová H, Kautmanová I, Brachtýr O, Szabóová D, Arendt D, Brčeková J, Šottník P. Hydrous ferric oxides (HFO's) precipitated from contaminated waters at several abandoned Sb deposits - Interdisciplinary assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153248. [PMID: 35051450 DOI: 10.1016/j.scitotenv.2022.153248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The presented paper represents a comprehensive analysis of ochre sediments precipitated from Fe rich drainage waters contaminated by arsenic and antimony. Ochre samples from three abandoned Sb deposits were collected in three different seasons and were characterized from the mineralogical, geochemical, and microbiological point of view. They were formed mainly by poorly crystallized 2-line ferrihydrite, with the content of arsenic in samples ranging from 7 g·kg-1 to 130 g·kg-1 and content of antimony ranging from 0.25 g·kg-1 up to 12 g·kg-1. Next-generation sequencing approach with 16S RNA, 18S RNA and ITS markers was used to characterize bacterial, fungal, algal, metazoal and protozoal communities occurring in the HFOs. In the 16S RNA, the analysis dominated bacteria (96.2%) were mainly Proteobacteria (68.8%) and Bacteroidetes (10.2%) and to less extent also Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Nitrosprae and Chloroflexi. Alpha and beta diversity analysis revealed that the bacterial communities of individual sites do not differ significantly, and only subtle seasonal changes were observed. In this As and Sb rich, circumneutral microenvironment, rich in iron, sulfates and carbonates, methylotrophic bacteria (Methylobacter, Methylotenera), metal/reducing bacteria (Geobacter, Rhodoferax), metal-oxidizing and denitrifying bacteria (Gallionella, Azospira, Sphingopyxis, Leptothrix and Dechloromonas), sulfur-oxidizing bacteria (Sulfuricurvum, Desulphobulbaceae) and nitrifying bacteria (Nitrospira, Nitrosospira) accounted for the most dominant ecological groups and their impact over Fe, As, Sb, sulfur and nitrogen geocycles is discussed. This study provides evidence of diverse microbial communities that exist in drainage waters and are highly important in the process of mobilization or immobilization of the potentially toxic elements.
Collapse
Affiliation(s)
| | - Hana Majerová
- Hana Majerová, Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ivona Kautmanová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Ondrej Brachtýr
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Dana Szabóová
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Darina Arendt
- SNM-Natural History Museum, Vajanského náb. 2, P.O. BOX 13, 810 06 Bratislava, Slovakia
| | - Jana Brčeková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Šottník
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
13
|
Yang Y, Chen J, Pratscher J, Xie S. DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152742. [PMID: 34974014 DOI: 10.1016/j.scitotenv.2021.152742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Methanotrophs are the main consumers of methane produced in lake sediments. In shallow lakes suffering from eutrophication, methanogenesis is accelerated by the excess organic carbon input, and thus methanotrophs play a key role in regulating this methane flux as well as carbon cycling. Here, we applied nucleic acid stable isotope probing (SIP) to investigate the active methanotrophic microbial community in sediments of several shallow lakes affected by eutrophication. Our results showed that an active methanotrophic community dominated by gamma-proteobacterial methanotrophs, as well as abundant beta-proteobacterial methanol-utilizers, was involved in methane-derived carbon assimilation. Crenothrix, a filamentous methanotroph, was found to be a key methane consumer in all studied lakes. The ecological role of Crenothrix in lacustrine ecosystems is so far poorly understood, with only limited information on its existence in the water column of stratified lakes. Our results provide a novel ecological insight into this group by revealing a wide distribution of Crenothrix in lake sediments. The active methane assimilation by Crenothrix also suggested that it might represent a so far overlooked but crucial biological sink of methane in shallow lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jennifer Pratscher
- The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Takahashi Y, Ishii K, Kikkawa Y, Horikiri K, Tsuneda S. Nitrite Production by Nitrifying Bacteria in Urban Groundwater Used in a Chlorinated Public Bath System in Japan. Microbes Environ 2022; 37:ME22040. [PMID: 36198516 PMCID: PMC9763042 DOI: 10.1264/jsme2.me22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In contrast to pathogens, the effects of environmental microbes on the water quality in baths have not yet been examined in detail. We herein focused on a public bath in which groundwater was pumped up as bath water and disinfected by chlorination. Ammonia in groundwater is oxidized to nitrite, thereby reducing residual chlorine. A batch-culture test and bacterial community ana-lysis revealed that ammonia-oxidizing bacteria accumulated nitrite and had higher resistance to chlorination than nitrite-oxidizing bacteria. These results demonstrate that the difference in resistance to chlorination between ammonia-oxidizing and nitrite-oxidizing bacteria may lead to the accumulation of nitrite in baths using groundwater.
Collapse
Affiliation(s)
- Yu Takahashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2–2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162–8480, Japan
| | - Kento Ishii
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2–2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162–8480, Japan
| | - Yukie Kikkawa
- Yokohama City Institute of Public Health, 2–7–1 Tomiokahigashi, Kanazawa-ku, Yokohama-shi, Kanagawa, 236–0051, Japan
| | - Kayo Horikiri
- Yokohama City Institute of Public Health, 2–7–1 Tomiokahigashi, Kanazawa-ku, Yokohama-shi, Kanagawa, 236–0051, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2–2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162–8480, Japan, Corresponding author. E-mail: ; Tel: +81–3–5369–7325; Fax: +81–3–5369–7325
| |
Collapse
|
15
|
Begmatov S, Savvichev AS, Kadnikov VV, Beletsky AV, Rusanov II, Klyuvitkin AA, Novichkova EA, Mardanov AV, Pimenov NV, Ravin NV. Microbial Communities Involved in Methane, Sulfur, and Nitrogen Cycling in the Sediments of the Barents Sea. Microorganisms 2021; 9:2362. [PMID: 34835487 PMCID: PMC8625253 DOI: 10.3390/microorganisms9112362] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
A combination of physicochemical and radiotracer analysis, high-throughput sequencing of the 16S rRNA, and particulate methane monooxygenase subunit A (pmoA) genes was used to link a microbial community profile with methane, sulfur, and nitrogen cycling processes. The objects of study were surface sediments sampled at five stations in the northern part of the Barents Sea. The methane content in the upper layers (0-5 cm) ranged from 0.2 to 2.4 µM and increased with depth (16-19 cm) to 9.5 µM. The rate of methane oxidation in the oxic upper layers varied from 2 to 23 nmol CH4 L-1 day-1 and decreased to 0.3 nmol L-1 day-1 in the anoxic zone at a depth of 16-19 cm. Sulfate reduction rates were much higher, from 0.3 to 2.8 µmol L-1 day-1. In the surface sediments, ammonia-oxidizing Nitrosopumilaceae were abundant; the subsequent oxidation of nitrite to nitrate can be carried out by Nitrospira sp. Aerobic methane oxidation could be performed by uncultured deep-sea cluster 3 of gamma-proteobacterial methanotrophs. Undetectable low levels of methanogenesis were consistent with a near complete absence of methanogens. Anaerobic methane oxidation in the deeper sediments was likely performed by ANME-2a-2b and ANME-2c archaea in consortium with sulfate-reducing Desulfobacterota. Sulfide can be oxidized by nitrate-reducing Sulfurovum sp. Thus, the sulfur cycle was linked with the anaerobic oxidation of methane and the nitrogen cycle, which included the oxidation of ammonium to nitrate in the oxic zone and denitrification coupled to the oxidation of sulfide in the deeper sediments. Methane concentrations and rates of microbial biogeochemical processes in sediments in the northern part of the Barents Sea were noticeably higher than in oligotrophic areas of the Arctic Ocean, indicating that an increase in methane concentration significantly activates microbial processes.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (S.B.); (V.V.K.); (A.V.B.); (A.V.M.)
| | - Alexander S. Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.S.S.); (I.I.R.); (N.V.P.)
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (S.B.); (V.V.K.); (A.V.B.); (A.V.M.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (S.B.); (V.V.K.); (A.V.B.); (A.V.M.)
| | - Igor I. Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.S.S.); (I.I.R.); (N.V.P.)
| | - Alexey A. Klyuvitkin
- Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (E.A.N.)
| | - Ekaterina A. Novichkova
- Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.K.); (E.A.N.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (S.B.); (V.V.K.); (A.V.B.); (A.V.M.)
| | - Nikolai V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.S.S.); (I.I.R.); (N.V.P.)
- Il’ichev Pacific Institute of Oceanology, Far East Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (S.B.); (V.V.K.); (A.V.B.); (A.V.M.)
| |
Collapse
|
16
|
Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake. NITROGEN 2021. [DOI: 10.3390/nitrogen2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements.
Collapse
|
17
|
Zhang R, Liu WC, Liu Y, Zhang HL, Zhao ZH, Zou LY, Shen YC, Lan WS. Impacts of anthropogenic disturbances on microbial community of coastal waters in Shenzhen, South China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1652-1661. [PMID: 33161467 DOI: 10.1007/s10646-020-02297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 05/16/2023]
Abstract
During the urbanization, human activities have brought great changes to marine biodiversity and microbial communities of coastal water. Shenzhen is a coastal city that has developed rapidly over the past four decades, but the microbial communities and metabolic potential in offshore water are still not well characterized. Here, 16S rRNA gene V4-V5 sequencing was conducted to determine the microbial components from coastal waters in twenty selected areas of Shenzhen. The results showed a significant difference on the microbial composition between the western and eastern waters. Samples from western coast had more abundant Burkholderiaceae, Sporichthyaceae, Aeromonadaceae, and Methylophilaceae compared to eastern coast, and at the genus level, Candidatus Aquiluna, Aeromonas, Arcobacter, Ottowia and Acidibacter were significantly higher in western waters. There was also a notable difference within the western sample group, suggesting the taxa-compositional heterogeneity. Moreover, analysis of environmental factors and water quality revealed that salinity, pH and dissolved oxygen were relatively decreased in western samples, while total nitrogen, total phosphorus, chemical oxygen demand, and harmful marine vibrio were significantly increased compared to eastern waters. The results suggest the coastal waters pollution is more serious in western Shenzhen than eastern Shenzhen and the microbial communities are altered, which can be associated with anthropogenic disturbances.
Collapse
Affiliation(s)
- Rui Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China.
| | - Wen-Chao Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Yu Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Hong-Lian Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Zhi-Hui Zhao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Ling-Yun Zou
- Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518102, PR China
| | - Yu-Chun Shen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Wen-Sheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Science and Technology for Inspection and Quarantine, Technology Center for Animal and Plant Inspection and Quarantine, Shenzhen Customs, Shenzhen, 518010, PR China.
| |
Collapse
|
18
|
Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, Ardyna M, Zayed AA, Junger PC, Galand PE, Lovejoy C, Murray AE, Sarmento H, Acinas SG, Babin M, Iudicone D, Jaillon O, Karsenti E, Wincker P, Karp-Boss L, Sullivan MB, Bowler C, de Vargas C, Eveillard D. Environmental vulnerability of the global ocean epipelagic plankton community interactome. SCIENCE ADVANCES 2021; 7:eabg1921. [PMID: 34452910 PMCID: PMC8397264 DOI: 10.1126/sciadv.abg1921] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.
Collapse
Affiliation(s)
- Samuel Chaffron
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Erwan Delage
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Marko Budinich
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Vintache
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Charlotte Nef
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Ardyna
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Pedro C Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500 Paris, France
| | - Connie Lovejoy
- Département de biologie, Faculté des sciences et Institut de biologie intégrative et des systèmes (IBIS) 1030, ave de la Médecine, Université Laval, Québec, QC, Canada
| | - Alison E Murray
- Division of Earth and Ecosystem Science, Desert Research Institute, Reno, NV 89512, USA
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona 08003, Spain
| | - Marcel Babin
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
- Takuvik International Research Laboratory, Université Laval and CNRS, Québec, QC, Canada
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Olivier Jaillon
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Eric Karsenti
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Eveillard
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
19
|
Kim S, Islam MR, Kang I, Cho JC. Cultivation of Dominant Freshwater Bacterioplankton Lineages Using a High-Throughput Dilution-to-Extinction Culturing Approach Over a 1-Year Period. Front Microbiol 2021; 12:700637. [PMID: 34385989 PMCID: PMC8353197 DOI: 10.3389/fmicb.2021.700637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although many culture-independent molecular analyses have elucidated a great diversity of freshwater bacterioplankton, the ecophysiological characteristics of several abundant freshwater bacterial groups are largely unknown due to the scarcity of cultured representatives. Therefore, a high-throughput dilution-to-extinction culturing (HTC) approach was implemented herein to enable the culture of these bacterioplankton lineages using water samples collected at various seasons and depths from Lake Soyang, an oligotrophic reservoir located in South Korea. Some predominant freshwater bacteria have been isolated from Lake Soyang via HTC (e.g., the acI lineage); however, large-scale HTC studies encompassing different seasons and water depths have not been documented yet. In this HTC approach, bacterial growth was detected in 14% of 5,376 inoculated wells. Further, phylogenetic analyses of 16S rRNA genes from a total of 605 putatively axenic bacterial cultures indicated that the HTC isolates were largely composed of Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. Importantly, the isolates were distributed across diverse taxa including phylogenetic lineages that are widely known cosmopolitan and representative freshwater bacterial groups such as the acI, acIV, LD28, FukuN57, MNG9, and TRA3-20 lineages. However, some abundant bacterial groups including the LD12 lineage, Chloroflexi, and Acidobacteria could not be domesticated. Among the 71 taxonomic groups in the HTC isolates, representative strains of 47 groups could either form colonies on agar plates or be revived from frozen glycerol stocks. Additionally, season and water depth significantly affected bacterial community structure, as demonstrated by 16S rRNA gene amplicon sequencing analyses. Therefore, our study successfully implemented a dilution-to-extinction cultivation strategy to cultivate previously uncultured or underrepresented freshwater bacterial groups, thus expanding the basis for future multi-omic studies.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Md Rashedul Islam
- Bacteriophage Biology Laboratory, Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ilnam Kang
- Department of Biological Sciences, Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| |
Collapse
|
20
|
Cai H, Doi R, Shimada M, Hayakawa T, Nakagawa T. Metabolic regulation adapting to high methanol environment in the methylotrophic yeast Ogataea methanolica. Microb Biotechnol 2021; 14:1512-1524. [PMID: 33939325 PMCID: PMC8313246 DOI: 10.1111/1751-7915.13811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
Since methylotrophic yeasts such as Ogataea methanolica can use methanol as a sole carbon feedstock, they could be applied to produce valuable products from methanol, a next-generation energy source synthesized from natural gases, using genetic engineering tools. In this study, metabolite profiling of O. methanolica was conducted under glucose (Glc) and low and high methanol (L- and H-MeOH) conditions to show the adaptation mechanism to a H-MeOH environment. The yeast strain responded not only to the presence of methanol but also to its concentration based on the growth condition. Under H-MeOH conditions, O. methanolica downregulated the methanol utilization, glycolytic pathway and alcohol oxidase (AOD) isozymes and dihydroxyacetone synthase (DAS) expression compared with L-MeOH-grown cells. However, levels of energy carriers, such as ATP, were maintained to support cell survival. In H-MeOH-grown cells, reactive oxygen species (ROS) levels were significantly elevated. Along with increasing ROS levels, ROS scavenging system expression was significantly increased in H-MeOH-grown cells. Thus, we concluded that formaldehyde and H2 O2 , which are products of methanol oxidation by AOD isozymes in the peroxisome, are overproduced in H-MeOH-grown cells, and excessive ROS derived from these cells is generated in the cytosol, resulting in upregulation of the antioxidant system and downregulation of the methanol-utilizing pathway to suppress overproduction of toxic intermediates.
Collapse
Affiliation(s)
- Hao‐Liang Cai
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
| | - Ryohei Doi
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
| | - Masaya Shimada
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| | - Takashi Hayakawa
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural ScienceGifu University1‐1 YanagidoGifu501‐1193Japan
- The Graduate School of Natural Sciences and Technologies1‐1 YanagidoGifu501‐1193Japan
- The Faculty of Applied Biological Sciences1‐1 YanagidoGifu501‐1193Japan
| |
Collapse
|
21
|
Murphy CL, Sheremet A, Dunfield PF, Spear JR, Stepanauskas R, Woyke T, Elshahed MS, Youssef NH. Genomic Analysis of the Yet-Uncultured Binatota Reveals Broad Methylotrophic, Alkane-Degradation, and Pigment Production Capacities. mBio 2021; 12:e00985-21. [PMID: 34006650 PMCID: PMC8262859 DOI: 10.1128/mbio.00985-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023] Open
Abstract
The recent leveraging of genome-resolved metagenomics has generated an enormous number of genomes from novel uncultured microbial lineages yet left many clades undescribed. Here, we present a global analysis of genomes belonging to Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. All orders in Binatota encoded the capacity for aerobic methylotrophy using methanol, methylamine, sulfomethanes, and chloromethanes as the substrates. Methylotrophy in Binatota was characterized by order-specific substrate degradation preferences, as well as extensive metabolic versatility, i.e., the utilization of diverse sets of genes, pathways, and combinations to achieve a specific metabolic goal. The genomes also encoded multiple alkane hydroxylases and monooxygenases, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids (lycopene, β- and γ-carotenes, xanthins, chlorobactenes, and spheroidenes) production. Further, the majority of genes involved in bacteriochlorophyll a, c, and d biosynthesis were identified, although absence of key genes and failure to identify a photosynthetic reaction center preclude proposing phototrophic capacities. Analysis of 16S rRNA databases showed the preferences of Binatota to terrestrial and freshwater ecosystems, hydrocarbon-rich habitats, and sponges, supporting their potential role in mitigating methanol and methane emissions, breakdown of alkanes, and their association with sponges. Our results expand the lists of methylotrophic, aerobic alkane-degrading, and pigment-producing lineages. We also highlight the consistent encountering of incomplete biosynthetic pathways in microbial genomes, a phenomenon necessitating careful assessment when assigning putative functions based on a set-threshold of pathway completion.IMPORTANCE A wide range of microbial lineages remain uncultured, yet little is known regarding their metabolic capacities, physiological preferences, and ecological roles in various ecosystems. We conducted a thorough comparative genomic analysis of 108 genomes belonging to the Binatota (UBP10), a globally distributed, yet-uncharacterized bacterial phylum. We present evidence that members of the order Binatota specialize in methylotrophy and identify an extensive repertoire of genes and pathways mediating the oxidation of multiple one-carbon (C1) compounds in Binatota genomes. The occurrence of multiple alkane hydroxylases and monooxygenases in these genomes was also identified, potentially enabling growth on a wide range of alkanes and fatty acids. Pigmentation is inferred from a complete pathway for carotenoids production. We also report on the presence of incomplete chlorophyll biosynthetic pathways in all genomes and propose several evolutionary-grounded scenarios that could explain such a pattern. Assessment of the ecological distribution patterns of the Binatota indicates preference of its members to terrestrial and freshwater ecosystems characterized by high methane and methanol emissions, as well as multiple hydrocarbon-rich habitats and marine sponges.
Collapse
Affiliation(s)
- Chelsea L Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andriy Sheremet
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkley, California, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
22
|
do Carmo Linhares D, Saia FT, Duarte RTD, Nakayama CR, de Melo IS, Pellizari VH. Methanotrophic Community Detected by DNA-SIP at Bertioga's Mangrove Area, Southeast Brazil. MICROBIAL ECOLOGY 2021; 81:954-964. [PMID: 33392629 DOI: 10.1007/s00248-020-01659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.
Collapse
Affiliation(s)
- Débora do Carmo Linhares
- Laboratory of Industrial Biotechnology, Institute for Technological Research of São Paulo, 05508-901, São Paulo, SP, Brazil.
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil.
| | - Flávia Talarico Saia
- Institute of Marine Sciences, Federal University of São Paulo, Av. Dr. Carvalho de Mendonça, 144, Encruzilhada, Santos, SP, 11070-102, Brazil
| | - Rubens Tadeu Delgado Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Cristina Rossi Nakayama
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | | | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil
| |
Collapse
|
23
|
Haupka C, Brito LF, Busche T, Wibberg D, Wendisch VF. Genomic and Transcriptomic Investigation of the Physiological Response of the Methylotroph Bacillus methanolicus to 5-Aminovalerate. Front Microbiol 2021; 12:664598. [PMID: 33995329 PMCID: PMC8119775 DOI: 10.3389/fmicb.2021.664598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
The methylotrophic thermophile Bacillus methanolicus can utilize the non-food substrate methanol as its sole carbon and energy source. Metabolism of L-lysine, in particular its biosynthesis, has been studied to some detail, and methanol-based L-lysine production has been achieved. However, little is known about L-lysine degradation, which may proceed via 5-aminovalerate (5AVA), a non-proteinogenic ω-amino acid with applications in bioplastics. The physiological role of 5AVA and related compounds in the native methylotroph was unknown. Here, we showed that B. methanolicus exhibits low tolerance to 5AVA, but not to related short-chain (C4–C6) amino acids, diamines, and dicarboxylic acids. In order to gain insight into the physiological response of B. methanolicus to 5AVA, transcriptomic analyses by differential RNA-Seq in the presence and absence of 5AVA were performed. Besides genes of the general stress response, RNA levels of genes of histidine biosynthesis, and iron acquisition were increased in the presence of 5AVA, while an Rrf2 family transcriptional regulator gene showed reduced RNA levels. In order to test if mutations can overcome growth inhibition by 5AVA, adaptive laboratory evolution (ALE) was performed and two mutants—AVA6 and AVA10—with higher tolerance to 5AVA were selected. Genome sequencing revealed mutations in genes related to iron homeostasis, including the gene for an iron siderophore-binding protein. Overexpression of this mutant gene in the wild-type (WT) strain MGA3 improved 5AVA tolerance significantly at high Fe2+ supplementation. The combined ALE, omics, and genetics approach helped elucidate the physiological response of thermophilic B. methanolicus to 5AVA and will guide future strain development for 5AVA production from methanol.
Collapse
Affiliation(s)
- Carsten Haupka
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luciana F Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
24
|
Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, Stott MB. Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 12:651744. [PMID: 33841379 PMCID: PMC8024496 DOI: 10.3389/fmicb.2021.651744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5–3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h−1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Kathryn Wigley
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Luke Carman
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Karen M Houghton
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
25
|
Fischer PQ, Sánchez‐Andrea I, Stams AJM, Villanueva L, Sousa DZ. Anaerobic microbial methanol conversion in marine sediments. Environ Microbiol 2021; 23:1348-1362. [PMID: 33587796 PMCID: PMC8048578 DOI: 10.1111/1462-2920.15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/15/2023]
Abstract
Methanol is an ubiquitous compound that plays a role in microbial processes as a carbon and energy source, intermediate in metabolic processes or as end product in fermentation. In anoxic environments, methanol can act as the sole carbon and energy source for several guilds of microorganisms: sulfate-reducing microorganisms, nitrate-reducing microorganisms, acetogens and methanogens. In marine sediments, these guilds compete for methanol as their common substrate, employing different biochemical pathways. In this review, we will give an overview of current knowledge of the various ways in which methanol reaches marine sediments, the ecology of microorganisms capable of utilizing methanol and their metabolism. Furthermore, through a metagenomic analysis, we shed light on the unknown diversity of methanol utilizers in marine sediments which is yet to be explored.
Collapse
Affiliation(s)
- Peter Q. Fischer
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, P.O. Box 59Den BurgTexel7197 ABThe Netherlands
- Faculty of GeosciencesUtrecht University, Princetonlaan 8aUtrecht3584 CBThe Netherlands
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & Research, Stippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
26
|
Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. Methods Enzymol 2021; 650:215-236. [PMID: 33867023 DOI: 10.1016/bs.mie.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rare-earth elements (REEs) were recently discovered to be biologically significant. The finding was originally made with the methanol dehydrogenase XoxF, which depends on REEs for its activity, and reports of lanthanide-utilizing bacteria have since expanded. Environmental proteomics allows the identification of proteins specifically induced by the presence of lanthanides or can provide insights into the preferred use of lanthanide-dependent and -independent isoenzymes, for example. Here we describe protocols for the growth and subsequent mass spectrometry-based proteome analysis of bacteria obtained from controlled artificial media and from the phyllosphere of the model plant Arabidopsis thaliana. In addition, the use of inductively coupled plasma mass spectrometry (ICP-MS) is described for the quantification of REEs in biological samples.
Collapse
|
27
|
Selective survival of Escherichia coli phylotypes in freshwater beach sand. Appl Environ Microbiol 2021; 87:AEM.02473-20. [PMID: 33257315 PMCID: PMC7851694 DOI: 10.1128/aem.02473-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli is used as an indicator of fecal pollution at beaches despite evidence of long-term survival in sand. This work investigated the basis for survival of E. coli through field microcosm experiments and phylotypic characterization of more than >1400 E. coli isolated from sand, sewage, and gulls, enabling identification of long-surviving populations and environmental drivers of their persistence. Microcosms containing populations of E. coli from each source (n=176) were buried in the backshore of Lake Michigan for 45 & 96 days under several different nutrient treatments, including unaltered native sand, sterile autoclaved sand and baked nutrient depleted sand. Availability of carbon and nitrogen and competition with the indigenous community were major factors that influenced E. coli survival. E. coli Clermont phylotypes B1 and A were the most dominant phylotypes surviving seasonally (>6 weeks), regardless of source and nutrient treatment, whereas cryptic clade and D/E phylotypes survived over winter (>300 days). Autoclaved sand, presumably supplying nutrients through increased availability, promoted growth and the presence of the indigenous microbial community reduced this effect. Screening of 849 sand E. coli from four freshwater beaches demonstrated that B1, but also D/E, were the most common phylotypes recovered. Analysis by qPCR for the Gull2, Lachno3 and HB human markers demonstrated only 25% of the samples had evidence of gull waste and none of the samples had evidence of human waste. These findings suggest prevalence of E. coli in the sand could be attributed more to long term surviving populations than to new fecal pollution.IMPORTANCE Fecal pollution monitoring still relies upon the enumeration of E. coli, despite the fact that this organism can survive for prolonged periods and has been shown to be easily transported from sand into surrounding waters through waves and runoff, thus no longer represents recent fecal pollution events. Here, we experimentally demonstrate that regardless of host source, certain genetically distinct subgroups, or phylotypes, survive longer than others under conditions typical of Great Lakes beach sites. We found nutrients were a major driver of survival and could actually promote growth, and the presence of native microorganisms modulated these effects. These insights into the dynamics and drivers of survival will improve the interpretation of E. coli measurements at beaches and inform strategies that could focus on reducing nutrient inputs to beaches or maintaining a robust natural microbiome in beach sand.
Collapse
|
28
|
Campbell MA, Grice K, Visscher PT, Morris T, Wong HL, White RA, Burns BP, Coolen MJL. Functional Gene Expression in Shark Bay Hypersaline Microbial Mats: Adaptive Responses. Front Microbiol 2020; 11:560336. [PMID: 33312167 PMCID: PMC7702295 DOI: 10.3389/fmicb.2020.560336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Microbial mat communities possess extensive taxonomic and functional diversity, which drive high metabolic rates and rapid cycling of major elements. Modern microbial mats occurring in hypersaline environments are considered as analogs to extinct geobiological formations dating back to ∼ 3.5 Gyr ago. Despite efforts to understand the diversity and metabolic potential of hypersaline microbial mats in Shark Bay, Western Australia, there has yet to be molecular analyses at the transcriptional level in these microbial communities. In this study, we generated metatranscriptomes for the first time from actively growing mats comparing the type of mat, as well as the influence of diel and seasonal cycles. We observed that the overall gene transcription is strongly influenced by microbial community structure and seasonality. The most transcribed genes were associated with tackling the low nutrient conditions by the uptake of fatty acids, phosphorus, iron, and nickel from the environment as well as with protective mechanisms against elevated salinity conditions and to prevent build-up of ammonium produced by nitrate reducing microorganisms. A range of pathways involved in carbon, nitrogen, and sulfur cycles were identified in mat metatranscriptomes, with anoxygenic photosynthesis and chemoautotrophy using the Arnon–Buchanan cycle inferred as major pathways involved in the carbon cycle. Furthermore, enrichment of active anaerobic pathways (e.g., sulfate reduction, methanogenesis, Wood–Ljungdahl) in smooth mats corroborates previous metagenomic studies and further advocates the potential of these communities as modern analogs of ancient microbialites.
Collapse
Affiliation(s)
- Matthew A Campbell
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - Pieter T Visscher
- Departments of Marine Sciences and Geoscience, University of Connecticut, Storrs, CT, United States.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Therese Morris
- Applied Geology, Curtin University, Perth, WA, Australia
| | - Hon Lun Wong
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard Allen White
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,Plant Pathology, Washington State University, Pullman, WA, United States.,RAW Molecular Systems (RMS) LLC, Spokane, WA, United States
| | - Brendan P Burns
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Marco J L Coolen
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
29
|
Beraud-Martínez LK, Gómez-Gil B, Franco-Nava MÁ, Almazán-Rueda P, Betancourt-Lozano M. A metagenomic assessment of microbial communities in anaerobic bioreactors and sediments: Taxonomic and functional relationships. Anaerobe 2020; 68:102296. [PMID: 33207267 DOI: 10.1016/j.anaerobe.2020.102296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 02/04/2023]
Abstract
The present study used metagenomic sequencing, metagenome assembly and physical-chemical analysis to describe taxonomically and functionally 3 anaerobic bioreactors treating manure (LI), brewery (BR) and cornmeal (CO) wastes, and an anaerobic estuarine sediment (ES). Proteobacteria, Firmicutes, Euryarchaeota and Bacteroidetes were the most abundant Phyla in all metagenomes. A bacteria/archaea ratio of 3.4 was found in the industrial full-scale anaerobic bioreactors BR and CO, while ratios greater than 10 were found for LI and ES. Canonical correspondence analysis showed that environmental variables such as chemical oxygen demand, lipid content, and ammonium nitrogen influenced the ordination of taxonomic groups. Mesotoga prima was linked to high-temperature conditions, particularly in the BR bioreactor, along with the presence of heat shock proteins genes. Likewise, the hydrogenotrophic methanogen, Methanoregula formicica, was associated with high ammonium concentration in LI bioreactor. The interactions of microbes with specific methanogenic pathways were identified using Clusters of Orthologous Groups (COG) functions, while metagenome-assembled genomes (MAGs) further confirmed relationships between taxa and functions. Our results provide valuable information to understand microbial processes in anaerobic environments.
Collapse
Affiliation(s)
- Liov Karel Beraud-Martínez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unit for Aquaculture, Avenida Sábalo-Cerritos SS/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unit for Aquaculture, Avenida Sábalo-Cerritos SS/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Miguel Ángel Franco-Nava
- Tecnológico Nacional de México, Campus Mazatlán. Calle Corsario 1 No. 203 Col. Urías, A.P. 757, Mazatlán, Sinaloa, 82070, Mexico
| | - Pablo Almazán-Rueda
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unit for Aquaculture, Avenida Sábalo-Cerritos SS/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unit for Aquaculture, Avenida Sábalo-Cerritos SS/n, Mazatlán, Sinaloa, 82112, Mexico.
| |
Collapse
|
30
|
Malvar S, Cardoso LOB, Karolski B, Perpetuo EA, Carmo BS, Meneghini JR. A rheological approach to identify efficient biopolymer producing bacteria. Biotechnol Bioeng 2020; 118:622-632. [PMID: 33090455 DOI: 10.1002/bit.27595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022]
Abstract
This study investigates the relationship between collective motion and propulsion of bacterial consortia and their biopolymer production efficiency. Rheological tests were conducted for suspensions of two different methanotrophic bacterial consortia obtained after enrichment of sediment samples from mangrove sites in Brazil. We considered the linear viscoelasticity region and analyzed the values of storage and loss moduli as functions of days of cultivation, for different values of the volume fraction. The suspensions' rheological behaviors reflected the bacterial growth stage. We found that the formation of structures over time in some types of consortia can hinder the movement of bacteria in the search for nutrients. The change in complex viscosity of the two consortia followed a different and rich behavior that appears to be closely related to their capacity to capture methane. Our analysis showed a possible correlation between collective motion, viscosity reduction, and biopolymer production. The pieces of evidence from this study suggest that the efficiency of bacterial motion is directly related to biopolymer production, and this could facilitate the process of identifying the best consortium of biopolymer producing bacteria.
Collapse
Affiliation(s)
- Sara Malvar
- Department of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, SP, Brazil
| | - Letícia O B Cardoso
- The Interunit Program in Biotechnology, University of São Paulo, São Paulo, SP, Brazil.,Environmental Research and Education Center - CEPEMA, Escola Politécnica, University of São Paulo, Cubatão, SP, Brazil
| | - Bruno Karolski
- Environmental Research and Education Center - CEPEMA, Escola Politécnica, University of São Paulo, Cubatão, SP, Brazil
| | - Elen A Perpetuo
- Environmental Research and Education Center - CEPEMA, Escola Politécnica, University of São Paulo, Cubatão, SP, Brazil.,Institute of Marine Sciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Bruno S Carmo
- Department of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, SP, Brazil
| | - Julio R Meneghini
- Department of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Guggenheim C, Freimann R, Mayr MJ, Beck K, Wehrli B, Bürgmann H. Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Front Microbiol 2020; 11:579427. [PMID: 33178162 PMCID: PMC7593551 DOI: 10.3389/fmicb.2020.579427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
In stratified lakes, methane-oxidizing bacteria (MOB) are strongly mitigating methane fluxes to the atmosphere by consuming methane entering the water column from the sediments. MOB communities in lakes are diverse and vertically structured, but their spatio-temporal dynamics along the water column as well as physico-chemical parameters and interactions with other bacterial species that drive the community assembly have so far not been explored in depth. Here, we present a detailed investigation of the MOB and bacterial community composition and a large set of physico-chemical parameters in a shallow, seasonally stratified, and sub-alpine lake. Four highly resolved vertical profiles were sampled in three different years and during various stages of development of the stratified water column. Non-randomly assembled MOB communities were detected in all compartments. We could identify methane and oxygen gradients and physico-chemical parameters like pH, light, available copper and iron, and total dissolved nitrogen as important drivers of the MOB community structure. In addition, MOB were well-integrated into a bacterial-environmental network. Partial redundancy analysis of the relevance network of physico-chemical variables and bacteria explained up to 84% of the MOB abundances. Spatio-temporal MOB community changes were 51% congruent with shifts in the total bacterial community and 22% of variance in MOB abundances could be explained exclusively by the bacterial community composition. Our results show that microbial interactions may play an important role in structuring the MOB community along the depth gradient of stratified lakes.
Collapse
Affiliation(s)
- Carole Guggenheim
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Remo Freimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Magdalena J Mayr
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Karin Beck
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Bernhard Wehrli
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland.,Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
32
|
Synthetic Methylotrophy in Yeasts: Towards a Circular Bioeconomy. Trends Biotechnol 2020; 39:348-358. [PMID: 33008643 DOI: 10.1016/j.tibtech.2020.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
Mitigating climate change is a key driver for the development of sustainable and CO2-neutral production processes. In this regard, connecting carbon capture and utilization processes to derive microbial C1 fermentation substrates from CO2 is highly promising. This strategy uses methylotrophic microbes to unlock next-generation processes, converting CO2-derived methanol. Synthetic biology approaches in particular can empower synthetic methylotrophs to produce a variety of commodity chemicals. We believe that yeasts have outstanding potential for this purpose, because they are able to separate toxic intermediates and metabolic reactions in organelles. This compartmentalization can be harnessed to design superior synthetic methylotrophs, capable of utilizing methanol and other hitherto largely disregarded C1 compounds, thus supporting the establishment of a future circular economy.
Collapse
|
33
|
Fernandez L, Peura S, Eiler A, Linz AM, McMahon KD, Bertilsson S. Diazotroph Genomes and Their Seasonal Dynamics in a Stratified Humic Bog Lake. Front Microbiol 2020; 11:1500. [PMID: 32714313 PMCID: PMC7341956 DOI: 10.3389/fmicb.2020.01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Aquatic N-fixation is generally associated with the growth and mass development of Cyanobacteria in nitrogen-deprived photic zones. However, sequenced genomes and environmental surveys suggest active aquatic N-fixation also by many non-cyanobacterial groups. Here, we revealed the seasonal variation and genomic diversity of potential N-fixers in a humic bog lake using metagenomic data and nif gene clusters analysis. Groups with diazotrophic operons were functionally divergent and included Cholorobi, Geobacter, Desulfobacterales, Methylococcales, and Acidobacteria. In addition to nifH (a gene that encodes the dinitrogenase reductase component of the molybdenum nitrogenase), we also identified sequences corresponding to vanadium and iron-only nitrogenase genes. Within the Chlorobi population, the nitrogenase (nifH) cluster was included in a well-structured retrotransposon. Furthermore, the presence of light-harvesting photosynthesis genes implies that anoxygenic photosynthesis may fuel nitrogen fixation under the prevailing low-irradiance conditions. The presence of rnf genes (related to the expression of H+/Na+-translocating ferredoxin: NAD+ oxidoreductase) in Methylococcales and Desulfobacterales suggests that other energy-generating processes may drive the costly N-fixation in the absence of photosynthesis. The highly reducing environment of the anoxic bottom layer of Trout Bog Lake may thus also provide a suitable niche for active N-fixers and primary producers. While future studies on the activity of these potential N-fixers are needed to clarify their role in freshwater nitrogen cycling, the metagenomic data presented here enabled an initial characterization of previously overlooked diazotrophs in freshwater biomes.
Collapse
Affiliation(s)
- Leyden Fernandez
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Alexandra M. Linz
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI, United States
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
34
|
Cardoso LOB, Karolski B, Gracioso LH, do Nascimento CAO, Perpetuo EA. Increased P3HB Accumulation Capacity of Methylorubrum sp. in Response to Discontinuous Methanol Addition. Appl Biochem Biotechnol 2020; 192:846-860. [PMID: 32607898 DOI: 10.1007/s12010-020-03369-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
An alternative for non-biodegradable oil-based plastics has been the focus of many researchers throughout the years. Polyhydroxyalkanoates (PHAs) are potential substitutes due to their biodegradable characteristic and diversity of monomers that allow different biopolymer compositions and physical-chemical properties suitable for a variety of applications. The most well-known biopolymer from this class, poly(3-hydroxybutyrate) (P3HB), is already produced industrially, but its final price cannot compete with the oil-based plastics. As a low-volume high-value bioproduct, P3HB must be produced through a cheap and abundant feedstock, with high productivity and a feasible purity process in order to become an economically attractive bioproduct. In this scenario, we report a methylotrophic strain isolated from an estuarine contaminated site identified as Methylorubrum sp. highly tolerant to methanol and with great accumulation capacity of 60% (CDW) in 48 h through a simple strategy of batch fermentation with discontinuous methanol addition that could help lower P3HB's processing costs and final price.
Collapse
Affiliation(s)
- Letícia Oliveira Bispo Cardoso
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil. .,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil. .,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil.
| | - Bruno Karolski
- Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Louise Hase Gracioso
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Claudio Augusto Oller do Nascimento
- Chemical Engineering Department (POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil
| | - Elen Aquino Perpetuo
- Research Centre for Gas Innovation (RCGI-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Environmental Research and Education Center (CEPEMA-POLI-USP), University of São Paulo, Sao Paulo, Brazil.,Institute of Marine Sciences (IMar-UNIFESP), Federal University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Biderre-Petit C, Taib N, Gardon H, Hochart C, Debroas D. New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiol Ecol 2020; 95:5092586. [PMID: 30203066 DOI: 10.1093/femsec/fiy183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle. We demonstrated that methane-producing communities were dominated by the genus Methanoregula while methane-consuming communities were dominated by the genus Methylobacter, thus confirming prior observations. Our work allowed the reconstruction of a draft of their core metabolic pathways. Hydrogenotrophs, the genes required for acetate activation in the methanogen genome, were also detected. Regarding methanotrophy, Methylobacter was present in the same areas as the non-methanotrophic, methylotrophic Methylotenera, which could suggest a relationship between these two groups. Furthermore, the presence of a large gene inventory for nitrogen metabolism (nitrate transport, denitrification, nitrite assimilation and nitrogen fixation, for instance) was detected in the Methylobacter genome.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Najwa Taib
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Hélène Gardon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Corentin Hochart
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
36
|
Kallistova AY, Savvichev AS, Rusanov II, Pimenov NV. Thermokarst Lakes, Ecosystems with Intense Microbial Processes of the Methane Cycle. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
A Complex Interplay between Nitric Oxide, Quorum Sensing, and the Unique Secondary Metabolite Tundrenone Constitutes the Hypoxia Response in Methylobacter. mSystems 2020; 5:5/1/e00770-19. [PMID: 31964770 PMCID: PMC6977074 DOI: 10.1128/msystems.00770-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we describe a novel and complex hypoxia response system in a methanotrophic bacterium that involves modules of central carbon metabolism, denitrification, quorum sensing, and a secondary metabolite, tundrenone. This intricate stress response system, so far unique to Methylobacter species, may be responsible for the persistence and activity of these species across gradients of dioxygen tensions and for the cosmopolitan distribution of these organisms in freshwater and soil environments in the Northern Hemisphere, including the fast-melting permafrosts. Methylobacter species, members of the Methylococcales, have recently emerged as some of the globally widespread, cosmopolitan species that play a key role in the environmental consumption of methane across gradients of dioxygen tensions. In this work, we approached the question of how Methylobacter copes with hypoxia, via laboratory manipulation. Through comparative transcriptomics of cultures grown under high dioxygen partial pressure versus cultures exposed to hypoxia, we identified a gene cluster encoding a hybrid cluster protein along with sensing and regulatory functions. Through mutant analysis, we demonstrated that this gene cluster is involved in the hypoxia stress response. Through additional transcriptomic analyses, we uncovered a complex interconnection between the NO-mediated stress response, quorum sensing, the secondary metabolite tundrenone, and methanol dehydrogenase functions. This novel and complex hypoxia stress response system is so far unique to Methylobacter species, and it may play a role in the environmental fitness of these organisms and in their cosmopolitan environmental distribution. IMPORTANCE Here, we describe a novel and complex hypoxia response system in a methanotrophic bacterium that involves modules of central carbon metabolism, denitrification, quorum sensing, and a secondary metabolite, tundrenone. This intricate stress response system, so far unique to Methylobacter species, may be responsible for the persistence and activity of these species across gradients of dioxygen tensions and for the cosmopolitan distribution of these organisms in freshwater and soil environments in the Northern Hemisphere, including the fast-melting permafrosts.
Collapse
|
38
|
Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, Eickhorst T, Oni OE, Richter-Heitmann T, Schnakenberg A, Taubner H, Wunder L, Yin X, Zhu Q, Hinrichs KU, Kasten S, Friedrich MW. Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments. Front Microbiol 2020; 10:3041. [PMID: 32010098 PMCID: PMC6979488 DOI: 10.3389/fmicb.2019.03041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/17/2019] [Indexed: 11/15/2022] Open
Abstract
The flux of methane, a potent greenhouse gas, from the seabed is largely controlled by anaerobic oxidation of methane (AOM) coupled to sulfate reduction (S-AOM) in the sulfate methane transition (SMT). S-AOM is estimated to oxidize 90% of the methane produced in marine sediments and is mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria. An additional methane sink, i.e., iron oxide coupled AOM (Fe-AOM), has been suggested to be active in the methanic zone of marine sediments. Geochemical signatures below the SMT such as high dissolved iron, low to undetectable sulfate and high methane concentrations, together with the presence of iron oxides are taken as prerequisites for this process. So far, Fe-AOM has neither been proven in marine sediments nor have the governing key microorganisms been identified. Here, using a multidisciplinary approach, we show that Fe-AOM occurs in iron oxide-rich methanic sediments of the Helgoland Mud Area (North Sea). When sulfate reduction was inhibited, different iron oxides facilitated AOM in long-term sediment slurry incubations but manganese oxide did not. Especially magnetite triggered substantial Fe-AOM activity and caused an enrichment of ANME-2a archaea. Methane oxidation rates of 0.095 ± 0.03 nmol cm-3 d-1 attributable to Fe-AOM were obtained in short-term radiotracer experiments. The decoupling of AOM from sulfate reduction in the methanic zone further corroborated that AOM was iron oxide-driven below the SMT. Thus, our findings prove that Fe-AOM occurs in methanic marine sediments containing mineral-bound ferric iron and is a previously overlooked but likely important component in the global methane budget. This process has the potential to sustain microbial life in the deep biosphere.
Collapse
Affiliation(s)
- David A. Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Ajinkya C. Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- International Max Planck Research School of Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcus Elvert
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Susann Henkel
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Sarah Coffinet
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thilo Eickhorst
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Oluwatobi E. Oni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Annika Schnakenberg
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- International Max Planck Research School of Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Heidi Taubner
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Lea Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Qingzeng Zhu
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Sabine Kasten
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Michael W. Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
39
|
Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. THE ISME JOURNAL 2019; 13:2764-2777. [PMID: 31292537 PMCID: PMC6794327 DOI: 10.1038/s41396-019-0471-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The most abundant aquatic microbes are small in cell and genome size. Genome-streamlining theory predicts gene loss caused by evolutionary selection driven by environmental factors, favouring superior competitors for limiting resources. However, evolutionary histories of such abundant, genome-streamlined microbes remain largely unknown. Here we reconstruct the series of steps in the evolution of some of the most abundant genome-streamlined microbes in freshwaters ("Ca. Methylopumilus") and oceans (marine lineage OM43). A broad genomic spectrum is visible in the family Methylophilaceae (Betaproteobacteria), from sediment microbes with medium-sized genomes (2-3 Mbp genome size), an occasionally blooming pelagic intermediate (1.7 Mbp), and the most reduced pelagic forms (1.3 Mbp). We show that a habitat transition from freshwater sediment to the relatively oligotrophic pelagial was accompanied by progressive gene loss and adaptive gains. Gene loss has mainly affected functions not necessarily required or advantageous in the pelagial or is encoded by redundant pathways. Likewise, we identified genes providing adaptations to oligotrophic conditions that have been transmitted horizontally from pelagic freshwater microbes. Remarkably, the secondary transition from the pelagial of lakes to the oceans required only slight modifications, i.e., adaptations to higher salinity, gained via horizontal gene transfer from indigenous microbes. Our study provides first genomic evidence of genome reduction taking place during habitat transitions. In this regard, the family Methylophilaceae is an exceptional model for tracing the evolutionary history of genome streamlining as such a collection of evolutionarily related microbes from different habitats is rare in the microbial world.
Collapse
Affiliation(s)
- Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic.
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland.
| | - Daniel Schaefle
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Melissa Kaspar
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Stefan M Neuenschwander
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
| |
Collapse
|
40
|
Khalifa AY, AlMalki M. Polyphasic characterization of Delftia acidovorans ESM-1, a facultative methylotrophic bacterium isolated from rhizosphere of Eruca sativa. Saudi J Biol Sci 2019; 26:1262-1267. [PMID: 31516356 PMCID: PMC6733694 DOI: 10.1016/j.sjbs.2018.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, one bacterial strain, ESM-1, was isolated from rhizosphere of Eruca sativa, growing in Al Hofouf, Saudia Arabia, after enrichment with methanol as a sole carbon and energy source in a batch culture. ESM-1 was characterized by a polyphasic approach. The strain was identified as Delftia acidovorans at similarity level of 99.9% of the 16S rRNA gene sequences. Results of the Biolog Gen III MicroPlate test system showed that strain ESM-1 reacted positively to 47 (50%) including the one-carbon compound formic acid, and partially positive to 6 (∼6.4%) out of the 94 different the traits examined. The total cellular fatty acids composition of the strain ESM-1 was (C16:1ω7c/C16:1ω6c) and C16:0) and matched that of Delftia acidovorans at a similarity index of 0.9, providing a robustness to the ESM-1 identification. Furthermore, ESM-1 displayed a complex polar lipid profile consisting of phosphatidylethanolamine, phosphatidylglycerol, glycolipid, aminolipid, in addition to uncharacterized lipids. The DNA G+C content of the strain was 66.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain ESM1-1 was clearly clustered within the Delftia clade and constructed a monophyletic subcluster with Delftia acidovorans NBRC14950. The results addressed that ESM-1 is a facultative methylotrophic bacterium indigenous to Al Hofouf region and opens the door for potential biotechnological applications (e.g., bioremediation) of this strain, in future. Additionally, these findings assure that the total cellular fatty acid analysis and 16S rRNA gene are reliable tool for bacterial characterization and identification.
Collapse
Affiliation(s)
- Ashraf Y.Z. Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - M. AlMalki
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
| |
Collapse
|
41
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
42
|
Abstract
The metabolism of methane is an important part of the global carbon cycle. While deciphering the community function and the potential role of the different functional guilds is very difficult when considering native complex communities, synthetic communities, built of species originating from a study site in question, present a simplified model and allow specific questions to be addressed as to carbon, nitrogen, and other nutrient transfer among species in a controlled system. This study applies an ecophysiological approach, as a proof of principle, to an already well-studied model system, contributing to a better understanding of microbial community function and microbial ecosystem processes. The factors and processes that influence the behavior and functionality of ecosystems inhabited by complex microbiomes are still far from being clearly understood. Synthetic microbial communities provide reduced-complexity models that allow an examination of ecological theories under defined and controlled conditions. In this study, we applied a multiphasic approach to study synthetic methane-oxidizing communities and species interactions as proxies to the natural communities. Our results confirm that, under selective pressures, natural-sediment communities of high complexity simplify rapidly, selecting for several major functional guilds, the major partners in methane oxidation being the Methylococcaceae methanotrophs and the Methylophilaceae methylotrophs, along with minor but persistent partners, members of Burkholderiales and Flavobacteriales. As a proof of concept, we established minimalist synthetic communities that were representative of the four functional guilds to demonstrate the dependency of the non-methane-utilizing species on the methanotrophs as the primary carbon-providing species. We observed that in communities consisting of multiple representatives of the key guilds, members of the same guild appeared to compete for resources. For example, when two methanotrophs of the same family were present, the two expressed similar key methanotrophy pathways and responded similarly to changing environmental conditions, suggesting that they perform a similar keystone function in situ. Similar observations were made for the Methylophilaceae. However, differences were noted in the expression of auxiliary and unique genes among strains of the same functional guild, reflecting differential adaptation and suggesting mechanisms for competition. At the same time, differences were also noted in the performances of partners with specific metabolic schemes. For example, a mutant of Methylotenera mobilis impaired in nitrate utilization behaved as a more efficient cooperator in methane consumption, suggesting that the loss of function may lead to changes in communal behavior. Overall, we demonstrate the robust nature of synthetic communities built of native lake sediment strains and their utility in addressing important ecological questions while using a simplified model.
Collapse
|
43
|
Savvichev AS, Kadnikov VV, Kallistova AY, Rusanov II, Voronov DA, Krasnova ED, Ravin NV, Pimenov NV. Light-Dependent Methane Oxidation Is the Major Process of the Methane Cycle in the Water Column of the Bol’shie Khruslomeny Polar Lake. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171903010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Bai YN, Wang XN, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ. Microbial selenite reduction coupled to anaerobic oxidation of methane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:168-174. [PMID: 30878925 DOI: 10.1016/j.scitotenv.2019.03.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) is the process of coupling the anaerobic oxidation of methane (AOM) with denitrification, which plays an important part in controlling the flow of methane in anoxic niches. In this study, we explored the feasibility of microbial selenite reduction using methane by DAMO culture. Isotopic 13CH4 and long-term experiments showed that selenite reduction was coupled to methane oxidation, and selenite was ultimately reduced to Se (0) by the analyses of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The introduction of nitrate, the original electron acceptor in the DAMO culture, inhibited selenite reduction. Meanwhile, the microbial community of DAMO culture was significantly changed when the electron acceptor was changed from nitrate to selenite after long-term selenite reduction. High-throughput 16S rRNA gene sequencing indicated that Methylococcus (26%) became the predominant microbe performing selenite reduction and methane oxidation and the possible pathways of AOM accompanied with selenite reduction were proposed. This study revealed more potential relation during the biogeochemical cycle of carbon, nitrogen, and selenium.
Collapse
Affiliation(s)
- Ya-Nan Bai
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiu-Ning Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Yong-Ze Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Ling Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Fang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Tai-Chu Lau
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond J Zeng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
45
|
Ghashghavi M, Belova SE, Bodelier PLE, Dedysh SN, Kox MAR, Speth DR, Frenzel P, Jetten MSM, Lücker S, Lüke C. Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. mSphere 2019; 4:e00631-18. [PMID: 31167950 PMCID: PMC6553558 DOI: 10.1128/msphere.00631-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named "Methylotetracoccus oryzae" C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C16:1ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems.IMPORTANCE Most of the methane produced on our planet gets naturally oxidized by a group of methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy source. Although methanotrophs have been studied for more than a century, there are still many unknown and uncultivated groups prevalent in various ecosystems. This study focused on the diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create a countergradient of oxygen and methane for preenrichment, followed by classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in the discovery and isolation of a novel methanotroph with interesting physiological and genomic properties that could possibly make this bacterium able to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mohammad Ghashghavi
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Svetlana E Belova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Svetlana N Dedysh
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradski Institute of Microbiology, Moscow, Russia
| | - Martine A R Kox
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Daan R Speth
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Peter Frenzel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
46
|
Two Experimental Protocols for Accurate Measurement of Gas Component Uptake and Production Rates in Bioconversion Processes. Sci Rep 2019; 9:5899. [PMID: 30976062 PMCID: PMC6459910 DOI: 10.1038/s41598-019-42469-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/02/2019] [Indexed: 12/04/2022] Open
Abstract
Bioconversion processes offer many economic, environmental, and societal advantages for production of fuels and chemicals. Successful commercialization of any biotechnology usually requires accurate characterization of cell growth dynamics, substrate conversion and production excretion rates. Despite recent advancements in analytical equipment, obtaining accurate measurement of gas component uptake or production rates remains challenging due to their high sensitivity to system pressure or volume changes. Specifically, the consumption and production of various gases will result in changes in system pressure (for batch operations) or off-gas flow rate (for continuous operations). These changes would cause significant errors in the estimated gas component uptake and production rates if they were not accounted for. In this work, we propose two easy-to-implement experimental protocols and associated calculation procedures to obtain accurate measurements of gas component consumption and production rates; one is for batch operation and one is for continuous operation. For depressurized (i.e., system pressure below 1 atm) batch cultures, nitrogen (or other inert gases) is used to repressurize the system to 1 atm before taking sample; while for continuous cultures, He (or other inert gases) is used as an internal tracer to accurately measure off-gas flow rate. The effectiveness and accuracy of the two protocols and associated calculation procedures are demonstrated using several case studies with both abiotic and biotic systems.
Collapse
|
47
|
Aerobic methane oxidation under copper scarcity in a stratified lake. Sci Rep 2019; 9:4817. [PMID: 30886176 PMCID: PMC6423226 DOI: 10.1038/s41598-019-40642-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Aerobic methane-oxidizing bacteria (MOB) substantially reduce methane fluxes from freshwater sediments to the atmosphere. Their metalloenzyme methane monooxygenase (MMO) catalyses the first oxidation step converting methane to methanol. Its most prevalent form is the copper-dependent particulate pMMO, however, some MOB are also able to express the iron-containing, soluble sMMO under conditions of copper scarcity. So far, the link between copper availability in different forms and biological methane consumption in freshwater systems is poorly understood. Here, we present high-resolution profiles of MOB abundance and pMMO and sMMO functional genes in relation to copper, methane and oxygen profiles across the oxic-anoxic boundary of a stratified lake. We show that even at low nanomolar copper concentrations, MOB species containing the gene for pMMO expression are present at high abundance. The findings highlight the importance of copper as a micronutrient for MOB species and the potential usage of copper acquisition strategies, even under conditions of abundant iron, and shed light on the spatial distribution of these microorganisms.
Collapse
|
48
|
Ochsner AM, Hemmerle L, Vonderach T, Nüssli R, Bortfeld-Miller M, Hattendorf B, Vorholt JA. Use of rare-earth elements in the phyllosphere colonizer Methylobacterium extorquens PA1. Mol Microbiol 2019; 111:1152-1166. [PMID: 30653750 PMCID: PMC6850437 DOI: 10.1111/mmi.14208] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 01/03/2023]
Abstract
Until recently, rare‐earth elements (REEs) had been thought to be biologically inactive. This view changed with the discovery of the methanol dehydrogenase XoxF that strictly relies on REEs for its activity. Some methylotrophs only contain xoxF, while others, including the model phyllosphere colonizer Methylobacterium extorquens PA1, harbor this gene in addition to mxaFI encoding a Ca2+‐dependent enzyme. Here we found that REEs induce the expression of xoxF in M. extorquens PA1, while repressing mxaFI, suggesting that XoxF is the preferred methanol dehydrogenase in the presence of sufficient amounts of REE. Using reporter assays and a suppressor screen, we found that lanthanum (La3+) is sensed both in a XoxF‐dependent and independent manner. Furthermore, we investigated the role of REEs during Arabidopsisthaliana colonization. Element analysis of the phyllosphere revealed the presence of several REEs at concentrations up to 10 μg per g dry weight. Complementary proteome analyses of M. extorquens PA1 identified XoxF as a top induced protein in planta and a core set of La3+‐regulated proteins under defined artificial media conditions. Among these was a REE‐binding protein that is encoded next to a gene for a TonB‐dependent transporter. The latter was essential for REE‐dependent growth on methanol indicating chelator‐assisted uptake of REEs.
Collapse
Affiliation(s)
- Andrea M Ochsner
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Lucas Hemmerle
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Thomas Vonderach
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Ralph Nüssli
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Bodo Hattendorf
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| |
Collapse
|
49
|
Deng Y, Gui Q, Dumont M, Han C, Deng H, Yun J, Zhong W. Methylococcaceae are the dominant active aerobic methanotrophs in a Chinese tidal marsh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:636-646. [PMID: 30411293 DOI: 10.1007/s11356-018-3560-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Although coastal marshes are net carbon sinks, they are net methane sources. Aerobic methanotrophs in coastal marsh soils are important methane consumers, but their activity and populations are poorly characterized. DNA stable-isotope probing followed by sequencing was used to determine how active methanotrophic populations differed in the main habitats of a Chinese coastal marsh. These habitats included mudflat, native plant-dominated, and alien plant-dominated habitats. Methylococcaceae was the most active methanotroph family across four habitats. Abundant methylotroph sequences, including methanotrophs and non-methane-oxidizing methylotrophs (Methylotenera and Methylophaga), constituted 50-70% of the 16S rRNA genes detected in the labeled native plant-dominated and mudflat soils. Methylotrophs were less abundant (~ 20%) in labeled alien plant-dominated soil, suggesting less methane assimilation into the target community or a different extent of carbon cross-feeding. Canonical correspondence analysis indicated a significant correlation between the active bacterial communities and soil properties (salinity, organic carbon, total nitrogen, pH, and available phosphorus). Importantly, these results highlight how changing vegetation or soil features in coastal marshes may change their resident active methanotrophic populations, which will further influence methane cycling.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography Science, Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, China
| | - Qian Gui
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Marc Dumont
- Biological Sciences, University of Southampton, Southampton, UK
| | - Cheng Han
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Huan Deng
- School of Geography Science, Nanjing Normal University, Nanjing, China
| | - Juanli Yun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Zhong
- School of Geography Science, Nanjing Normal University, Nanjing, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China.
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, China.
| |
Collapse
|
50
|
Microbiological Study of Yamal Lakes: A Key to Understanding the Evolution of Gas Emission Craters. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8120478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although gas emission craters (GECs) are actively investigated, the question of which landforms result from GECs remains open. The evolution of GECs includes the filling of deep hollows with atmospheric precipitation and deposits from their retreating walls, so that the final stage of gas emission crater (GEC) lake development does not differ from that of any other lakes. Microbial activity and diversity may be indicators that make it possible to distinguish GEC lakes from other exogenous lakes. This work aimed at a comparison of the activity and diversity of microbial communities in young GEC lakes and mature background lakes of Central Yamal by using a radiotracer analysis and high-throughput sequencing of the 16S rRNA genes. The radiotracer analysis revealed slow-flowing microbial processes as expected for the cold climate of the study area. GEC lakes differed from background ones by slow rates of anaerobic processes (methanogenesis, sulfate reduction) as well as by a low abundance and diversity of methanogens. Other methane cycle micro-organisms (aerobic and anaerobic methanotrophs) were similar in all studied lakes and represented by Methylobacter and ANME 2d; the rates of methane oxidation were also similar. Actinobacteria, Bacteroidetes, Betaproteobacteria, and Acidobacteria were predominant in both lake types. Thus, GEC lakes may be identified by their scarce methanogenic population.
Collapse
|