1
|
Mu P, Ding G, Zhang Y, Jin Q, Liu Z, Guan Y, Zhang L, Liang C, Zhou F, Liu N. Interactions between arbuscular mycorrhizal fungi and phosphate-soluble bacteria affect ginsenoside compositions by modulating the C:N:P stoichiometry in Panax ginseng. Front Microbiol 2024; 15:1426440. [PMID: 39417075 PMCID: PMC11479886 DOI: 10.3389/fmicb.2024.1426440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The biomass production as well as the accumulation of secondary metabolites of plant is highly determined by the absorption of nutritional elements, in particular nitrogen (N) and phosphorus (P). Arbuscular mycorrhizal fungi (AMF) can absorb soluble P and transport it to plants, while phosphate solubilizing bacteria (PSB) can increase the content of solubilizing P in soil. Previous studies have identified the effects of either AMF or PSB inoculation on altering plant C:N:P stoichiometry, whether AMF interact with PSB in promoting plant growth and changing elemental concentration and composition of secondary metabolites by altering plant C:N:P stoichiometry remains ambiguous. In this study, we investigated the effects of inoculation of AMF, PSB, and their co-inoculation AMP (AMF and PSB) on the biomass growth, the C:N:P stoichiometry, the core microorganisms of rhizosphere soil, and the ginsenoside compositions of ginseng (Panax ginseng). The results showed that compared to control or single inoculation of AMF or PSB, co-inoculation of AMF and PSB significantly increased the AMF colonization rate on ginseng roots, increased the biomass of both above and under-ground parts of ginseng. Similarly, co-inoculation of AMF and PSB substantially increased the concentrations of N and P, reduced the ratios of C:P and N:P in the above-ground part of ginseng. The co-inoculation of AMF and PSB also increased concentrations of total ginsenosides and altered the compositions of ginsenosides in both the above and under-ground parts of ginseng. Analysis the rhizosphere microorganism showed that the co-inoculation of AMF and PSB recruited distinct core microorganisms that differ from the control and treatments with single inoculation of AMF or PSB. Our results suggested that PSB inoculation enhanced the positive effect of AMF in improving the absorption of nutrimental elements, altered the C:N:P stoichiometry and, ginsenosides concentration and composition of ginseng, influenced the plant rhizosphere microbial community. These findings offer valuable insights into enhancing plant biomass production and promoting secondary metabolites by improving the plant-fungi-bacterial relationships.
Collapse
Affiliation(s)
- Peng Mu
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guanzhong Ding
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yue Zhang
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiao Jin
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengbo Liu
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yiming Guan
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Linlin Zhang
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chijia Liang
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fan Zhou
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Liu
- Laboratory of Medical Plant Cultivation, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
2
|
Wu H, Cui H, Tian Y, Wu J, Bai Z, Zhang X. Exogenous ethephon treatment on the biosynthesis and accumulation of astragaloside IV in Astragalus membranaceus Bge. Var. Mongholicus (Bge.) Hsiao. BOTANICAL STUDIES 2024; 65:16. [PMID: 38967679 PMCID: PMC11226570 DOI: 10.1186/s40529-024-00426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Astragaloside IV is a main medicinal active ingredient in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao, which is also the key biomarker of A. membranaceus quality. Ethylene has been well-documented to involve in secondary metabolites biosynthesis in plants. Nevertheless, how ethylene regulates astragaloside IV biosynthesis in A. membranaceus is still unclear. Therefore, in the present study different dosages and time-dependent exogenous application of ethephon (Eth) were employed to analyze astragaloside IV accumulation and its biosynthesis genes expression level in hydroponically A. membranaceus. RESULTS Exogenous 200 µmol·L- 1Eth supply is most significantly increased astragaloside IV contents in A. membranaceus when compared with non-Eth supply. After 12 h 200 µmol·L- 1 Eth treatment, the astragaloside IV contents reaching the highest content at 3 d Eth treatment(P ≤ 0.05). Moreover, After Eth treatment, all detected key genes involved in astragaloside IV synthesis were significant decrease at 3rd day(P ≤ 0.05). However, SE displayed a significant increase at the 3rd day under Eth treatment(P ≤ 0.05). Under Eth treatment, the expression level of FPS, HMGR, IDI, SS, and CYP93E3 exhibited significant negative correlations with astragaloside IV content, while expression level of SE displayed a significant positive correlation. CONCLUSIONS These findings suggest that exogenous Eth treatment can influence the synthesis of astragaloside IV by regulating the expression of FPS, HMGR, IDI, SS, CYP93E3 and SE. This study provides a theoretical basis for utilizing molecular strategies to enhance the quality of A. membranaceus.
Collapse
Affiliation(s)
- Haonan Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Hang Cui
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Yu Tian
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| |
Collapse
|
3
|
Xu F, Valappil AK, Zheng S, Zheng B, Yang D, Wang Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024; 14:705. [PMID: 38927108 PMCID: PMC11201925 DOI: 10.3390/biom14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.
Collapse
Affiliation(s)
- Fengjiao Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Deokchun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
4
|
Jiang Y, Zeng Z, He G, Liu M, Liu C, Liu M, Lv T, Wang A, Wang Y, Zhao M, Wang K, Zhang M. Genome-wide identification and integrated analysis of the FAR1/FHY3 gene family and genes expression analysis under methyl jasmonate treatment in Panax ginseng C. A. Mey. BMC PLANT BIOLOGY 2024; 24:549. [PMID: 38872078 DOI: 10.1186/s12870-024-05239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zixia Zeng
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mengna Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Tingting Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Aimin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
5
|
Li Y, Wu Y, Li H, Wang M, Gao Y, Pei S, Liu S, Liu Z, Liu Z, Men L. UPLC-QTOF-MS based metabolomics unravels the modulatory effect of ginseng water extracts on rats with Qi-deficiency. J Pharm Biomed Anal 2024; 242:116019. [PMID: 38382315 DOI: 10.1016/j.jpba.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Ginseng is commonly used as a nutritional supplement and daily wellness product due to its ability to invigorate qi. As a result, individuals with Qi-deficiency often use ginseng as a health supplement. Ginsenosides and polysaccharides are the primary components of ginseng. However, the therapeutic effects and mechanisms of action of these components in Qi-deficiency remain unclear. This study aimed to determine the modulatory effects and mechanisms of ginseng water extract, ginsenosides, and ginseng polysaccharides in a rat model of Qi-deficiency using metabolomics and network analysis. The rat model of Qi-deficiency was established via swimming fatigue and a restricted diet. Oral administration of different ginseng water extracts for 30 days primarily alleviated oxidative stress and disrupted energy metabolism and immune response dysfunction caused by Qi-deficiency in rats. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for untargeted serum metabolomic analysis. Based on the analysis results, the active constituents of ginseng significantly reversed the changes in serum biomarkers related to Qi-deficiency in rats, particularly energy, amino acid, and unsaturated fatty acid metabolism. Furthermore, analysis of the metabolite-gene network suggested that the anti-Qi-deficiency effects of the ginseng components were mainly associated with toll-like receptor (TLR) signaling and inflammatory response. Additional verification revealed that treatment with the ginseng components effectively reduced the inflammatory response and activation of the myocardial TLR4/NF-κB pathway induced by Qi-deficiency, especially the ginseng water extracts. Therefore, ginseng could be an effective preventive measure against the progression of Qi-deficiency by regulating metabolic and inflammatory responses.
Collapse
Affiliation(s)
- Yanyi Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yi Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shuhua Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Lihui Men
- College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
6
|
Fan J, Chen N, Rao W, Ding W, Wang Y, Duan Y, Wu J, Xing S. Genome-wide analysis of bZIP transcription factors and their expression patterns in response to methyl jasmonate and low-temperature stresses in Platycodon grandiflorus. PeerJ 2024; 12:e17371. [PMID: 38708338 PMCID: PMC11067905 DOI: 10.7717/peerj.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.
Collapse
Affiliation(s)
- Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Na Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, Anhui, China
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
8
|
Afifah IQ, Wibowo I, Faizal A. A newly identified β-amyrin synthase gene hypothetically involved in oleanane-saponin biosynthesis from Talinum paniculatum (Jacq.) Gaertn. Heliyon 2023; 9:e17707. [PMID: 37449131 PMCID: PMC10336583 DOI: 10.1016/j.heliyon.2023.e17707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Talinum paniculatum or Javanese ginseng in Indonesia is a plant widely used as a traditional medicine. The genus Talinum produces oleanane-type saponins, such as talinumoside I. The first aim of this study was to isolate the probable gene encoding β-amyrin synthase (bAS), a key enzyme involved in the cyclization of 2,3-oxidosqualene producing the backbone of the oleanane-type saponin β-amyrin and characterize the gene sequence and the predicted protein sequence using in silico approach. The second aim was to analyze the correlation between the TpbAS gene expression level and saponin production in various plant organs. Thus, TpbAS was isolated using degenerate primers and PCR 5'/3'-Rapid Amplification of cDNA Ends (RACE), then the gene sequence and the predicted protein were in silico analyzed using various programs. TpbAS expression level was analyzed using reverse transcriptase PCR (RT-PCR), and saponin content was measured using a spectrophotometer. The results showed that the full-length TpbAS gene consists of 2298 base pairs encoding for a 765-amino acid protein. From in silico study, the (GA)n sequence was identified in the 5'-untranslated regions and predicted to be a candidate of the gene expression modulator. In addition, functional RNA motifs and sites analysis predicted the presence of exon splicing enhancers and silencers within the coding sequence and miRNA target sites candidate. Amino acid sequence analysis showed DCTAE, QW, and WCYCR motifs that were conserved in all classes of oxidosqualene cyclase enzymes. Phylogenetic tree analysis showed that TpbAS is closely related to other plant oxidosqualene cyclase groups. Analysis of TpbAS expression and saponin content indicated that saponin is mainly synthesized and accumulated in the leaves. Taken together, these findings will assist in increasing the saponin content through a metabolic engineering approach.
Collapse
Affiliation(s)
- Ika Qurrotul Afifah
- Chemistry Department, Faculty of Science and Technology, UIN Sunan Kalijaga Yogyakarta, Yogyakarta, 55281, Indonesia
| | - Indra Wibowo
- Physiology, Animal Development, and Biomedical Sciences Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
9
|
Wang X, Sun J, Wang S, Sun T, Zou L. Salicylic acid promotes terpenoid synthesis in the fungi Sanghuangporus baumii. Microb Biotechnol 2023; 16:1360-1372. [PMID: 37096757 DOI: 10.1111/1751-7915.14262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/26/2023] Open
Abstract
Sanghuangporus baumii is a medicinal fungi with anti-inflammatory, liver protection and antitumour effects. Terpenoids are one of the main medicinal ingredients of S. baumii. However, terpenoid production by wild-type S. baumii cannot meet the market demand, which affects its application in medical care. Therefore, exploring how to increase terpenoid content in S. baumii is a promising path in this research field. Salicylic acid (SA) is a secondary metabolite. In this study, a concentration of 350 μmol/L SA was added into fungal cultivations for 2 and 4 days, and then the transcriptome and metabolome of untreated mycelia and treated with SA were analysed. The expression of some genes in the terpenoids biosynthesis pathway increased in SA-induced cultivations, and the content of isopentenyl pyrophosphate (IPP) and geranylgeranyl-PP (GGPP) increased significantly as well as the contents of triterpenoids, diterpenoids, sesquiterpenoids and carotenoids. The gene FPS was considered to be a key gene regulating terpenoid biosynthesis. Therefore, FPS was overexpressed in S. baumii by Agrobacterium tumefaciens-mediated genetic transformation. The gene FPS and its downstream gene (LS) expression levels were confirmed to be increased in the FPS overexpressing transformant, and terpenoid content was 36.98% higher than that of the wild-type strain in the evaluated cultivation conditions.
Collapse
Affiliation(s)
- Xutong Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, Jilin, China
| | - Jian Sun
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Shixin Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Tingting Sun
- Department of Food Engineering, Harbin University, Zhongxing Road 109, Nangang District, Harbin, 150086, Heilongjiang, China
| | - Li Zou
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
10
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
11
|
Mahood HE, Sarropoulou V, Tzatzani TT. Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. BIORESOUR BIOPROCESS 2022; 9:100. [PMID: 38647613 PMCID: PMC10991164 DOI: 10.1186/s40643-022-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gazania rigens (L.) Gaertn. (Asteraceae) is a medicinal plant with high ornamental potential and use in landscaping. The therapeutic potential of sesquiterpene lactones (SLs) as plant natural products for pharmaceutical development has gained extensive interest with costunolide (chemical name: 6E,10E,11aR-6,10-dimethyl-3-methylidene-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-2-one) used as a popular herbal remedy due to its anti-cancer, antioxidant, anti-inflammatory, anti-microbial, anti-allergic, and anti-diabetic activities, among others. In the present study, two explant types (leaf, stem) and four 2,4-dichlorophenoxy acetic acid (2,4-D) concentrations (0, 0.5, 1 and 2 mg/L) were tested for callusing potential. The results showed that stem explants treated with 1.5 mg/L 2,4-D exhibited higher callus induction percentage (90%) followed by leaf explants (80%) with 1 mg/L 2,4-D, after a 4-week period. Cell suspension cultures were established from friable callus obtained from stem explants following a sigmoid pattern of growth curve with a maximum fresh weight at 20 days of subculture and a minimum one at 5 days of subculture. In the following stage, the effects of elicitation of cell suspension cultures with either yeast extract (YE) or methyl jasmonate (MeJA), each applied in five concentrations (0, 100, 150, 200 and 250 mg/L) on cell growth (fresh and dry biomass) and costunolide accumulation were tested. After 20 days of culture, YE or MeJA suppressed cell growth as compared to the non-elicited cells, while costunolide accumulation was better enhanced under the effect of 150 mg/L MeJA followed by 200 mg/L YE, respectively. In the subsequent experiment conducted, the optimal concentration of the two elicitors (200 mg/L YE, 150 mg/L MeJA) was selected to investigate further elicitation time (0, 5, 10, 15 and 20 days). The results revealed that YE biotic elicitation stimulated cell growth and costunolide production, being maximum on day 20 for fresh biomass, on day 5 for dry biomass and on day 15 for the bioactive compound. Accordingly, cell growth parameters were maximized under the effect of abiotic elicitation with MeJA for 15 days, while highest costunolide content was achieved after 10 days. Overall, MeJA served as a better elicitor type than YE for biomass and costunolide production. Irrespective of elicitor type, elicitor concentration and elicitation time, maximal response was obtained with 150 mg/L MeJA for 10 days regarding costunolide accumulation (18.47 ppm) and 15 days for cell growth (fresh weight: 954 mg and dry weight: 76.3 mg). The application of elicitors can lead the large quantity of costunolide to encounter extensive range demand through marketable production without endangering of G. rigens.
Collapse
Affiliation(s)
- Huda E Mahood
- Department of Horticulture, College of Agriculture, University of Al-Qadisiyah, Al Diwaniyah, 58002, Iraq
| | - Virginia Sarropoulou
- Institute of Plant Breeding and Genetic Resources, Laboratory of Protection and Evaluation of Native and Floriculture Species, Hellenic Agricultural Organization (HAO)-DEMETER, Balkan Botanic Garden of Kroussia, Thermi, P.O. Box 60458, P.C. 570 01, Thessaloniki, Greece.
| | - Thiresia-Teresa Tzatzani
- Institute of Olive Tree, Subtropical Crops & Viticulture, Laboratory of Subtropical Plants & Tissue Culture, Hellenic Agricultural Organization (HAO)-DEMETER, 167 K. Karamanlis Avenue, 73134, Chania, Greece
| |
Collapse
|
12
|
Yao L, Zhang H, Liu Y, Ji Q, Xie J, Zhang R, Huang L, Mei K, Wang J, Gao W. Engineering of triterpene metabolism and overexpression of the lignin biosynthesis gene PAL promotes ginsenoside Rg 3 accumulation in ginseng plant chassis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1739-1754. [PMID: 35731022 DOI: 10.1111/jipb.13315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2 . Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3 . Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.
Collapse
Affiliation(s)
- Lu Yao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Yirong Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Xie
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ru Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325000, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
14
|
Lei Y, Harris AJ, Wang A, Zhao L, Luo M, Li J, Chen H. Comparative transcriptomic analysis of genes in the triterpene saponin biosynthesis pathway in leaves and roots of
Ardisia kteniophylla
A. DC., a plant used in traditional Chinese medicine. Ecol Evol 2022; 12:e8920. [PMID: 35600685 PMCID: PMC9120893 DOI: 10.1002/ece3.8920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Ardisia kteniophylla (Primulaceae) is highly valued in traditional medicine due to its production of the pharmacologically active secondary metabolites, especially triterpenoid saponins in its roots. Although A. kteniophylla is very important in traditional medicine, the genetic basis for its production of triterpenoid saponins remains largely unknown. Therefore, we sequenced transcriptomes of A. kteniophylla to identify putative genes involved in production of triterpenoid saponins in both leaves and roots, and we used the transcriptomes to compare expression levels of these genes between the two organ systems. The production of triterpenoid saponins in plants is usually induced through hormonal signaling on account of the presence of pests. Thus, we treated plants with the hormones salicylic acid (SA) and methyl jasmonate (MeJA) and used quantitative real‐time PCR (qRT‐PCR) to investigate expression levels of genes involved in triterpenoid saponin biosynthesis. In total, we obtained transcriptomes for leaf and root tissues representing 52,454 unigenes. Compared with the leaf transcriptome, we found that 6092 unigenes were upregulated in the root, especially enzymes involved in the direct synthesis of triterpenoid saponins, while 6001 genes appeared downregulated, including those involved in precursory steps in the triterpenoid saponin biosynthesis pathway. Our results from qRT‐PCR indicate that genes within the upstream parts of the triterpenoid saponin biosynthesis pathway may be upregulated under exposure to the applied hormones, but downstream genes are downregulated. This suggests possible conflicting effects of SA and MeJA in promoting the production of secondary metabolites on the one hand, and, on the other, limiting plant growth processes to devote energy to combating pests. We also performed an analysis of transcription factors (TFs) and found 997 unique transcripts belonging to 16 TF families. Our data may help to facilitate future work on triterpene saponins biosynthesis in A. kteniophylla with potential pharmacological and molecular breeding applications.
Collapse
Affiliation(s)
- Yuyang Lei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Wuhan Guishan Mountain Scenic Management Office Wuhan China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Aihua Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University) Ministry of Education Nanning China
| | - Liyun Zhao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Ji Li
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| |
Collapse
|
15
|
Ali B. Practical applications of jasmonates in the biosynthesis and accumulation of secondary metabolites in plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 2021; 11:1813-1834. [PMID: 34386322 PMCID: PMC8343117 DOI: 10.1016/j.apsb.2020.12.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
Collapse
Key Words
- ABA, abscisic acid
- ADP, adenosine diphosphate
- AtCPR (ATR), Arabidopsis thaliana cytochrome P450 reductase
- BARS, baruol synthase
- Biosynthetic pathway
- Biotechnological approach
- CAS, cycloartenol synthase
- CDP, cytidine diphosphate
- CPQ, cucurbitadienol synthase
- CYP, cytochrome P450
- DDS, dammarenediol synthase
- DM, dammarenediol-II
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl pyrophosphate
- FPPS (FPS), farnesyl diphosphate synthase
- GDP, guanosine diphosphate
- Ginsenoside
- HEJA, 2-hydroxyethyl jasmonate
- HMGR, HMG-CoA reductase
- IPP, isopentenyl diphosphate
- ITS, internal transcribed spacer
- JA, jasmonic acid
- JA-Ile, (+)-7-iso-jasmonoyl-l-isoleucine
- JAR, JA-amino acid synthetase
- JAZ, jasmonate ZIM-domain
- KcMS, Kandelia candel multifunctional triterpene synthases
- LAS, lanosterol synthase
- LUP, lupeol synthase
- MEP, methylerythritol phosphate
- MVA, mevalonate
- MVD, mevalonate diphosphate decarboxylase
- MeJA, methyl jasmonate
- NDP, nucleotide diphosphate
- Non-coding RNAs
- OA, oleanane or oleanic acid
- OAS, oleanolic acid synthase
- OCT, ocotillol
- OSC, oxidosqualene cyclase
- PPD, protopanaxadiol
- PPDS, PPD synthase
- PPT, protopanaxatriol
- PPTS, PPT synthase
- Panax species
- RNAi, RNA interference
- SA, salicylic acid
- SE (SQE), squalene epoxidase
- SPL, squamosa promoter-binding protein-like
- SS (SQS), squalene synthase
- SUS, sucrose synthase
- TDP, thymine diphosphate
- Transcription factors
- UDP, uridine diphosphate
- UGPase, UDP-glucose pyrophosphosphprylase
- UGT, UDP-dependent glycosyltransferase
- WGD, whole genome duplication
- α-AS, α-amyrin synthase
- β-AS, β-amyrin synthase
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
Liu Q, Kim SB, Jo YH, Ahn JH, Turk A, Kim DE, Chang BY, Kim SY, Jeong CS, Hwang BY, Park SY, Lee MK. Curcubinoyl flavonoids from wild ginseng adventitious root cultures. Sci Rep 2021; 11:12212. [PMID: 34108581 PMCID: PMC8190163 DOI: 10.1038/s41598-021-91850-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
Wild ginseng (Panax ginseng) adventitious root cultures were prepared by elicitation using methyl jasmonate and investigated further to find new secondary metabolites. Chromatographic fractionation of wild ginseng adventitious root cultures led to the isolation of eleven compounds. The chemical structures of isolated compounds were identified as four known flavanone derivatives (1–4), one new curcubinoyl derivative, jasmogin A (5) and six new curcubinoyl-flavanone conjugates, jasmoflagins A-F (6–11) by extensive spectroscopic analysis. Newly isolated curcubinoyl derivatives showed inhibitory activity against lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages. Therefore, our present study suggested that elicitor stimulated plant cell cultures might contribute to the production of new metabolites.
Collapse
Affiliation(s)
- Qing Liu
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Seon Beom Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jong Hoon Ahn
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ayman Turk
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Da Eun Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Bo Yoon Chang
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Cheol-Seung Jeong
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
18
|
Qiang B, Miao J, Phillips N, Wei K, Gao Y. Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius). Chem Biodivers 2020; 17:e2000366. [PMID: 32734631 DOI: 10.1002/cbdv.202000366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
The in vitro tissue culture of medicinal plants is considered as a potential source for plant-derived bioactive secondary metabolites. The in vitro tissue culture of American ginseng has wide commercial applications in pharmaceutical, nutraceutical, food, and cosmetic fields with regard to the production of bioactive compounds such as ginsenosides and polysaccharides. This review highlights the recent progress made on different types of tissue culture practices with American ginseng, including callus culture, somatic embryo culture, cell suspension culture, hairy root culture, and adventitious root culture. The tissue culture conditions for inducing ginseng callus, somatic embryos, cell suspension, hairy roots, and adventitious roots were analyzed. In addition, the optimized conditions for increasing the production of ginsenosides and polysaccharides were discussed. This review provides references for the use of modern biotechnology to improve the production of bioactive compounds from American ginseng, as well as references for the development and sustainable utilization of American ginseng resources.
Collapse
Affiliation(s)
- Baobao Qiang
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA.,Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China
| | - Jianhua Miao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China.,Guangxi University of Traditional Medicine, Nanning, 530001, P. R. China
| | - Nate Phillips
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA
| | - Kunhua Wei
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, P. R. China.,Guangxi University of Traditional Medicine, Nanning, 530001, P. R. China
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Tennessee, 37132, USA
| |
Collapse
|
19
|
Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. CHINESE HERBAL MEDICINES 2020; 12:257-264. [PMID: 36119014 PMCID: PMC9476754 DOI: 10.1016/j.chmed.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 02/12/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation. Both pathogens and antagonistic fungi have been reported to induce plant resistance responses, thereby promoting the accumulation of secondary metabolites. The purpose of this experiment is to compare the advantages of one of the two fungi, in order to screen out more effective elicitors. The mechanism of fungal elicitor-induced plant resistance response is supplemented. Methods A gradient dilution and the dural culture were carried out to screen strains. The test strain was identified by morphology and 18 s rDNA. The effect of different concentrations (0, 50, 100, 200, 400 mg/L) of Penicillium sp. YJM-2013 and F. oxysporum on fresh weight and ginsenosides accumulation were tested. Signal molecules transduction, expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors. Results Antagonistic fungi of F. oxysporum was identified as Penicillium sp. YJM-2013, which reduced root biomass. The total ginsenosides content of Panax ginseng adventitious roots reached the maximum (48.95 ± 0.97 mg/g) treated with Penicillium sp. YJM-2013 at 200 mg/L, higher than control by 2.59-fold, in which protopanoxadiol-type ginsenosides (PPD) were increased by 4.57 times. Moreover, Penicillium sp. YJM-2013 activated defense signaling molecules, up-regulated the expression of PgWRKY 1, 2, 3, 5, 7, 9 and functional genes in ginsenosides synthesis. Conclusion Compared with the pathogenic fungi F. oxysporum, antagonistic fungi Penicillium sp. YJM-2013 was more conducive to the accumulation of ginsenosides in P. ginseng adventitious roots. Penicillium sp. YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules, activating the expression of transcription factors and functional genes.
Collapse
|
20
|
Surface activity and foaming properties of saponin-rich plants extracts. Adv Colloid Interface Sci 2020; 279:102145. [PMID: 32229329 DOI: 10.1016/j.cis.2020.102145] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Saponins are amphiphilic glycosidic secondary metabolites produced by numerous plants. So far only few of them have been thoroughly analyzed and even less have found industrial applications as biosurfactants. In this contribution we screen 45 plants from different families, reported to be rich in saponins, for their surface activity and foaming properties. For this purpose, the room-temperature aqueous extracts (macerates) from the alleged saponin-rich plant organs were prepared and spray-dried under the same conditions, in presence of sodium benzoate and potassium sorbate as preservatives and drying aids. For 15 selected plants, the extraction was also performed using hot water (decoction for 15 min) but high temperature in most cases deteriorated surface activity of the extracts. To our knowledge, for most of the extracts this is the first quantitative report on their surface activity. Among the tested plants, only 3 showed the ability to reduce surface tension of their solutions by more than 20 mN/m at 1% dry extract mass content. The adsorption layers forming spontaneously on the surface of these extracts showed a broad range of surface dilational rheology responses - from null to very high, with surface dilational elasticity modulus, E' in excess of 100 mN/m for 5 plants. In all cases the surface dilational response was dominated by the elastic contribution, typical for saponins and other biosurfactants. Almost all extracts showed the ability to froth, but only 32 could sustain the foam for more than 1 min (for 11 extracts the foams were stable during at least 10 min). In general, the ability to lower surface tension and to produce adsorbed layers with high surface elasticity did not correlate well with the ability to form and sustain the foam. Based on the overall characteristics, Saponaria officinalis L. (soapwort), Avena sativa L. (oat), Aesculus hippocastanum L. (horse chestnut), Chenopodium quinoa Willd. (quinoa), Vaccaria hispanica (Mill.) Rauschert (cowherb) and Glycine max (L.) Merr. (soybean) are proposed as the best potential sources of saponins for surfactant applications in natural cosmetic and household products.
Collapse
|
21
|
Ho TT, Murthy HN, Park SY. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int J Mol Sci 2020; 21:ijms21030716. [PMID: 31979071 PMCID: PMC7037436 DOI: 10.3390/ijms21030716] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 01/02/2023] Open
Abstract
Recently, plant secondary metabolites are considered as important sources of pharmaceuticals, food additives, flavours, cosmetics, and other industrial products. The accumulation of secondary metabolites in plant cell and organ cultures often occurs when cultures are subjected to varied kinds of stresses including elicitors or signal molecules. Application of exogenous jasmonic acid (JA) and methyl jasmonate (MJ) is responsible for the induction of reactive oxygen species (ROS) and subsequent defence mechanisms in cultured cells and organs. It is also responsible for the induction of signal transduction, the expression of many defence genes followed by the accumulation of secondary metabolites. In this review, the application of exogenous MJ elicitation strategies on the induction of defence mechanism and secondary metabolite accumulation in cell and organ cultures is introduced and discussed. The information presented here is useful for efficient large-scale production of plant secondary metabolites by the plant cell and organ cultures.
Collapse
Affiliation(s)
- Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Danang 550000, Vietnam;
| | | | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-432-612-531
| |
Collapse
|
22
|
Rahimi S, Kim J, Mijakovic I, Jung KH, Choi G, Kim SC, Kim YJ. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol Adv 2019; 37:107394. [PMID: 31078628 DOI: 10.1016/j.biotechadv.2019.04.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
Abstract
Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra-/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden.
| | - Jaewook Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
23
|
Characterization of squalene-induced PgCYP736B involved in salt tolerance by modulating key genes of abscisic acid biosynthesis. Int J Biol Macromol 2018; 121:796-805. [PMID: 30336242 DOI: 10.1016/j.ijbiomac.2018.10.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 genes as the one of the largest superfamily genes mediate a wide range of plant biochemical pathways. In this study, a full-length cytochrome P450 monooxygenase (CYP736B) cDNA was isolated and characterized from Panax ginseng. It was revealed that the deduced amino acid of PgCYP736B shares a high degree of sequence homology with CYP736A12 encoded by P. ginseng. Expression of PgCYP736B was differentially induced not only during a Pseudomonas syringae infection (7.7-fold) and wounding (47.3-fold) but also after exposure to salt (7.4-fold), cold (8.3-fold), and drought stress (3.24-fold). The gene transcription was highly affected by methyl jasmonate (476-fold) in the ginseng, suggesting that PgCYP736B was elicitor-responsive. Furthermore, we overexpressed the PgCYP736B gene in Arabidopsis and found that PgCYP736B is a transmembrane protein. Overexpression of PgCYP736B in Arabidopsis conferred enhanced resistance to salt stress via decreased H2O2 accumulation, increased carotenoid levels, and through abscisic acid biosynthesis gene expression. Our results suggest that the induction of ginsenoside biosynthetic pathway genes along with PgCYP736B by an exogenous supply of 10-100 μM of squalene most likely affects the metabolite profile of ginsenoside triterpenoid. Overall, our findings indicate that PgCYP736B protects ginseng from salt stress and may contribute to triterpenoid biosynthesis.
Collapse
|
24
|
Skrzypczak-Pietraszek E, Reiss K, Żmudzki P, Pietraszek J. Enhanced accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures analyzed by UPLC-MS/MS. PLoS One 2018; 13:e0202556. [PMID: 30133513 PMCID: PMC6104996 DOI: 10.1371/journal.pone.0202556] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022] Open
Abstract
Harpagide and its derivatives have valuable medicinal properties, such as anti-inflammatory, analgesic and potential antirheumatic effects. There is the demand for searching plant species containing these iridoids or developing biotechnological methods to obtain the compounds. The present study investigated the effects of methyl jasmonate (MeJa, 50 μM), ethephon (Eth, 50 μM) and L-phenylalanine (L-Phe, 2.4 g/L of medium), added to previously selected variant of Murashige and Skoog medium (supplemented with plant growth regulators: 6-benzylaminopurine 1.0 mg/L, α-naphthaleneacetic acid 0.5 mg/L, gibberellic acid 0.25 mg/L) on the accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures. Plant material was harvested 2 and 8 days after the supplementation. Iridoids were quantitatively analyzed by the UPLC-MS/MS method in extracts from the biomass and the culture medium. It was found that all of the variants caused an increase in the accumulation of harpagide. In the biomass harvested after 2 days, the highest harpagide content of 247.3 mg/100 g DW was found for variant F (L-Phe and Eth), and the highest 8-O-acetyl-harpagide content of 138 mg/100 g DW for variant E (L-Phe and MeJa). After 8 days, in some variants, a portion of the metabolites was released into the culture medium. Considering the total amount of the compounds (in the biomass and medium), the highest accumulation of harpagide, amounting to 619 mg/100 g DW, was found in variant F, and the highest amount of 8-O-acetyl-harpagide, of 255.4 mg/100 g DW, was found in variant H (L-Phe, MeJa, Eth) when harvested on the 8th day. These amounts were, respectively, 24.7 and 4.8 times higher than in the control culture, and were, respectively, 15 and 6.7 times higher than in the leaves of the soil-grown plant. The total amount of the two iridoids was highest for variant F (0.78% DW) and variant H (0.68% DW) when harvested on the 8th day. The results indicate that the agitated shoot cultures of M. melissophyllum can be a rich source of harpagide and 8-O-acetyl-harpagide, having a potential practical application. To the best of our knowledge we present for the first time the results of the quantitative UPLC-MS/MS analysis of harpagide and 8-O-acetyl-harpagide in M. melissophyllum shoot cultures and the enhancement of their accumulation by means of medium supplementation with elicitors and precursor.
Collapse
Affiliation(s)
- Ewa Skrzypczak-Pietraszek
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Katarzyna Reiss
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Paweł Żmudzki
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Jacek Pietraszek
- Department of Software Engineering and Applied Statistics, Faculty of Mechanical Engineering, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
25
|
Kim YJ, Joo SC, Shi J, Hu C, Quan S, Hu J, Sukweenadhi J, Mohanan P, Yang DC, Zhang D. Metabolic dynamics and physiological adaptation of Panax ginseng during development. PLANT CELL REPORTS 2018; 37:393-410. [PMID: 29150823 DOI: 10.1007/s00299-017-2236-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
The dynamics of metabolites from leaves to roots of Panax ginseng during development has revealed the tissue-specific and year-specific metabolic networks. Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
| | - Sung Chul Joo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Chaoyang Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Sheng Quan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Johan Sukweenadhi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
26
|
Lee JK, Eom SH, Hyun TK. Enhanced biosynthesis of saponins by coronatine in cell suspension culture of Kalopanax septemlobus. 3 Biotech 2018; 8:59. [PMID: 29354370 DOI: 10.1007/s13205-018-1090-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022] Open
Abstract
Kalopanax septemlobus is a medicinal woody species of the family Araliaceae, and the pharmaceutical properties of saponins obtained from K. septemlobus suggest that K. septemlobus has the potential to be a crude drug and dietary health supplement. In this study, we established cell suspension culture of K. septemlobus to develop a sustainable source of natura-ceuticals. Friable calli were used for establishing cell suspension culture. The maximum amount of total saponins (1.56 mg/60 ml suspension) was obtained during the 15th day of incubation, whereas the maximum capacity of saponin production was reached after day 6 (0.42 μg/mg of fresh weight). The total saponin production in the cell suspension of K. septemlobus was significantly increased by coronatine (COR) at 160% at a dose of 1 μM compared with the mock-treated control, whereas methyl jasmonate treated cells exhibited less increase in total saponin level as compared to the COR-treated cells. In addition, the elicitation of COR strongly induced the expression of beta-amyrin synthase, thus resulting in the accumulation of oleanolic acid (2.369 ± 0.98 μg/mg of extract), a precursor for oleanane-type triterpene saponins. These results indicate that COR is an efficient elicitor for inducing phytochemicals in cell suspension culture and that it provides the possibility for producing saponins of K. septemlobus using cell suspension culture.
Collapse
|
27
|
Liu Q, Jo YH, Ahn JH, Kim SB, Paek KY, Hwang BY, Park SY, Lee MK. Optimization of Extraction Condition of Methyl Jasmonate-treated Wild Ginseng Adventitious Root Cultures using Response Surface Methodology. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.2.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qing Liu
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Jong Hoon Ahn
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Seon Beom Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Kee-Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- WellGreen Co., Cheongju, Chungbuk 28644, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- WellGreen Co., Cheongju, Chungbuk 28644, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| |
Collapse
|
28
|
Trong TT, Truong DH, Nguyen HC, Tran DT, Nguyen Thi HT, Dang GD, Huu HN. Biomass accumulation of Panax vietnamensis in cell suspension cultures varies with addition of plant growth regulators and organic additives. ASIAN PAC J TROP MED 2017; 10:907-915. [PMID: 29080621 DOI: 10.1016/j.apjtm.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the impact of plant growth regulators including kinetin (KN), benzyl adenine and naphthalene acetic acid, yeast extract and casein hydrolyzate on biomass accumulation of Vietnamese ginseng Panax vietnamensis (P. vietnamensis) in cell suspension culture. METHODS Cell suspension cultures were established from friable calluses derived from leaves and petioles of 3-year-old in-vitro P. vietnamensis plants. The cell suspension cultures were grown in Murashige and Skoog basal media supplemented with various concentrations of KN, benzyl adenine, naphthalene acetic acid, and yeast extract and casein hydrolyzate. RESULTS All tested factors generated an increase in the cell biomass of P. vietnamensis in suspension culture, but the impact of each varies depended on the factor type, concentration, and incubation period. Addition of 2.0 mg/L KN resulted in the largest biomass increase after 24 d, (57.0 ± 0.9) and (3.1 ± 0.1) mg/mL fresh and dry weight, respectively, whereas addition of benzyl adenine or naphthalene acetic acid produced optimum levels of Panax cell biomass at 1.0 and 1.5 mg/L, respectively. Addition of the elicitor yeast extract led to a 1.4-2.4 fold increase in biomass of P. vietnamensis, while addition of casein hydrolyzate enhanced biomass accumulation 1.8-2.6 fold. CONCLUSIONS The addition of each factor causes significant changes in biomass accumulation of P. vietnamensis. The largest biomass accumulation is from cultures grown in MS media containing 2.0 mg/L KN for 24 d. The outcome of the present study provides new insights into the optimal suspension culture conditions for studies on the in vitro cell biomass production of P. vietnamensis.
Collapse
Affiliation(s)
- Tuan Tran Trong
- Plant Cell Technology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Dieu-Hien Truong
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong, District 7, Ho Chi Minh City, Viet Nam.
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong, District 7, Ho Chi Minh City, Viet Nam
| | - Dieu-Thai Tran
- Plant Cell Technology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Huyen-Trang Nguyen Thi
- Plant Cell Technology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Giap Do Dang
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong, District 7, Ho Chi Minh City, Viet Nam
| | - Ho Nguyen Huu
- Genetic Engineering Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Ha Noi Highway, Linh Trung, Thu Duc, Ho Chi Minh City, Viet Nam
| |
Collapse
|
29
|
Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture. Molecules 2017; 22:molecules22060837. [PMID: 28545250 PMCID: PMC6152624 DOI: 10.3390/molecules22060837] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1). The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.
Collapse
|
30
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
31
|
Lu C, Zhao S, Wei G, Zhao H, Qu Q. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:67-76. [PMID: 27914321 DOI: 10.1016/j.plaphy.2016.11.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 05/27/2023]
Abstract
Panax ginseng (Asian ginseng) and Panax quinquefolius (American ginseng) have been used as medicinal and functional herbal remedies worldwide. Different properties of P. ginseng and P. quinquefolius were confirmed not only in clinical findings, but also at cellular and molecular levels. The major pharmacological ingredients of P. ginseng and P. quinquefolius are the triterpene saponins known as ginsenosides. The P. ginseng roots contain a higher ratio of ginsenoside Rg1:Rb1 than that in P. quinquefolius. In ginseng plants, various ginsenosides are synthesized via three key reactions: cyclization, hydroxylation and glycosylation. To date, several genes including dammarenediol synthase (DS), protopanaxadiol synthase and protopanaxatriol synthase have been isolated in P. ginseng and P. quinquefolius. Although some glycosyltransferase genes have been isolated and identified association with ginsenoside synthesis in P. ginseng, little is known about the glycosylation mechanism in P. quinquefolius. In this paper, we cloned and identified a UDP-glycosyltransferase gene named Pq3-O-UGT2 from P. quinquefolius (GenBank accession No. KR106207). In vitro enzymatic activity experiments biochemically confirmed that Pq3-O-UGT2 catalyzed the glycosylation of Rh2 and F2 to produce Rg3 and Rd, and the chemical structure of the products were confirmed susing high performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS). High sequence similarity between Pq3-O-UGT2 and PgUGT94Q2 indicated a close evolutionary relationship between P. ginseng and P. quinquefolius. Moreover, we established both P. ginseng and P. quinquefolius RNAi transgenic roots lines. RNA interference of Pq3-O-UGT2 and PgUGT94Q2 led to reduce levels of ginsenoside Rd, protopanaxadiol-type and total ginsenosides. Expression of key genes including protopanaxadiol and protopanaxatriol synthases was up-regulated in RNAi lines, while expression of dammarenediol synthase gene was not obviously increased. These results revealed that P. quinquefolius was more sensitive to the RNAi of Pq3-O-UGT2 and PgUGT94Q2 when compared with P. ginseng.
Collapse
Affiliation(s)
- Chao Lu
- School of Biological and Agricultural Engineering, Jilin University, No.5988, Renmin Street, Nanguan District, Changchun, PR China
| | - Shoujing Zhao
- School of Biological and Agricultural Engineering, Jilin University, No.5988, Renmin Street, Nanguan District, Changchun, PR China; College of Life Sciences, Jilin University, No.2699, Qianjin Street, Chaoyang District, Changchun, PR China.
| | - Guanning Wei
- College of Life Sciences, Jilin University, No.2699, Qianjin Street, Chaoyang District, Changchun, PR China
| | - Huijuan Zhao
- School of Biological and Agricultural Engineering, Jilin University, No.5988, Renmin Street, Nanguan District, Changchun, PR China
| | - Qingling Qu
- School of Biological and Agricultural Engineering, Jilin University, No.5988, Renmin Street, Nanguan District, Changchun, PR China
| |
Collapse
|
32
|
Rahimi S, Kim YJ, Sukweenadhi J, Zhang D, Yang DC. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6007-6019. [PMID: 27811076 PMCID: PMC5100016 DOI: 10.1093/jxb/erw358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ginsenosides, the valuable pharmaceutical compounds in Panax ginseng, are triterpene saponins that occur mainly in ginseng plants. It was shown that in vitro treatment with the phytohormone jasmonic acid (JA) is able to increase ginsenoside production in ginseng plants. To understand the molecular link between JA biosynthesis and ginsenoside biosynthesis, we identified a JA biosynthetic 13-lipoxygenase gene (PgLOX6) in P. ginseng that promotes ginsenoside production. The expression of PgLOX6 was high in vascular bundles, which corresponds with expression of ginsenoside biosynthetic genes. Consistent with the role of PgLOX6 in synthesizing JA and promoting ginsenoside synthesis, transgenic plants overexpressing PgLOX6 in Arabidopsis had increased amounts of JA and methyl jasmonate (MJ), increased expression of triterpene biosynthetic genes such as squalene synthase (AtSS1) and squalene epoxidase (AtSE1), and increased squalene content. Moreover, transgenic ginseng roots overexpressing PgLOX6 had around 1.4-fold increased ginsenoside content and upregulation of ginsenoside biosynthesis-related genes including PgSS1, PgSE1, and dammarenediol synthase (PgDDS), which is similar to that of treatment with MJ. However, MJ treatment of transgenic ginseng significantly enhanced JA and MJ, associated with a 2.8-fold increase of ginsenoside content compared with the non-treated, non-transgenic control plant, which was 1.4 times higher than the MJ treatment effect on non-transgenic plants. These results demonstrate that PgLOX6 is responsible for the biosynthesis of JA and promotion of the production of triterpenoid saponin through up-regulating the expression of ginsenoside biosynthetic genes. This work provides insight into the role of JA in biosynthesizing secondary metabolites and provides a molecular tool for increasing ginsenoside production.
Collapse
Affiliation(s)
- Shadi Rahimi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Crop Science, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Johan Sukweenadhi
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 446-701, Republic of Korea
| |
Collapse
|
33
|
Yoon SJ, Sukweenadhi J, Khorolragchaa A, Mathiyalagan R, Subramaniyam S, Kim YJ, Kim HB, Kim MJ, Kim YJ, Yang DC. Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:485-495. [PMID: 27924121 PMCID: PMC5120041 DOI: 10.1007/s12298-016-0384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Sesquiterpenes are an abundant group belonging to the terpenoid family, with a C15 structure comprise of three isoprene units. Many sesquiterpenes are volatile compounds and it act as chemical messenger in plant signalling, particularly in the defense mechanism against biotic and abiotic stresses. Panax ginseng Meyer is important medicinal herbs with various reported pharmacological efficacies in which its triterpenoid saponins, called ginsenosides, were mostly studied. However, there have been few studies on volatile sesquiterpenes compounds regulation on P. ginseng. As slow-growing perennial plant, P. ginseng received many kind of stresses during its cultivation. The pathogen attack is one of the most devastated perturbation for ginseng yield. Thus, we aimed to analyze P. ginseng STS gene (PgSTS) expressions in ginseng organs as well as mono-, sesquiterpenes contents from ginseng seedlings treated with elicitors. qRT-PCR and GC-MS analysis showed that two elicitors- salicylic acid (SA) and methyl jasmonate (MeJA) triggered PgSTS expression at different time points and significantly induced mono-, sesquiterpene yield. Overexpression of PgSTS in Arabidopsis also induced high terpene content and conferred tolerance against Pseudomonas syringae pv. tomato infection. These results suggested that PgSTS transcripts are involved in terpenoid biosynthesis in response to environmental stress mediated by MeJA and SA elicitors; thus, generate tolerance against pathogen attack.
Collapse
Affiliation(s)
- Sung-Joo Yoon
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Johan Sukweenadhi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701 Korea
| | - Altanzul Khorolragchaa
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701 Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Ho-Bin Kim
- Woongjin Foods Co., Ltd., JEI-PLATZ, 186, Gasan Digital 1-ro, Room 201, Gemcheon-gu, Seoul, 153-792 Korea
| | - Mi-Jung Kim
- Woongjin Foods Co., Ltd., JEI-PLATZ, 186, Gasan Digital 1-ro, Room 201, Gemcheon-gu, Seoul, 153-792 Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 449-701 Korea
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701 Korea
| |
Collapse
|
34
|
Zhou JY, Li X, Zhao D, Deng-Wang MY, Dai CC. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. PLANTA 2016; 244:699-712. [PMID: 27125387 DOI: 10.1007/s00425-016-2536-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/15/2016] [Indexed: 05/20/2023]
Abstract
Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse interactions among different plants and their endophytes.
Collapse
Affiliation(s)
- Jia-Yu Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xia Li
- Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center Rice Improvement, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Dan Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Meng-Yao Deng-Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
35
|
Kim YJ, Silva J, Zhang D, Shi J, Joo SC, Jang MG, Kwon WS, Yang DC. Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield. PLANT CELL REPORTS 2016; 35:779-90. [PMID: 26800977 DOI: 10.1007/s00299-015-1920-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/27/2015] [Accepted: 12/09/2015] [Indexed: 05/27/2023]
Abstract
Interspecific hybrids between Panax ginseng and P. quinquefolius results in hybrid vigor and higher ginsenoside contents. Ginseng is one of the most important herbs with valued pharmaceutical effects contributing mainly by the presence of bioactive ginsenosides in the roots. However, ginseng industry is impeded largely by its biological properties, because ginseng plants are slow-growing perennial herbs with lower yield. To increase the ginseng yield and amounts of ginsenosides, we developed an effective ginseng production system using the F(1) progenies obtained from the interspecific reciprocal cross between two Panax species: P. ginseng and P. quinquefolius. Although hybrid plants show reduced male fertility, F(1) hybrids with the maternal origin either from P. ginseng or P. quinquefolius displayed heterosis; they had larger roots and higher contents of ginsenosides as compared with non-hybrid parental lines. Remarkably, the F(1) hybrids with the maternal origin of P. quinquefolius had much higher ginsenoside contents, especially ginsenoside Re and Rb1, than those with the maternal origin of P. ginseng. Additionally, non-targeted metabolomic profiling revealed a clear increase of a large number of primary and secondary metabolites including fatty acids, amino acids and ginsenosides in hybrid plants. To effectively identify the F(1) hybrids for the large-scale cultivation, we successfully developed a molecular marker detection system for discriminating F(1) reciprocal hybrids. In summary, this work provided a practical system for reciprocal hybrid ginseng production, which would facilitate the ginseng production in the future.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea.
| | - Jeniffer Silva
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Jianxin Shi
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Sung Chul Joo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Moon-Gi Jang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Woo-Saeng Kwon
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea.
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea.
| |
Collapse
|
36
|
Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016; 21:182. [PMID: 26848649 PMCID: PMC6273650 DOI: 10.3390/molecules21020182] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/04/2022] Open
Abstract
Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the “Plant Cell Factory” concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.
Collapse
|
37
|
Biswas T, Kalra A, Mathur AK, Lal RK, Singh M, Mathur A. Elicitors’ influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Appl Microbiol Biotechnol 2016; 100:4909-22. [DOI: 10.1007/s00253-015-7264-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/04/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
38
|
Yuan J, Sun K, Deng-Wang MY, Dai CC. The Mechanism of Ethylene Signaling Induced by Endophytic Fungus Gilmaniella sp. AL12 Mediating Sesquiterpenoids Biosynthesis in Atractylodes lancea. FRONTIERS IN PLANT SCIENCE 2016; 7:361. [PMID: 27047528 PMCID: PMC4804159 DOI: 10.3389/fpls.2016.00361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/08/2016] [Indexed: 05/04/2023]
Abstract
Ethylene, the first known gaseous phytohormone, is involved in plant growth, development as well as responses to environmental signals. However, limited information is available on the role of ethylene in endophytic fungi induced secondary metabolites biosynthesis. Atractylodes lancea is a traditional Chinese herb, and its quality depends on the main active compounds sesquiterpenoids. This work showed that the endophytic fungus Gilmaniella sp. AL12 induced ethylene production in Atractylodes lancea. Pre-treatment of plantlets with ethylene inhibiter aminooxyacetic acid (AOA) suppressed endophytic fungi induced accumulation of ethylene and sesquiterpenoids. Plantlets were further treated with AOA, salicylic acid (SA) biosynthesis inhibitor paclobutrazol (PAC), jasmonic acid inhibitor ibuprofen (IBU), hydrogen peroxide (H2O2) scavenger catalase (CAT), nitric oxide (NO)-specific scavenger 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO). With endophytic fungi inoculation, IBU or PAC did not inhibit ethylene production, and JA and SA generation were suppressed by AOA, showing that ethylene may act as an upstream signal of JA and SA pathway. With endophytic fungi inoculation, CAT or cPTIO suppressed ethylene production, and H2O2 or NO generation was not affected by 1-aminocyclopropane-1-carboxylic acid (ACC), showing that ethylene may act as a downstream signal of H2O2 and NO pathway. Then, plantlets were treated with ethylene donor ACC, JA, SA, H2O2, NO donor sodium nitroprusside (SNP). Exogenous ACC could trigger JA and SA generation, whereas exogenous JA or SA did not affect ethylene production, and the induced sesquiterpenoids accumulation triggered by ACC was partly suppressed by IBU and PAC, showing that ethylene acted as an upstream signal of JA and SA pathway. Exogenous ACC did not affect H2O2 or NO generation, whereas exogenous H2O2 and SNP induced ethylene production, and the induced sesquiterpenoids accumulation triggered by SNP or H2O2 was partly suppressed by ACC, showing that ethylene acted as a downstream signal of NO and H2O2 pathway. Taken together, this study demonstrated that ethylene is an upstream signal of JA and SA, and a downstream signal of NO and H2O2 signaling pathways, and acts as an important signal mediating sesquiterpenoids biosynthesis of Atractylodes lancea induced by the endophytic fungus.
Collapse
|