1
|
Staar M, Ahlborn L, Estévez-Gay M, Pallasch K, Osuna S, Schallmey A. A Dynamic Loop in Halohydrin Dehalogenase HheG Regulates Activity and Enantioselectivity in Epoxide Ring Opening. ACS Catal 2024; 14:15976-15987. [PMID: 39507489 PMCID: PMC11536340 DOI: 10.1021/acscatal.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Halohydrin dehalogenase HheG and its homologues are remarkable enzymes for the efficient ring opening of sterically demanding internal epoxides using a variety of nucleophiles. The enantioselectivity of the respective wild-type enzymes, however, is usually insufficient for application and frequently requires improvement by protein engineering. We herein demonstrate that the highly flexible N-terminal loop of HheG, comprising residues 39 to 47, has a tremendous impact on the activity as well as enantioselectivity of this enzyme in the ring opening of structurally diverse epoxide substrates. Thus, highly active and enantioselective HheG variants could be accessed through targeted engineering of this loop. In this regard, variant M45F displayed almost 10-fold higher specific activity than wild type in the azidolysis of cyclohexene oxide, yielding the corresponding product (1S,2S)-2-azidocyclohexan-1-ol in 96%eeP (in comparison to 49%eeP for HheG wild type). Moreover, this variant was also improved regarding activity and enantioselectivity in the ring opening of cyclohexene oxide with other nucleophiles, demonstrating even inverted enantioselectivity with cyanide and cyanate. In contrast, a complete loop deletion yielded an inactive enzyme. Concomitant computational analyses of HheG M45F in comparison to wild type enzyme revealed that mutation M45F promotes the productive binding of cyclohexene oxide and azide in the active site by establishing noncovalent C-H ··π interactions between epoxide and F45. These interactions further position one of the two carbon atoms of the epoxide ring closer to the azide, resulting in higher enantioselectivity. Additionally, stable and enantioselective cross-linked enzyme crystals of HheG M45F were successfully generated after combination with mutation D114C. Overall, our study highlights that a highly flexible loop in HheG governs the enzyme's activity and selectivity in epoxide ring opening and should thus be considered in future protein engineering campaigns of HheG.
Collapse
Affiliation(s)
- Marcel Staar
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Lina Ahlborn
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Miquel Estévez-Gay
- CompBioLab
Group, Institut de Química Computacional i Catàlisi
(IQCC), Departament de Química, Universitat
de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Katharina Pallasch
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Sílvia Osuna
- CompBioLab
Group, Institut de Química Computacional i Catàlisi
(IQCC), Departament de Química, Universitat
de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Anett Schallmey
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
- Zentrum
für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Braunschweig
Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Staar M, Schallmey A. Performance of cross-linked enzyme crystals of engineered halohydrin dehalogenase HheG in different chemical reactor systems. Biotechnol Bioeng 2023; 120:3210-3223. [PMID: 37593803 DOI: 10.1002/bit.28528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Halohydrin dehalogenase HheG is an industrially interesting biocatalyst for the preparation of different β-substituted alcohols starting from bulky internal epoxides. We previously demonstrated that the immobilization of different HheG variants in the form of cross-linked enzyme crystals (CLECs) yielded stable and reusable enzyme immobilizes with increased resistance regarding temperature, pH, and the presence of organic solvents. Now, to further establish their preparative applicability, HheG D114C CLECs cross-linked with bis-maleimidoethane have been successfully produced on a larger scale using a stirred crystallization approach, and their application in different chemical reactor types (stirred tank reactor, fluidized bed reactor, and packed bed reactor) was systematically studied and compared for the ring opening of cyclohexene oxide with azide. This revealed the highest obtained space-time yield of 23.9 kgproduct gCLEC -1 h-1 Lreactor volume -1 along with the highest achieved product enantiomeric excess [64%] for application in a packed-bed reactor. Additionally, lyophilization of those CLECs yielded a storage-stable HheG preparation that still retained 67% of initial activity (after lyophilization) after 6 months of storage at room temperature.
Collapse
Affiliation(s)
- Marcel Staar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Solarczek J, Kaspar F, Bauer P, Schallmey A. G-type Halohydrin Dehalogenases Catalyze Ring Opening Reactions of Cyclic Epoxides with Diverse Anionic Nucleophiles. Chemistry 2022; 28:e202202343. [PMID: 36214160 PMCID: PMC10099379 DOI: 10.1002/chem.202202343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/07/2022]
Abstract
Halohydrin dehalogenases are promiscuous biocatalysts, which enable asymmetric ring opening reactions of epoxides with various anionic nucleophiles. However, despite the increasing interest in such asymmetric transformations, the substrate scope of G-type halohydrin dehalogenases toward cyclic epoxides has remained largely unexplored, even though this subfamily is the only one known to display activity with these sterically demanding substrates. Herein, we report on the exploration of the substrate scope of the two G-type halohydrin dehalogenases HheG and HheG2 and a newly identified, more thermostable member of the family, HheG3, with a variety of sterically demanding cyclic epoxides and anionic nucleophiles. This work shows that, in addition to azide and cyanide, these enzymes facilitate ring-opening reactions with cyanate, thiocyanate, formate, and nitrite, significantly expanding the known repertoire of accessible transformations.
Collapse
Affiliation(s)
- Jennifer Solarczek
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Felix Kaspar
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Pia Bauer
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Amedes Genetics, MVZ for Laboratory Medicine, Georgstraße 50, 30159, Hannover, Germany
| | - Anett Schallmey
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Milčić N, Stepanić V, Crnolatac I, Findrik Blažević Z, Brkljača Z, Majerić Elenkov M. Inhibitory Effect of DMSO on Halohydrin Dehalogenase: Experimental and Computational Insights into the Influence of an Organic Co‐solvent on the Structural and Catalytic Properties of a Biocatalyst. Chemistry 2022; 28:e202201923. [DOI: 10.1002/chem.202201923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Nevena Milčić
- Faculty of Chemical Engineering and Technology University of Zagreb Savska c. 16 10000 Zagreb Croatia
| | - Višnja Stepanić
- Laboratory for Machine Learning and Knowledge Representation Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | | | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Maja Majerić Elenkov
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| |
Collapse
|
5
|
Mehić E, Hok L, Wang Q, Dokli I, Svetec Miklenić M, Findrik Blažević Z, Tang L, Vianello R, Majerić Elenkov M. Expanding the Scope of Enantioselective Halohydrin Dehalogenases – Group B. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Qian Wang
- University of Electronic Science and Technology of China CHINA
| | | | | | | | - Lixia Tang
- University of Electronic Science and Technology of China CHINA
| | | | | |
Collapse
|
6
|
Staar M, Henke S, Blankenfeldt W, Schallmey A. Biocatalytically active and stable cross‐linked enzyme crystals of halohydrin dehalogenase HheG by protein engineering. ChemCatChem 2022. [DOI: 10.1002/cctc.202200145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel Staar
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institute for Biochemistry, Biotechnology and Bioinformatics GERMANY
| | - Steffi Henke
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH Structure and Function of Proteins GERMANY
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH Structure and Function of Proteins GERMANY
| | - Anett Schallmey
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institute for Biochemistry, Biotechnology and Bioinformatics Spielmannstr. 7 38106 Braunschweig GERMANY
| |
Collapse
|
7
|
Martínez-Montero L, Tischler D, Süss P, Schallmey A, Franssen MCR, Hollmann F, Paul CE. Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade. Catal Sci Technol 2021; 11:5077-5085. [PMID: 34381590 PMCID: PMC8328376 DOI: 10.1039/d1cy00855b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022]
Abstract
Enantioenriched azido alcohols are precursors for valuable chiral aziridines and 1,2-amino alcohols, however their chiral substituted analogues are difficult to access. We established a cascade for the asymmetric azidohydroxylation of styrene derivatives leading to chiral substituted 1,2-azido alcohols via enzymatic asymmetric epoxidation, followed by regioselective azidolysis, affording the azido alcohols with up to two contiguous stereogenic centers. A newly isolated two-component flavoprotein styrene monooxygenase StyA proved to be highly selective for epoxidation with a nicotinamide coenzyme biomimetic as a practical reductant. Coupled with azide as a nucleophile for regioselective ring opening, this chemo-enzymatic cascade produced highly enantioenriched aromatic α-azido alcohols with up to >99% conversion. A bi-enzymatic counterpart with halohydrin dehalogenase-catalyzed azidolysis afforded the alternative β-azido alcohol isomers with up to 94% diastereomeric excess. We anticipate our biocatalytic cascade to be a starting point for more practical production of these chiral compounds with two-component flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Lía Martínez-Montero
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49a 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
8
|
Zhou X, Wan N, Li Y, Ma R, Cui B, Han W, Chen Y. Stereoselective Synthesis of Enantiopure Oxazolidinones via Biocatalytic Asymmetric Aminohydroxylation of Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Ying Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ying‐Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Bao‐Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| |
Collapse
|
9
|
Dokli I, Milčić N, Marin P, Miklenić MS, Sudar M, Tang L, Blažević ZF, Elenkov MM. Halohydrin dehalogenase-catalysed synthesis of fluorinated aromatic chiral building blocks. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Wessel J, Petrillo G, Estevez-Gay M, Bosch S, Seeger M, Dijkman WP, Iglesias-Fernández J, Hidalgo A, Uson I, Osuna S, Schallmey A. Insights into the molecular determinants of thermal stability in halohydrin dehalogenase HheD2. FEBS J 2021; 288:4683-4701. [PMID: 33605544 DOI: 10.1111/febs.15777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
Halohydrin dehalogenases (HHDHs) are promising enzymes for application in biocatalysis due to their promiscuous epoxide ring-opening activity with various anionic nucleophiles. So far, seven different HHDH subtypes A to G have been reported with subtype D containing the by far largest number of enzymes. Moreover, several characterized members of subtype D have been reported to display outstanding characteristics such as high catalytic activity, broad substrate spectra or remarkable thermal stability. Yet, no structure of a D-type HHDH has been reported to date that could be used to investigate and understand those features on a molecular level. We therefore solved the crystal structure of HheD2 from gamma proteobacterium HTCC2207 at 1.6 Å resolution and used it as a starting point for targeted mutagenesis in combination with molecular dynamics (MD) simulation, in order to study the low thermal stability of HheD2 in comparison with other members of subtype D. This revealed a hydrogen bond between conserved residues Q160 and D198 to be connected with a high catalytic activity of this enzyme. Moreover, a flexible surface region containing two α-helices was identified to impact thermal stability of HheD2. Exchange of this surface region by residues of HheD3 yielded a variant with 10 °C higher melting temperature and reaction temperature optimum. Overall, our results provide important insights into the structure-function relationship of HheD2 and presumably for other D-type HHDHs. DATABASES: Structural data are available in PDB database under the accession number 7B73.
Collapse
Affiliation(s)
- Julia Wessel
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Giovanna Petrillo
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Spain
| | - Miquel Estevez-Gay
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain
| | - Sandra Bosch
- Centro de Biología Molecular 'Severo Ochoa', UAM-CSIC, Madrid, Spain
| | - Margarita Seeger
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Willem P Dijkman
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Javier Iglesias-Fernández
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain
| | - Aurelio Hidalgo
- Centro de Biología Molecular 'Severo Ochoa', UAM-CSIC, Madrid, Spain
| | - Isabel Uson
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain.,ICREA, Barcelona, Spain
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| |
Collapse
|
11
|
Improving the enantioselectivity of halohydrin dehalogenase for the synthesis of (R)-benzyl glycidyl ether via biocatalytic azidolysis. Int J Biol Macromol 2020; 170:123-128. [PMID: 33352156 DOI: 10.1016/j.ijbiomac.2020.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022]
Abstract
Halohydrin dehalogenases (HHDHs) are valuable biocatalysts for the synthesis of enantiopure benzyl glycidyl ether (BGE) and its derivatives, which are important synthetic intermediates for anti-cancer and anti-obesity drugs. However, all the reported HHDHs exhibit low enantioselectivity. In this study, we screened site-saturation mutagenesis libraries of AbHHDH at positions R89, A136, V137, P178, N179, F180, I181, Y186 and F187 for mutants with enhanced enantioselectivity toward BGE. The four improved variant R89V, R89Y, R89K and V137I were identified, and the double mutant R89Y/V137I showed 2.9-fold higher enantioselectivity than the wild type. The regions of HHDH containing the identified mutations were analyzed by homology modeling to explain the changes of enantioselectivity. Kinetic resolution of 20 to 100 mM BGE using whole cells of Escherichia coli expressing the mutant R89Y/V137I resulted in (R)-BGE yields of 42 to 32.5%, with ee >99%. This study improves our understanding of the enantioselectivity of HHDHs and contributes improved biocatalysts for the kinetic resolution of BGE.
Collapse
|
12
|
Findrik Blažević Z, Milčić N, Sudar M, Majerić Elenkov M. Halohydrin Dehalogenases and Their Potential in Industrial Application – A Viewpoint of Enzyme Reaction Engineering. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | | |
Collapse
|
13
|
Tang XL, Ye GY, Wan XY, Li HW, Zheng RC, Zheng YG. Rational design of halohydrin dehalogenase for efficient chiral epichlorohydrin production with high activity and enantioselectivity in aqueous-organic two-phase system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Heterologous overexpression of a novel halohydrin dehalogenase from Pseudomonas pohangensis and modification of its enantioselectivity by semi-rational protein engineering. Int J Biol Macromol 2020; 146:80-88. [DOI: 10.1016/j.ijbiomac.2019.12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/06/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023]
|
15
|
Xue F, Zhang LH, Xu Q. Significant improvement of the enantioselectivity of a halohydrin dehalogenase for asymmetric epoxide ring opening reactions by protein engineering. Appl Microbiol Biotechnol 2020; 104:2067-2077. [DOI: 10.1007/s00253-020-10356-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/15/2019] [Accepted: 01/05/2020] [Indexed: 02/03/2023]
|
16
|
Bollinger A, Thies S, Katzke N, Jaeger K. The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microb Biotechnol 2020; 13:19-31. [PMID: 29943398 PMCID: PMC6922532 DOI: 10.1111/1751-7915.13288] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/20/2023] Open
Abstract
Marine habitats represent a prolific source for molecules of biotechnological interest. In particular, marine bacteria have attracted attention and were successfully exploited for industrial applications. Recently, a group of Pseudomonas species isolated from extreme habitats or living in association with algae or sponges were clustered in the newly established Pseudomonas pertucinogena lineage. Remarkably for the predominantly terrestrial genus Pseudomonas, more than half (9) of currently 16 species within this lineage were isolated from marine or saline habitats. Unlike other Pseudomonas species, they seem to have in common a highly specialized metabolism. Furthermore, the marine members apparently possess the capacity to produce biomolecules of biotechnological interest (e.g. dehalogenases, polyester hydrolases, transaminases). Here, we summarize the knowledge regarding the enzymatic endowment of the marine Pseudomonas pertucinogena bacteria and report on a genomic analysis focusing on the presence of genes encoding esterases, dehalogenases, transaminases and secondary metabolites including carbon storage compounds.
Collapse
Affiliation(s)
- Alexander Bollinger
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Stephan Thies
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Nadine Katzke
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHD‐52425JülichGermany
| |
Collapse
|
17
|
Wang X, Xie Z, Yan J, He X, Liu W, Sun Y. Enhancement of the thermostability of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by constructing a combinatorial smart library. Int J Biol Macromol 2019; 130:19-23. [DOI: 10.1016/j.ijbiomac.2019.02.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 11/17/2022]
|
18
|
Solarczek J, Klünemann T, Brandt F, Schrepfer P, Wolter M, Jacob CR, Blankenfeldt W, Schallmey A. Position 123 of halohydrin dehalogenase HheG plays an important role in stability, activity, and enantioselectivity. Sci Rep 2019; 9:5106. [PMID: 30911023 PMCID: PMC6434027 DOI: 10.1038/s41598-019-41498-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
HheG from Ilumatobacter coccineus is a halohydrin dehalogenase with synthetically useful activity in the ring opening of cyclic epoxides with various small anionic nucleophiles. This enzyme provides access to chiral β-substituted alcohols that serve as building blocks in the pharmaceutical industry. Wild-type HheG suffers from low thermostability, which poses a significant drawback for potential applications. In an attempt to thermostabilize HheG by protein engineering, several single mutants at position 123 were identified which displayed up to 14 °C increased apparent melting temperatures and up to three-fold higher activity. Aromatic amino acids at position 123 resulted even in a slightly higher enantioselectivity. Crystal structures of variants T123W and T123G revealed a flexible loop opposite to amino acid 123. In variant T123G, this loop adopted two different positions resulting in an open or partially closed active site. Classical molecular dynamics simulations confirmed a high mobility of this loop. Moreover, in variant T123G this loop adopted a position much closer to residue 123 resulting in denser packing and increased buried surface area. Our results indicate an important role for position 123 in HheG and give first structural and mechanistic insight into the thermostabilizing effect of mutations T123W and T123G.
Collapse
Affiliation(s)
- Jennifer Solarczek
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Braunschweig, Germany
| | - Patrick Schrepfer
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
19
|
Calderini E, Wessel J, Süss P, Schrepfer P, Wardenga R, Schallmey A. Selective Ring‐Opening of Di‐Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019. [DOI: 10.1002/cctc.201900103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elia Calderini
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Julia Wessel
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49A 17489 Greifswald Germany
| | - Patrick Schrepfer
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| | - Rainer Wardenga
- Enzymicals AG Walther-Rathenau-Straße 49A 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Germany
| |
Collapse
|
20
|
Xue F, Ya X, Xiu Y, Tong Q, Wang Y, Zhu X, Huang H. Exploring the Biocatalytic Scope of a Novel Enantioselective Halohydrin Dehalogenase from an Alphaproteobacterium. Catal Letters 2019. [DOI: 10.1007/s10562-019-02659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
An M, Liu W, Zhou X, Ma R, Wang H, Cui B, Han W, Wan N, Chen Y. Highly α-position regioselective ring-opening of epoxides catalyzed by halohydrin dehalogenase from Ilumatobacter coccineus: a biocatalytic approach to 2-azido-2-aryl-1-ols. RSC Adv 2019; 9:16418-16422. [PMID: 35516406 PMCID: PMC9064361 DOI: 10.1039/c9ra03774h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Halohydrin dehalogenases are usually recognized as strict β-position regioselective enzymes in the nucleophile-mediated ring-opening of epoxides. Here we found the HheG from Ilumatobacter coccineus exhibited excellent α-position regioselectivity in the azide-mediated ring-opening of styrene oxide derivatives 1a–1k, producing the corresponding 2-azido-2-aryl-1-ols 2a–2k with the yields up to 96%. Biocatalytic synthesis of 2-azido-2-aryl-1-ols was achieved via HheG-catalyzed α-position regioselective ring-opening of styrene oxide derivatives.![]()
Collapse
Affiliation(s)
- Miao An
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Wanyi Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Xiaoying Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Huihui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Baodong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Wenyong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Nanwei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| |
Collapse
|
22
|
Xue F, Ya X, Tong Q, Xiu Y, Huang H. Heterologous overexpression of Pseudomonas umsongensis halohydrin dehalogenase in Escherichia coli and its application in epoxide asymmetric ring opening reactions. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 2018; 81:529-535. [PMID: 30245234 DOI: 10.1016/j.bioorg.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
Halohydrin dehalogenases are remarkable enzymes which possess promiscuous catalytic activity and serve as potential biocatalysts for the synthesis of chiral halohydrins, epoxides and β-substituted alcohols. The enzyme HheC exhibits a highly R enantioselectivity in the processes of dehalogenation of vicinal halohydrins and ring-opening of epoxides, which attracts more attentions in organic synthesis. Recently dozens of novel potential halohydrin dehalogenases have been identified by gene mining, however, most of the characterized enzymes showed low stereoselectivity. In this study, a novel halohydrin dehalogenase of HheA10 from Tsukamurella sp. 1534 has been heterologously expressed, purified and characterized. Substrate spectrum and kinetic resolution studies indicated the HheA10 was a highly S enantioselective enzyme toward several halohydrins, which produced the corresponding epoxides with the ee (enantiomeric excess) and E values up to >99% and >200 respectively. Our results revealed the HheA10 was a promising biocatalyst for the synthesis of enantiopure aromatic halohydrins and epoxides via enzymatic kinetic resolution of racemic halohydrins. What's more important, the HheA10 as the first individual halohydrin dehalogenase with the highly S enantioselectivity provides a complementary enantioselectivity to the HheC.
Collapse
Affiliation(s)
- Nanwei Wan
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Jiawei Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Huihui Wang
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Meiting Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qing He
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ran Ma
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
24
|
Identification and Characterization of a Novel Halohydrin Dehalogenase from Bradyrhizobium erythrophlei and Its Performance in Preparation of Both Enantiomers of Epichlorohydrin. Catal Letters 2018. [DOI: 10.1007/s10562-017-2292-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
|
26
|
|
27
|
Koopmeiners J, Diederich C, Solarczek J, Voß H, Mayer J, Blankenfeldt W, Schallmey A. HheG, a Halohydrin Dehalogenase with Activity on Cyclic Epoxides. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia Koopmeiners
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christina Diederich
- Structure
and
Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jennifer Solarczek
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Hauke Voß
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Janine Mayer
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
- Structure
and
Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Anett Schallmey
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Luo Y, Chen Y, Ma H, Tian Z, Zhang Y, Zhang J. Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase. Sci Rep 2017; 7:42064. [PMID: 28165015 PMCID: PMC5292711 DOI: 10.1038/srep42064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
Halohydrin dehalogenases (HHDHs) are biocatalytically interesting enzymes due to their ability to form C-C, C-N, C-O, and C-S bonds. One of most important application of HHDH was the protein engineering of HheC (halohydrin dehalogenase from Agrobacterium radiobacter AD1) for the industrial manufacturing of ethyl (R)-4-cyano-3-hydroxybutanoate (HN), a key chiral synthon of a cholesterol-lowering drug of atorvastatin. During our development of an alternative, more efficient and economic route for chemo-enzymatic preparation of the intermediate of atorvastatin, we found that the HheC2360 previously reported for HN manufacture, had insufficient activity for the cyanolysis production of tert-butyl (3 R,5 S)-6-cyano-3,5-dihydroxyhexanoate (A7). Herein, we present the focused directed evolution of HheC2360 with higher activity and enhanced biocatalytic performance using active site mutagenesis. Through docking of the product, A7, into the crystal structure of HheC2360, 6 residues was selected for combined active sites testing (CASTing). After library screening, the variant V84G/W86F was identified to have a 15- fold increase in activity. Time course analysis of the cyanolysis reaction catalyzed by this variant, showed 2- fold increase in space time productivity compared with HheC2360. These results demonstrate the applicability of the variant V84G/W86F as a biocatalyst for the efficient and practical production of atorvastatin intermediate.
Collapse
Affiliation(s)
- Yu Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Abiochem Co. LTD, Shanghai, China
| | - Yangzi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hongmin Ma
- Key Laboratory of Combinational Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | | | - Yeqi Zhang
- Key Laboratory of Combinational Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
29
|
Wu Z, Deng W, Tong Y, Liao Q, Xin D, Yu H, Feng J, Tang L. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy. Appl Microbiol Biotechnol 2017; 101:3201-3211. [PMID: 28074221 DOI: 10.1007/s00253-017-8090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
Abstract
As a crucial factor for biocatalysts, protein thermostability often arises from a combination of factors that are often difficult to rationalize. In this work, the thermostable nature of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) was systematically explored using a combinatorial directed evolution approach. For this, a mutagenesis library of HheC mutants was first constructed using error-prone PCR with low mutagenesis frequency. After screening approximately 2000 colonies, six mutants with eight mutation sites were obtained. Those mutation sites were subsequently combined by adopting several rounds of iterative saturation mutagenesis (ISM) approach. After four rounds of saturation mutagenesis, one best mutant ISM-4 with a 3400-fold improvement in half-life (t 1/2) inactivation at 65 °C, 18 °C increase in apparent T m value, and 20 °C increase in optimum temperature was obtained, compared to wild-type HheC. To the best of our knowledge, the mutant represents the most thermostable HheC variant reported up to now. Moreover, the mutant was as active as wild-type enzyme for the substrate 1,3-dichloro-2-propanol, and they remained most enantioselectivity of wild-type enzyme in the kinetic resolution of rac-2-chloro-1-phenolethanol, exhibiting a great potential for industrial applications. Our structural investigation highlights that surface loop regions are hot spots for modulating the thermostability of HheC, the residues located at these regions contribute to the thermostability of HheC in a cooperative way, and protein rigidity and oligomeric interface connections contribute to the thermostability of HheC. All of these essential factors could be used for further design of an even more thermostable HheC, which, in turn, could greatly facilitate the application of the enzyme as a biocatalyst.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Wenfeng Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Yapei Tong
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Qian Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Dongmin Xin
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Huashun Yu
- Research and Development Center, Angel Yeast Co., Ltd., Yichang, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
30
|
Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications. Appl Microbiol Biotechnol 2016; 100:7827-39. [PMID: 27502414 PMCID: PMC4989007 DOI: 10.1007/s00253-016-7750-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 10/25/2022]
Abstract
Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering.
Collapse
|