1
|
Nakamura S, Miyazaki T. Structural insights into the inhibition mechanism of glucosidase inhibitors toward kojibiose hydrolase belonging to glycoside hydrolase family 65. Biosci Biotechnol Biochem 2024; 89:72-79. [PMID: 39533825 DOI: 10.1093/bbb/zbae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Glycoside hydrolase family 65 (GH65) includes glycoside hydrolases active on various α-glucosides. We previously demonstrated that the GH65 enzyme from Flavobacterium johnsoniae (FjGH65A) is a kojibiose hydrolase and determined its 3-dimensional structure. In this study, the effects of glucosidase inhibitors on FjGH65A and their complex structures were analyzed to elucidate their inhibition mechanism. FjGH65A was competitively inhibited by 1-deoxynojirimycin (DNJ) and noncompetitively inhibited by castanospermine (CSP) with Ki values of 2.95 and 3.69 µm, respectively. The crystal structures of FjGH65A complexed with the inhibitors indicated that DNJ was bound to subsite -1 of FjGH65A, while CSP was bound to subsites -1 and +1 of FjGH65A. Compared with the glucose complex structure, the conformation of Tyr337 was changed in the CSP complex structure. These results provide new structural insights into the mechanism of inhibition against GH65 α-glucoside hydrolases.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
2
|
Koltovskaia S, Ohtao A, Kitaoka M, Nakai H, Nihira T. Efficient Synthesis of β-Glucose 1-Phosphate through Enzymatic Phosphorolysis and Baker's Yeast Fermentation. J Appl Glycosci (1999) 2024; 71:123-125. [PMID: 39720776 PMCID: PMC11664117 DOI: 10.5458/jag.jag.jag-2024_0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 12/26/2024] Open
Abstract
β-Glucose 1-phosphate (βGlc1P) is a donor substrate in the synthesis of various α-glucosides by glycoside phosphorylases belonging to the glycoside hydrolase family 65. This study presents an efficient synthesis of βGlc1P combining enzymatic phosphorolysis of inexpensive maltose and baker's yeast fermentation to bias the equilibrium toward maltose phosphorolysis by removing released glucose. Mass production of βGlc1P was obtained in a 2 L reaction mixture initially containing 500 mM maltose and inorganic phosphate, with a yield of 76 %. βGlc1P was isolated from the reaction mixture by crystallization after electrodialysis to obtain 181 g of βGlc1P as a bis(cyclohexylammonium) salt.
Collapse
Affiliation(s)
| | - Akane Ohtao
- Graduate School of Science and Technology, Niigata University
| | - Motomitsu Kitaoka
- Graduate School of Science and Technology, Niigata University
- Faculty of Agriculture, Niigata University
| | - Hiroyuki Nakai
- Graduate School of Science and Technology, Niigata University
- Faculty of Agriculture, Niigata University
| | - Takanori Nihira
- Faculty of Agriculture, Niigata University
- Faculty and department of Engineering, Niigata Institute of Technology
| |
Collapse
|
3
|
Kuga T, Sunagawa N, Igarashi K. Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase. J Appl Glycosci (1999) 2024; 71:37-46. [PMID: 38863949 PMCID: PMC11163329 DOI: 10.5458/jag.jag.jag-2023_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 06/13/2024] Open
Abstract
Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.
Collapse
Affiliation(s)
- Tomohiro Kuga
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
4
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production II: Model-based multiobjective optimization. Biotechnol Bioeng 2024; 121:566-579. [PMID: 37986649 DOI: 10.1002/bit.28601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| |
Collapse
|
5
|
Isono N, Yagura S, Yamanaka K, Masuda Y, Mukai K, Katsuzaki H. Enzymatic synthesis of β-d-fructofuranosyl α-d-glucopyranosyl-(1→2)-α-d-glucopyranoside using Escherichia coli glycoside phosphorylase YcjT. Biosci Biotechnol Biochem 2023; 87:1249-1253. [PMID: 37475702 DOI: 10.1093/bbb/zbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
YcjT is a kojibiose phosphorylase found in Escherichia coli. We found that sucrose was a good acceptor of YcjT in reverse phosphorolysis using β-d-glucose 1-phosphate as a donor. The product was identified as β-d-fructofuranosyl α-d-glucopyranosyl-(1→2)-α-d-glucopyranoside. This sugar was also synthesized from sucrose and maltose using YcjT and maltose phosphorylase and promoted the growth of the probiotic Bifidobacterium breve.
Collapse
Affiliation(s)
- Naoto Isono
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | | | | - Kazuki Mukai
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | |
Collapse
|
6
|
Alfonso-Prieto M, Cuxart I, Potocki-Véronèse G, André I, Rovira C. Substrate-Assisted Mechanism for the Degradation of N-Glycans by a Gut Bacterial Mannoside Phosphorylase. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Mercedes Alfonso-Prieto
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gabrielle Potocki-Véronèse
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Biochem Biophys Res Commun 2022; 625:60-65. [PMID: 35947916 DOI: 10.1016/j.bbrc.2022.07.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
Glycoside hydrolase family 94 (GH94) contains enzymes that reversibly catalyze the phosphorolysis of β-glycosides. We conducted this study to investigate a GH94 protein (PBOR_13355) encoded in the genome of Paenibacillus borealis DSM 13188 with low sequence identity to known phosphorylases. Screening of acceptor substrates for reverse phosphorolysis in the presence of α-d-glucose 1-phosphate as a donor substrate showed that PBOR_13355 utilized d-glucuronic acid and p-nitrophenyl β-d-glucuronide as acceptors. In the reaction with d-glucuronic acid, 3-O-β-d-glucopyranosyl-d-glucuronic acid was synthesized. PBOR_13355 showed a higher apparent catalytic efficiency to p-nitrophenyl β-d-glucuronide than to d-glucuronic acid, and thus, PBOR_13355 was concluded to be a novel glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase. PBOR_13360, encoded by the gene immediately downstream of the PBOR_13355 gene, was shown to be β-glucuronidase. Collectively, PBOR_13355 and PBOR_13360 are predicted to work together in the cytosol to metabolize oligosaccharides containing the 3-O-β-d-glucopyranosyl β-d-glucuronide structure released from bacterial and plant acidic carbohydrates.
Collapse
|
8
|
Bai S, Yang L, Wang H, Yang C, Hou X, Gao J, Zhang Z. Cellobiose phosphorylase from Caldicellulosiruptor bescii catalyzes reversible phosphorolysis via different kinetic mechanisms. Sci Rep 2022; 12:3978. [PMID: 35273293 PMCID: PMC8913831 DOI: 10.1038/s41598-022-08036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
In the process of yielding biofuels from cellulose degradation, traditional enzymatic hydrolysis, such as β-glucosidase catalyzing cellobiose, can barely resolve the contradiction between cellulose degradation and bioenergy conservation. However, it has been shown that cellobiose phosphorylase provides energetic advantages for cellobiose degradation through a phosphorolytic pathway, which has attracted wide attention. Here, the cellobiose phosphorylase gene from Caldicellulosiruptor bescii (CbCBP) was cloned, expressed, and purified. Analysis of the enzymatic properties and kinetic mechanisms indicated that CbCBP catalyzed reversible phosphorolysis and had good thermal stability and broad substrate selectivity. In addition, the phosphorolytic reaction of cellobiose by CbCBP proceeded via an ordered Bi Bi mechanism, while the synthetic reaction proceeded via a ping pong Bi Bi mechanism. The present study lays the foundation for optimizing the degradation of cellulose and the synthesis of functional oligosaccharides.
Collapse
Affiliation(s)
- Shaowei Bai
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Honglei Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Chao Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xuechen Hou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingjie Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
De Doncker M, De Graeve C, Franceus J, Beerens K, Křen V, Pelantová H, Vercauteren R, Desmet T. Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity. Chembiochem 2021; 22:3319-3325. [PMID: 34541742 DOI: 10.1002/cbic.202100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Indexed: 11/05/2022]
Abstract
The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-β-d-glucosyl-d-galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-β-d-glucosyl-d-galactose and 4-O-β-d-glucosyl-l-arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.
Collapse
Affiliation(s)
- Marc De Doncker
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Chloé De Graeve
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Ronny Vercauteren
- Cargill R&D Centre Europe BVBA, Havenstraat 84, 1800, Vilvoorde, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links Ghent, 653, 9000, Gent, Belgium
| |
Collapse
|
10
|
Nakamura S, Nihira T, Kurata R, Nakai H, Funane K, Park EY, Miyazaki T. Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. J Biol Chem 2021; 297:101366. [PMID: 34728215 PMCID: PMC8626586 DOI: 10.1016/j.jbc.2021.101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Glycoside hydrolase family 65 (GH65) comprises glycoside hydrolases (GHs) and glycoside phosphorylases (GPs) that act on α-glucosidic linkages in oligosaccharides. All previously reported bacterial GH65 enzymes are GPs, whereas all eukaryotic GH65 enzymes known are GHs. In addition, to date, no crystal structure of a GH65 GH has yet been reported. In this study, we use biochemical experiments and X-ray crystallography to examine the function and structure of a GH65 enzyme from Flavobacterium johnsoniae (FjGH65A) that shows low amino acid sequence homology to reported GH65 enzymes. We found that FjGH65A does not exhibit phosphorolytic activity, but it does hydrolyze kojibiose (α-1,2-glucobiose) and oligosaccharides containing a kojibiosyl moiety without requiring inorganic phosphate. In addition, stereochemical analysis demonstrated that FjGH65A catalyzes this hydrolytic reaction via an anomer-inverting mechanism. The three-dimensional structures of FjGH65A in native form and in complex with glucose were determined at resolutions of 1.54 and 1.40 Å resolutions, respectively. The overall structure of FjGH65A resembled those of other GH65 GPs, and the general acid catalyst Glu472 was conserved. However, the amino acid sequence forming the phosphate-binding site typical of GH65 GPs was not conserved in FjGH65A. Moreover, FjGH65A had the general base catalyst Glu616 instead, which is required to activate a nucleophilic water molecule. These results indicate that FjGH65A is an α-1,2-glucosidase and is the first bacterial GH found in the GH65 family.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kazumi Funane
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
11
|
Discovery of a Kojibiose Hydrolase by Analysis of Specificity-Determining Correlated Positions in Glycoside Hydrolase Family 65. Molecules 2021; 26:molecules26206321. [PMID: 34684901 PMCID: PMC8537180 DOI: 10.3390/molecules26206321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The Glycoside Hydrolase Family 65 (GH65) is an enzyme family of inverting α-glucoside phosphorylases and hydrolases that currently contains 10 characterized enzyme specificities. However, its sequence diversity has never been studied in detail. Here, an in-silico analysis of correlated mutations was performed, revealing specificity-determining positions that facilitate annotation of the family’s phylogenetic tree. By searching these positions for amino acid motifs that do not match those found in previously characterized enzymes from GH65, several clades that may harbor new functions could be identified. Three enzymes from across these regions were expressed in E. coli and their substrate profile was mapped. One of those enzymes, originating from the bacterium Mucilaginibacter mallensis, was found to hydrolyze kojibiose and α-1,2-oligoglucans with high specificity. We propose kojibiose glucohydrolase as the systematic name and kojibiose hydrolase or kojibiase as the short name for this new enzyme. This work illustrates a convenient strategy for mapping the natural diversity of enzyme families and smartly mining the ever-growing number of available sequences in the quest for novel specificities.
Collapse
|
12
|
Klimacek M, Zhong C, Nidetzky B. Kinetic modeling of phosphorylase-catalyzed iterative β-1,4-glycosylation for degree of polymerization-controlled synthesis of soluble cello-oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:134. [PMID: 34112242 PMCID: PMC8194188 DOI: 10.1186/s13068-021-01982-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes the iterative β-1,4-glycosylation of cellobiose using α-D-glucose 1-phosphate as the donor substrate. Cello-oligosaccharides (COS) with a degree of polymerization (DP) of up to 6 are soluble while those of larger DP self-assemble into solid cellulose material. The soluble COS have attracted considerable attention for their use as dietary fibers that offer a selective prebiotic function. An efficient synthesis of soluble COS requires good control over the DP of the products formed. A mathematical model of the iterative enzymatic glycosylation would be important to facilitate target-oriented process development. RESULTS A detailed time-course analysis of the formation of COS products from cellobiose (25 mM, 50 mM) and α-D-glucose 1-phosphate (10-100 mM) was performed using the CdP from Clostridium cellulosi. A mechanism-based, Michaelis-Menten type mathematical model was developed to describe the kinetics of the iterative enzymatic glycosylation of cellobiose. The mechanistic model was combined with an empirical description of the DP-dependent self-assembly of the COS into insoluble cellulose. The hybrid model thus obtained was used for kinetic parameter determination from time-course fits performed with constraints derived from initial rate data. The fitted hybrid model provided excellent description of the experimental dynamics of the COS in the DP range 3-6 and also accounted for the insoluble product formation. The hybrid model was suitable to disentangle the complex relationship between the process conditions used (i.e., substrate concentration, donor/acceptor ratio, reaction time) and the reaction output obtained (i.e., yield and composition of soluble COS). Model application to a window-of-operation analysis for the synthesis of soluble COS was demonstrated on the example of a COS mixture enriched in DP 4. CONCLUSIONS The hybrid model of CdP-catalyzed iterative glycosylation is an important engineering tool to study and optimize the biocatalytic synthesis of soluble COS. The kinetic modeling approach used here can be of a general interest to be applied to other iteratively catalyzed enzymatic reactions of synthetic importance.
Collapse
Affiliation(s)
- Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (Acib), Graz, Austria.
| |
Collapse
|
13
|
β-Glucan phosphorylases in carbohydrate synthesis. Appl Microbiol Biotechnol 2021; 105:4073-4087. [PMID: 33970317 PMCID: PMC8140972 DOI: 10.1007/s00253-021-11320-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Abstract β-Glucan phosphorylases are carbohydrate-active enzymes that catalyze the reversible degradation of β-linked glucose polymers, with outstanding potential for the biocatalytic bottom-up synthesis of β-glucans as major bioactive compounds. Their preference for sugar phosphates (rather than nucleotide sugars) as donor substrates further underlines their significance for the carbohydrate industry. Presently, they are classified in the glycoside hydrolase families 94, 149, and 161 (www.cazy.org). Since the discovery of β-1,3-oligoglucan phosphorylase in 1963, several other specificities have been reported that differ in linkage type and/or degree of polymerization. Here, we present an overview of the progress that has been made in our understanding of β-glucan and associated β-glucobiose phosphorylases, with a special focus on their application in the synthesis of carbohydrates and related molecules. Key points • Discovery, characteristics, and applications of β-glucan phosphorylases. • β-Glucan phosphorylases in the production of functional carbohydrates.
Collapse
|
14
|
Franceus J, Lormans J, Cools L, D’hooghe M, Desmet T. Evolution of Phosphorylases from N-Acetylglucosaminide Hydrolases in Family GH3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jolien Lormans
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Matthias D’hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
15
|
Sun S, You C. Disaccharide phosphorylases: Structure, catalytic mechanisms and directed evolution. Synth Syst Biotechnol 2021; 6:23-31. [PMID: 33665389 PMCID: PMC7896129 DOI: 10.1016/j.synbio.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Disaccharide phosphorylases (DSPs) are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They are modular enzymes that form active homo-oligomers. From a mechanistic as well as a structural point of view, they are similar to glycoside hydrolases or glycosyltransferases. As the majority of DSPs show strict stereo- and regiospecificities, these enzymes were used to synthesize specific disaccharides. Currently, protein engineering of DSPs is pursued in different laboratories to broaden the donor and acceptor substrate specificities or improve the industrial particularity of naturally existing enzymes, to eventually generate a toolbox of new catalysts for glycoside synthesis. Herein we review the characteristics and classifications of reported DSPs and the glycoside products that they have been used to synthesize.
Collapse
Affiliation(s)
- Shangshang Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People’s Republic of China
| |
Collapse
|
16
|
Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv 2020; 51:107633. [PMID: 32966861 DOI: 10.1016/j.biotechadv.2020.107633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Cellulose-based materials are produced industrially in countless varieties via top-down processing of natural lignocellulose substrates. By contrast, cellulosic materials are only rarely prepared via bottom up synthesis and oligomerization-induced self-assembly of cellulose chains. Building up a cellulose chain via precision polymerization is promising, however, for it offers tunability and control of the final chemical structure. Synthetic cellulose derivatives with programmable material properties might thus be obtained. Cellodextrin phosphorylase (CdP; EC 2.4.1.49) catalyzes iterative β-1,4-glycosylation from α-d-glucose 1-phosphate, with the ability to elongate a diversity of acceptor substrates, including cellobiose, d-glucose and a range of synthetic glycosides having non-sugar aglycons. Depending on the reaction conditions leading to different degrees of polymerization (DP), short-chain soluble cello-oligosaccharides (COS) or insoluble cellulosic materials are formed. Here, we review the characteristics of CdP as bio-catalyst for synthetic applications and show advances in the enzymatic production of COS and reducing end-modified, tailored cellulose materials. Recent studies reveal COS as interesting dietary fibers that could provide a selective prebiotic effect. The bottom-up synthesized celluloses involve chains of DP ≥ 9, as precipitated in solution, and they form ~5 nm thick sheet-like crystalline structures of cellulose allomorph II. Solvent conditions and aglycon structures can direct the cellulose chain self-assembly towards a range of material architectures, including hierarchically organized networks of nanoribbons, or nanorods as well as distorted nanosheets. Composite materials are also formed. The resulting materials can be useful as property-tunable hydrogels and feature site-specific introduction of functional and chemically reactive groups. Therefore, COS and cellulose obtained via bottom-up synthesis can expand cellulose applications towards product classes that are difficult to access via top-down processing of natural materials.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria; Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz 8010, Austria.
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
17
|
Franceus J, Desmet T. Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering. Int J Mol Sci 2020; 21:E2526. [PMID: 32260541 PMCID: PMC7178133 DOI: 10.3390/ijms21072526] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Sucrose phosphorylases are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They belong to the glycoside hydrolase family GH13, where they are found in subfamily 18. In bacteria, these enzymes catalyse the phosphorolysis of sucrose to yield α-glucose 1-phosphate and fructose. However, sucrose phosphorylases can also be applied as versatile transglucosylases for the synthesis of valuable glycosides and sugars because their broad promiscuity allows them to transfer the glucosyl group of sucrose to a diverse collection of compounds other than phosphate. Numerous process and enzyme engineering studies have expanded the range of possible applications of sucrose phosphorylases ever further. Moreover, it has recently been discovered that family GH13 also contains a few novel phosphorylases that are specialised in the phosphorolysis of sucrose 6F-phosphate, glucosylglycerol or glucosylglycerate. In this review, we provide an overview of the progress that has been made in our understanding and exploitation of sucrose phosphorylases and related enzymes over the past ten years.
Collapse
Affiliation(s)
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| |
Collapse
|
18
|
Taguchi Y, Saburi W, Imai R, Mori H. Efficient one-pot enzymatic synthesis of trehalose 6-phosphate using GH65 α-glucoside phosphorylases. Carbohydr Res 2020; 488:107902. [PMID: 31911362 DOI: 10.1016/j.carres.2019.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
Trehalose 6-phosphate (Tre6P) is an important intermediate for trehalose biosynthesis. Recent researches have revealed that Tre6P is an endogenous signaling molecule that regulates plant development and stress responses. The necessity of Tre6P in physiological studies is expected to be increasing. To achieve the cost-effective production of Tre6P, a novel approach is required. In this study, we utilized trehalose 6-phosphate phosphorylase (TrePP) from Lactococcus lactis to produce Tre6P. In the reverse phosphorolysis by the TrePP, 91.9 mM Tre6P was produced from 100 mM β-glucose 1-phosphate (β-Glc1P) and 100 mM glucose 6-phosphate (Glc6P). The one-pot reaction of TrePP and maltose phosphorylase (MP) enabled production of 65 mM Tre6P from 100 mM maltose, 100 mM Glc6P, and 20 mM inorganic phosphate. Addition of β-phosphoglucomutase to this reaction produced Glc6P from β-Glc1P and thus reduced requirement of Glc6P as a starting material. Within the range of 20-469 mM inorganic phosphate tested, the 54 mM concentration yielded the highest amount of Tre6P (33 mM). Addition of yeast increased the yield because of its glucose consumption. Finally, from 100 mmol maltose and 60 mmol inorganic phosphate, we successfully achieved production of 37.5 mmol Tre6P in a one-pot reaction (100 mL), and 9.4 g Tre6P dipotassium salt was obtained.
Collapse
Affiliation(s)
- Yodai Taguchi
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Ryozo Imai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
19
|
Teze D, Coines J, Raich L, Kalichuk V, Solleux C, Tellier C, André-Miral C, Svensson B, Rovira C. A Single Point Mutation Converts GH84 O-GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical Evidence. J Am Chem Soc 2020; 142:2120-2124. [DOI: 10.1021/jacs.9b09655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 224, DK-2800 Kongens Lyngby, Denmark
- UFIP, CNRS, Université de Nantes, 44300 Nantes, France
| | - Joan Coines
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Lluís Raich
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | | | | | | | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 224, DK-2800 Kongens Lyngby, Denmark
| | - Carme Rovira
- Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Liu N, Fosses A, Kampik C, Parsiegla G, Denis Y, Vita N, Fierobe HP, Perret S. In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:208. [PMID: 31497068 PMCID: PMC6720390 DOI: 10.1186/s13068-019-1549-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/24/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND In anaerobic cellulolytic micro-organisms, cellulolysis results in the action of several cellulases gathered in extracellular multi-enzyme complexes called cellulosomes. Their action releases cellobiose and longer cellodextrins which are imported and further degraded in the cytosol to fuel the cells. In Ruminiclostridium cellulolyticum, an anaerobic and cellulolytic mesophilic bacteria, three cellodextrin phosphorylases named CdpA, CdpB, and CdpC, were identified in addition to the cellobiose phosphorylase (CbpA) previously characterized. The present study aimed at characterizing them, exploring their implication during growth on cellulose to better understand the life-style of cellulolytic bacteria on such substrate. RESULTS The three cellodextrin phosphorylases from R. cellulolyticum displayed marked different enzymatic characteristics. They are specific for cellodextrins of different lengths and present different k cat values. CdpC is the most active enzyme before CdpA, and CdpB is weakly active. Modeling studies revealed that a mutation of a conserved histidine residue in the phosphate ion-binding pocket in CdpB and CdpC might explain their activity-level differences. The genes encoding these enzymes are scattered over the chromosome of R. cellulolyticum and only the expression of the gene encoding the cellobiose phosphorylase and the gene cdpA is induced during cellulose growth. Characterization of four independent mutants constructed in R. cellulolyticum for each of the cellobiose and cellodextrin phosphorylases encoding genes indicated that only the cellobiose phosphorylase is essential for growth on cellulose. CONCLUSIONS Unexpectedly, the cellobiose phosphorylase but not the cellodextrin phosphorylases is essential for the growth of the model bacterium on cellulose. This suggests that the bacterium adopts a "short" dextrin strategy to grow on cellulose, even though the use of long cellodextrins might be more energy-saving. Our results suggest marked differences in the cellulose catabolism developed among cellulolytic bacteria, which is a result that might impact the design of future engineered strains for biomass-to-biofuel conversion.
Collapse
Affiliation(s)
- Nian Liu
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Aurélie Fosses
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Clara Kampik
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | - Yann Denis
- Aix-Marseille Univ, CNRS, Plateforme Transcriptome, Marseille, France
| | - Nicolas Vita
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Henri-Pierre Fierobe
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Stéphanie Perret
- Aix-Marseille Univ, CNRS, LCB UMR 7283, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
21
|
A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host Microbe 2019; 26:385-399.e9. [DOI: 10.1016/j.chom.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
|
22
|
Structural Comparison of a Promiscuous and a Highly Specific Sucrose 6 F-Phosphate Phosphorylase. Int J Mol Sci 2019; 20:ijms20163906. [PMID: 31405215 PMCID: PMC6720575 DOI: 10.3390/ijms20163906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
In family GH13 of the carbohydrate-active enzyme database, subfamily 18 contains glycoside phosphorylases that act on α-sugars and glucosides. Because their phosphorolysis reactions are effectively reversible, these enzymes are of interest for the biocatalytic synthesis of various glycosidic compounds. Sucrose 6F-phosphate phosphorylases (SPPs) constitute one of the known substrate specificities. Here, we report the characterization of an SPP from Ilumatobacter coccineus with a far stricter specificity than the previously described promiscuous SPP from Thermoanaerobacterium thermosaccharolyticum. Crystal structures of both SPPs were determined to provide insight into their similarities and differences. The residues responsible for binding the fructose 6-phosphate group in subsite +1 were found to differ considerably between the two enzymes. Furthermore, several variants that introduce a higher degree of substrate promiscuity in the strict SPP from I. coccineus were designed. These results contribute to an expanded structural knowledge of enzymes in subfamily GH13_18 and facilitate their rational engineering.
Collapse
|
23
|
Li J, Sun J, Dong X, Geng X, Qiu G. Transcriptomic analysis of gills provides insights into the molecular basis of molting in Chinese mitten crab ( Eriocheir sinensis). PeerJ 2019; 7:e7182. [PMID: 31293829 PMCID: PMC6601604 DOI: 10.7717/peerj.7182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/23/2019] [Indexed: 01/31/2023] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) is an economically important freshwater aquaculture species and is a model species for research on the mechanism of molting. This study aimed to identify important candidate genes associated with the molting process and to determine the role of gills in the regulation of molting with the help of transcriptomic analysis. The transcriptomes of crabs at different molting stages—postmolt (PoM), intermolt (InM), premolt (PrM) and ecdysis (E)—were de novo assembled to generate 246,232 unigenes with a mean length of 851 bp. A total of 86,634 unigenes (35.18% of the total unigenes) were annotated against reference databases. Significantly upregulated genes were identified in postmolt compared to intermolt (1,475), intermolt compared to premolt (65), premolt compared to ecdysis (1,352), and ecdysis compared to postmolt (153), and the corresponding numbers of downregulated genes were 1,276, 32, 1,573 and 171, respectively. Chitin synthase, endochitinase, chitinase A, chitinase 3, chitinase 6 and chitin deacetylase 1 were upregulated during the postmolt and ecdysis stages, while phosphoglucomutase 3 (PGM3), glucosamine 6-phosphate deaminase (GNPDA) and glucosamine glycoside hydrolase (nagZ) were upregulated during the intermolt and premolt stages compared to the other stages. The upregulated genes were enriched in several lipid-related metabolic pathways, such as “fatty acid elongation”, “glycerophospholipid metabolism” and “sulfur metabolism”. Meanwhile, three signaling pathways, including the “phosphatidylinositol signaling system”, the “calcium signaling pathway” and the “GnRH signaling pathway” were also enriched. Tetraspanin-18, an important effector gene in the lysosomal pathway involved in cell apoptosis, up-regulate with the beginning of molting (in premolt stage) and reach the top in the ecdysis stage, and barely expressed in the intermolt stage. The expression variations in the tetraspanin-18 gene indicated that it may play an important role in the beginning of molting cycle, which might be regulated by the stress of salinity. This study revealed that the gills could participate in chitin degradation, in reestablishment of the exoskeleton and the signaling process. Based on transcriptomic analysis of the gills, we not only explored novel molecular mechanisms of molting in E. sinensis but also acquired foundational genetic data for E. sinensis.
Collapse
Affiliation(s)
- Jingjing Li
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Tianjin Diseases Prevention and Control Center of Aquatic Animals, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory for Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xuewang Dong
- Tianjin Diseases Prevention and Control Center of Aquatic Animals, Tianjin, China
| | - Xuyun Geng
- Tianjin Diseases Prevention and Control Center of Aquatic Animals, Tianjin, China
| | - Gaofeng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
24
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
25
|
Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA. Identification of Euglena gracilis β-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem 2018; 293:2865-2876. [PMID: 29317507 PMCID: PMC5827456 DOI: 10.1074/jbc.ra117.000936] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Glycoside phosphorylases (EC 2.4.x.x) carry out the reversible phosphorolysis of glucan polymers, producing the corresponding sugar 1-phosphate and a shortened glycan chain. β-1,3-Glucan phosphorylase activities have been reported in the photosynthetic euglenozoan Euglena gracilis, but the cognate protein sequences have not been identified to date. Continuing our efforts to understand the glycobiology of E. gracilis, we identified a candidate phosphorylase sequence, designated EgP1, by proteomic analysis of an enriched cellular protein lysate. We expressed recombinant EgP1 in Escherichia coli and characterized it in vitro as a β-1,3-glucan phosphorylase. BLASTP identified several hundred EgP1 orthologs, most of which were from Gram-negative bacteria and had 37-91% sequence identity to EgP1. We heterologously expressed a bacterial metagenomic sequence, Pro_7066 in E. coli and confirmed it as a β-1,3-glucan phosphorylase, albeit with kinetics parameters distinct from those of EgP1. EgP1, Pro_7066, and their orthologs are classified as a new glycoside hydrolase (GH) family, designated GH149. Comparisons between GH94, EgP1, and Pro_7066 sequences revealed conservation of key amino acids required for the phosphorylase activity, suggesting a phosphorylase mechanism that is conserved between GH94 and GH149. We found bacterial GH149 genes in gene clusters containing sugar transporter and several other GH family genes, suggesting that bacterial GH149 proteins have roles in the degradation of complex carbohydrates. The Bacteroidetes GH149 genes located to previously identified polysaccharide utilization loci, implicated in the degradation of complex carbohydrates. In summary, we have identified a eukaryotic and a bacterial β-1,3-glucan phosphorylase and uncovered a new family of phosphorylases that we name GH149.
Collapse
Affiliation(s)
- Sakonwan Kuhaudomlarp
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Nicola J Patron
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University, 163 Avenue de Luminy, 13288 Marseille, France; CNRS, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France; Department of Biological Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Gerhard Saalbach
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
26
|
Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase. Appl Microbiol Biotechnol 2018; 102:3183-3191. [DOI: 10.1007/s00253-018-8856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/29/2022]
|
27
|
Macdonald SS, Patel A, Larmour VLC, Morgan-Lang C, Hallam SJ, Mark BL, Withers SG. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library. J Biol Chem 2018; 293:3451-3467. [PMID: 29317495 DOI: 10.1074/jbc.ra117.000948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N-acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications.
Collapse
Affiliation(s)
- Spencer S Macdonald
- From the Departments of Chemistry and Biochemistry and.,the Genome Science and Technology Program.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, and
| | - Ankoor Patel
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Veronica L C Larmour
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | | | - Steven J Hallam
- the Genome Science and Technology Program.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, and.,Graduate Program in Bioinformatics, and.,the Department of Microbiology and Immunology and.,Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia V6T 1Z1
| | - Brian L Mark
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Stephen G Withers
- From the Departments of Chemistry and Biochemistry and .,the Genome Science and Technology Program.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, and.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
28
|
Discovery and biochemical characterization of a mannose phosphorylase catalyzing the synthesis of novel β-1,3-mannosides. Biochim Biophys Acta Gen Subj 2017; 1861:3231-3237. [DOI: 10.1016/j.bbagen.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/27/2017] [Accepted: 09/18/2017] [Indexed: 11/19/2022]
|
29
|
Kajiki T, Yoshinaga K, Komba S, Kitaoka M. Enzymatic Synthesis of 1,5-Anhydro-4- O-β-D-glucopyranosyl-D-fructose Using Cellobiose Phosphorylase and Its Spontaneous Decomposition via β-Elimination. J Appl Glycosci (1999) 2017; 64:91-97. [PMID: 34354501 PMCID: PMC8056936 DOI: 10.5458/jag.jag.jag-2017_010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 11/05/2022] Open
Abstract
Cellobiose phosphorylase from Cellvibrio gilvus was used to prepare 1,5-anhydro-4-O-β-D-glucopyranosyl-D-fructose [βGlc(1→4)AF] from 1,5-anhydro-D-fructose and α-D-glucose 1-phosphate. βGlc(1→4)AF decomposed into D-glucose and ascopyrone T via β-elimination. Higher pH and temperature caused faster decomposition. However, decomposition proceeded significantly even under mild conditions. For instance, the half-life of βGlc(1→4)AF was 17 h at 30 °C and pH 7.0. Because βGlc(1→4)AF is a mimic of cellulose, in which the C2 hydroxyl group is oxidized, such decomposition may occur in oxidized cellulose in nature. Here we propose a possible oxidizing pathway by which this occurs.
Collapse
Affiliation(s)
- Takahito Kajiki
- 1 Food Research Institute, National Agriculture and Food Research Organization.,2 Sunus Co., Ltd
| | | | - Shiro Komba
- 1 Food Research Institute, National Agriculture and Food Research Organization
| | - Motomitsu Kitaoka
- 1 Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
30
|
Nakajima M, Tanaka N, Furukawa N, Nihira T, Kodutsumi Y, Takahashi Y, Sugimoto N, Miyanaga A, Fushinobu S, Taguchi H, Nakai H. Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans. Sci Rep 2017; 7:42671. [PMID: 28198470 PMCID: PMC5309861 DOI: 10.1038/srep42671] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Glycoside phosphorylases catalyze the phosphorolysis of oligosaccharides into sugar phosphates. Recently, we found a novel phosphorylase acting on β-1,2-glucooligosaccharides with degrees of polymerization of 3 or more (1,2-β-oligoglucan phosphorylase, SOGP) in glycoside hydrolase family (GH) 94. Here, we characterized SOGP from Lachnoclostridium phytofermentans (LpSOGP) and determined its crystal structure. LpSOGP is a monomeric enzyme that contains a unique β-sandwich domain (Ndom1) at its N-terminus. Unlike the dimeric GH94 enzymes possessing catalytic pockets at their dimer interface, LpSOGP has a catalytic pocket between Ndom1 and the catalytic domain. In the complex structure of LpSOGP with sophorose, sophorose binds at subsites +1 to +2. Notably, the Glc moiety at subsite +1 is flipped compared with the corresponding ligands in other GH94 enzymes. This inversion suggests the great distortion of the glycosidic bond between subsites −1 and +1, which is likely unfavorable for substrate binding. Compensation for this disadvantage at subsite +2 can be accounted for by the small distortion of the glycosidic bond in the sophorose molecule. Therefore, the binding mode at subsites +1 and +2 defines the substrate specificity of LpSOGP, which provides mechanistic insights into the substrate specificity of a phosphorylase acting on β-1,2-glucooligosaccharides.
Collapse
Affiliation(s)
- Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Nayuta Furukawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan.,Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takanori Nihira
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Yuki Kodutsumi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yuta Takahashi
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Naohisa Sugimoto
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hiroyuki Nakai
- Graduate School of Science &Technology, Niigata University, Niigata, Japan
| |
Collapse
|
31
|
Bolivar JM, Luley-Goedl C, Leitner E, Sawangwan T, Nidetzky B. Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. J Biotechnol 2017; 257:131-138. [PMID: 28161416 DOI: 10.1016/j.jbiotec.2017.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
2-O-(α-d-Glucopyranosyl)-sn-glycerol (αGG) is a natural osmolyte. αGG is produced industrially for application as an active cosmetic ingredient. The biocatalytic process involves a selective transglucosylation from sucrose to glycerol catalyzed by sucrose phosphorylase (SPase). Here we examined immobilization of SPase (from Leuconostoc mesenteroides) on solid support with the aim of enabling continuous production of αGG. By fusing SPase to the polycationic binding module Zbasic2 we demonstrated single-step noncovalent immobilization of the enzyme chimera to different porous supports offering an anionic surface. We showed that immobilization facilitated by Zbasic2 was similarly efficient as immobilization by multipoint covalent attachment on epoxy-activated supports in terms of production of αGG. Enzyme loadings of up to 90mg enzyme g-1 support were obtained and the immobilized SPase was about half as effective as the enzyme in solution. The high regio- and chemo-selectivity of soluble SPase in αGG synthesis was retained in the immobilized enzyme and product yields of >85% were obtained at titers of ∼800mM. The Zbasic2-SPase immobilizates were fully recyclable: besides reuse of the enzyme activity, easy recovery of the solid support for fresh immobilizations was facilitated by the reversible nature of the enzyme attachment. Application of immobilized Zbasic2-SPase for continuous production of αGG in a microstructured flow reactor was demonstrated. Space-time yields of 500mmol αGG L-1h-1 were obtained at product titers of ∼200mM. The continuous microreactor was operated for 16days and an operational half-life of about 10days was determined.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | | | - Ernestine Leitner
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Thornthan Sawangwan
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria; Austrian Center of Industrial Biotechnology (acib), Petersgasse 14, 8010 Graz, Austria.
| |
Collapse
|
32
|
Tsuda T, Nihira T, Chiku K, Suzuki E, Arakawa T, Nishimoto M, Kitaoka M, Nakai H, Fushinobu S. Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. FEBS Lett 2015; 589:3816-21. [PMID: 26632508 DOI: 10.1016/j.febslet.2015.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023]
Abstract
Glycoside hydrolase family 130 consists of phosphorylases and hydrolases for β-mannosides. Here, we characterized β-1,2-mannobiose phosphorylase from Listeria innocua (Lin0857) and determined its crystal structures complexed with β-1,2-linked mannooligosaccharides. β-1,2-Mannotriose was bound in a U-shape, interacting with a phosphate analog at both ends. Lin0857 has a unique dimer structure connected by a loop, and a significant open-close loop displacement was observed for substrate entry. A long loop, which is exclusively present in Lin0857, covers the active site to limit the pocket size. A structural basis for substrate recognition and phosphorolysis was provided.
Collapse
Affiliation(s)
- Tomohiro Tsuda
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takanori Nihira
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Kazuhiro Chiku
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Erika Suzuki
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mamoru Nishimoto
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
33
|
An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans. FEBS Lett 2015; 589:3604-10. [PMID: 26476324 DOI: 10.1016/j.febslet.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022]
Abstract
The glycoside hydrolase family (GH) 130 is composed of inverting phosphorylases that catalyze reversible phosphorolysis of β-D-mannosides. Here we report a glycoside hydrolase as a new member of GH130. Dfer_3176 from Dyadobacter fermentans showed no synthetic activity using α-D-mannose 1-phosphate but it released α-D-mannose from β-1,2-mannooligosaccharides with an inversion of the anomeric configuration, indicating that Dfer_3176 is a β-1,2-mannosidase. Mutational analysis indicated that two glutamic acid residues are critical for the hydrolysis of β-1,2-mannotriose. The two residues are not conserved among GH130 phosphorylases and are predicted to assist the nucleophilic attack of a water molecule in the hydrolysis of the β-D-mannosidic bond.
Collapse
|