1
|
Yeerken S, Deng M, Li L, Thi Kinh C, Wang Z, Huang Y, Xiao Y, Song K. Evaluating the role of high N 2O affinity complete denitrifiers and non-denitrifying N 2O reducing bacteria in reducing N 2O emissions in river. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135602. [PMID: 39191010 DOI: 10.1016/j.jhazmat.2024.135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Freshwater rivers are hotspots of N2O greenhouse gas emissions. Dissolved organic carbon (DOC) is the dominant electron donor for microbial N2O reduction, which can reduce N2O emission through enriching high N2O affinity denitrifiers or enriching non-denitrifying N2O-reducing bacteria (N2ORB), but the primary regulatory pathway remains unclear. Here, field study indicated that high DOC concentration in rivers enhanced denitrification rate but reduced N2O flux by improving nosZ gene abundance. Then, four N2O-fed membrane aeration biofilm reactors inoculated with river sediments from river channel, estuary, adjacent lake, and a mixture were continuously performed for 360 days, including low, high, and mixed DOC stages. During enrichment stages, the (nirS+nirK)/nosZ ratio showed no significant difference, but the community structure of denitrifiers and N2ORB changed significantly (p < 0.05). In addition, N2ORB strains isolated from different enrichment stages positioned in different branches of the phylogenetic tree. N2ORB strains isolated during high DOC stage showed significant higher maximum N2O-reducing capability (Vmax: 0.6 ± 0.4 ×10-4 pmol h-1 cell-1) and N2O affinity (a0: 7.8 ± 7.7 ×10-12 L cell-1 h-1) than strains isolated during low (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.7 ± 0.4 ×10-12 L cell-1 h-1) and mixed DOC stages (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.9 ± 0.9 ×10-12 L cell-1 h-1) (p < 0.05). Hence, under high DOC concentration conditions, the primary factor in reducing N2O emissions in rivers is the enrichment of complete denitrifiers with high N2O affinity, rather than non-denitrifying N2ORB.
Collapse
Affiliation(s)
- Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Co Thi Kinh
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zezheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxia Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Ping J, Dong Y, Xie L, Zhou Y, Zhang L, Huang Y, Liao L, Cheng W, Peng F, Song H. Effect of reactive oxygen species (ROS) produced by pyridine and quinoline on NH 4+-N removal under phenol stress: The shift of nitrification pathway and its potential mechanisms. WATER RESEARCH 2024; 267:122478. [PMID: 39316963 DOI: 10.1016/j.watres.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Pyridine and quinoline are typical nitrogenous heterocyclic compounds with different structures that are found in coking wastewater. However, neither the corresponding mechanism nor its effect on the degradation of NH4+-N under phenol stress is known. In this study, the effects of pyridine and quinoline degradation on NH4+-N removal under phenol stress were evaluated using three lab-scale sequencing batch reactors. The average NH4+-N removal efficiencies of the reactors were 99.46 %, 88.86 %, and 98.64 %. With the increased concentration of pyridine and quinoline, NH4+-N and NO3--N accumulated to 58.37 mg/L and 141.37 mg/L, respectively, due to the lack of an electron donor and anaerobic environment. The addition of pyridine and quinoline significantly improved antioxidant response and altered the nitrification pathway. The nitrification process shifted from the mediation of amo and hao to the mediation of Ncd2 due to oxidative stress induced by pyridine and quinoline. Furthermore, oxidative stress interferes with the metabolism of carbon sources, resulting in decreased biomass. These results provide a new perspective for coking wastewater treatment processes.
Collapse
Affiliation(s)
- Jiapeng Ping
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuji Dong
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Liuan Xie
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yushan Zhou
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lihong Zhang
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yuxuan Huang
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Lipei Liao
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Wanli Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China; Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Fang Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life, Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Huiting Song
- Hubei Key Laboratory of Regional Development and Environmental Response, School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
Shi K, Liang B, Cheng HY, Wang HC, Liu WZ, Li ZL, Han JL, Gao SH, Wang AJ. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. WATER RESEARCH 2024; 258:121778. [PMID: 38795549 DOI: 10.1016/j.watres.2024.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
4
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Enhancement of bio-promoters on hexavalent chromium inhibited sulfur-driven denitrification: repairing damage, accelerating electron transfer, and reshaping microbial collaboration. BIORESOURCE TECHNOLOGY 2024; 400:130699. [PMID: 38615966 DOI: 10.1016/j.biortech.2024.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
An X, Li N, Zhang L, Xu Z, Zhang S, Zhang Q. New insights into the typical nitrogen-containing heterocyclic compound-quinoline degradation and detoxification by microbial consortium: Integrated pathways, meta-transcriptomic analysis and toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133158. [PMID: 38061124 DOI: 10.1016/j.jhazmat.2023.133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
As the primary source of COD in industrial wastewater, quinoline has aroused increasing attention because of its potential teratogenic, carcinogenic, and mutagenic effects in the environment. The activated sludge isolate quinoline-degrading microbial consortium (QDMC) efficiently metabolizes quinoline. However, the molecular underpinnings of the degradation mechanism of quinoline by QDMC have not been elucidated. High-throughput sequencing revealed that the dominant genera included Diaphorobacter, Bacteroidia, Moheibacter and Comamonas. Furthermore, a positive strong correlation was observed between the key bacterial communities (Diaphorobact and Bacteroidia) and quinoline degradation. According to metatranscriptomics, genes associated with quorum sensing, ABC transporters, component systems, carbohydrate, aromatic compound degradation, energy metabolism and amino metabolism showed high expression, thus improving adaptability of microbial community to quinoline stress. In addition, the mechanism of QDMC in adapting and resisting to extreme environmental conditions in line with the corresponding internal functional properties and promoting biogegradation efficiency was illustrated. Based on the identified products, QDMC effectively mineralized quinoline into low-toxicity metabolites through three major metabolic pathways, including hydroxyquinoline, 1,2,3,4-H-quinoline, 5,6,7,8-tetrahydroquinoline and 1-oxoquinoline pathways. Finally, toxicological, genotoxicity and phytotoxicity studies supported the detoxification of quinoline by the QDMC. This study provided a promising approach for the stable, environmental-friendly and efficient bioremediation applications for quinoline-containing wastewater.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ningjian Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lizhen Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
6
|
Ma Q, Pang M, Pang Y, Zhang L, Huang Z. Arrhenius equation construction and nitrate source identification of denitrification at the Lake Taihu sediment - water interface with 15 N isotope. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65702-65711. [PMID: 37093390 DOI: 10.1007/s11356-023-27122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/17/2022] [Indexed: 05/03/2023]
Abstract
Total nitrogen in Taihu Lake, China has gradually decreased since 2015 while the total phosphorus concentration has exhibited an increasing trend, indicating an asynchronous change. The dominant nitrogen removal process in freshwater ecosystems is denitrification which primarily occurs at the sediment-water interface. In this study, 15 N isotope incubation experiments were attempted to analyze the effect of water temperature on denitrification, to construct the regional denitrification Arrhenius equations considering water temperature, and to identify the nitrate source of denitrification in Lake Taihu sediments. The results indicated that the potential N2 production rates and denitrification rates generally decreased in the west to east direction, which was significantly positively correlated with the nitrate concentration of overlying water by Pearson correlation coefficient analysis (P < 0.05). In addition, when the water temperature was lower than 30 °C, the rates of the potential N2 production and denitrification were higher with an increase in water temperature, but when the water temperature was overhigh, denitrification was inhibited. The ratio of the total denitrification rate of nitrate from the water column in the sediment to the total denitrification rate during the incubation experiment was above 0.5 at each sampling site. This indicated that the denitrification in the Lake Taihu sediment primarily occurred at the expense of nitrate from the water column. The research results of Arrhenius equation construction and nitrate source identification of denitization can be applied to improve the accuracy of water quality model of Taihu Lake, which is of great significance to improve Taihu Lake water quality, and can act as a reference for the water environment treatment of other shallow eutrophic lakes in China and abroad.
Collapse
Affiliation(s)
- Qiuxia Ma
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Pang
- School of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong Pang
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhilin Huang
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellios LV1. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zheng P, Li Y, Chi Q, Cheng Y, Jiang X, Chen D, Mu Y, Shen J. Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129370. [PMID: 35728312 DOI: 10.1016/j.jhazmat.2022.129370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In order to avoid the serious air pollution caused by the volatilization of high recalcitrant pyridine, membrane-aerated biofilm reactor (MABR) with bubble-free aeration was used in this study, with the structural characteristics and microbial function of biofilm emphasized. The results showed that as high as 0.6 kg·m-3·d-1 pyridine could be completely removed in MABR. High pyridine loading thickened the biofilm, but without obvious detachment observed. The distinct stratification of microbes and extracellular polymeric substances were shaped by elevated pyridine load, enhancing the structural heterogeneity of biofilm. The increased tryptophan-like substances as well as α-helix and β-sheet proportion in proteins stabilized the biofilm structure against high influent loading. Based on the identified intermediates, possible pyridine biodegradation pathways were proposed. Multi-omics analyses revealed that the metabolic pathways with initial hydroxylation and reduction reaction was enhanced at high pyridine loading. The functional genes were mainly associated with Pseudomonas and Delftia, might responsible for pyridine biodegradation. The results shed light on the effective treatment of wastewater containing recalcitrant pollutants such as pyridine via MABR.
Collapse
Affiliation(s)
- Peng Zheng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiang Chi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Youpeng Cheng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Raza S, Shin H, Hur HG, Unno T. Higher abundance of core antimicrobial resistant genes in effluent from wastewater treatment plants. WATER RESEARCH 2022; 208:117882. [PMID: 34837814 DOI: 10.1016/j.watres.2021.117882] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) receive sewage water from a variety of sources, including livestock farms, hospitals, industries, and households, that contain antimicrobial resistant bacteria (ARB) and antimicrobial resistant genes (ARGs). Current treatment technologies are unable to completely remove ARB and ARGs, which are eventually released into the aquatic environment. This study focused on the core resistome of urban WWTPs that are persistent through wastewater treatment processes. We adopted the Hiseq-based metagenomic sequencing approach to identify the core resistome, their genetic context, and pathogenic potential of core ARGs in the influent (IN) and effluent (EF) samples of 12 urban WWTPs in South Korea. In this study, the abundance of ARGs ranged from 0.32 to 3.5 copies of ARGs per copy of the 16S rRNA gene, where the IN samples were relatively higher than the EF samples, especially for the macrolide-lincosamide-streptogramin (MLS)- and tetracycline- resistant genes. On the other hand, there were 43 core ARGs sharing up to 90% of the total, among which the relative abundance of sul1, APH(3'')-lb, and RbpA was higher in EF than in IN (p < 0.05). Moreover, tetracycline and sulfonamide-related core ARGs in both EF and IN were significantly more abundant on plasmids than on chromosomes (p < 0.05). We also found that the majority of core ARGs were carried by opportunistic pathogens such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa in both IN and EF. In addition, phages were the only mobile elements whose abundance correlated with that of core ARGs in EF, suggesting that transduction may play a major role in disseminating ARGs in the receiving water environment of the urban WWTP. The persistent release of core ARGs with pathogenic potential into environmental water is of immediate concern. The mobility of ARGs and ARBs in the environment is a major public health concern. These results should be taken into consideration when developing policy to mitigate environmental dissemination of ARG by WWTPs.
Collapse
Affiliation(s)
- Shahbaz Raza
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea; Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hanseob Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
10
|
Luo Y, Yue X, Wei P, Zhou A, Kong X, Alimzhanova S. A state-of-the-art review of quinoline degradation and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141136. [PMID: 32777494 DOI: 10.1016/j.scitotenv.2020.141136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Quinoline is a critical raw material for the dye, metallurgy, pharmaceutical, rubber, and agrochemical industries, and its use poses a serious threat to human health and the ecological environment. Quinoline has carcinogenic, teratogenic and mutagenic effects on the human body through food accumulation. However, due to the steric hindrance of its bicyclic fused structure and its long photooxidation half-life, quinoline is too difficult to decompose naturally. To date, numerous technologies have been used to degrade quinoline, whereas only a few have been reviewed. Therefore, this paper is focused on offering a comprehensive overview of the state of quinoline degradation in an effort to improve its degradation efficiency and fully utilize the carbon and nitrogen within quinoline without causing any damage to the environment. Accordingly, the strains, research progress and mechanisms of various methods for degrading quinoline are explored and elucidated in detail, especially quinoline biodegradation and the combination of these technologies for efficient removal. The state-of-the-art processes and new findings of our team on the biofortification of quinoline degradation are also presented. Finally, research bottlenecks and gaps for future research were identified along with the prospects and resource utilization of quinoline. These discussions facilitate the realization of the zero discharge of quinoline.
Collapse
Affiliation(s)
- Yanhong Luo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; North University of China, Shouzhou 036024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Peng Wei
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shyryn Alimzhanova
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
11
|
Wang S, Zhao J, Ding X, Li X. Nitric oxide and nitrous oxide production in anaerobic/anoxic nitrite-denitrifying phosphorus removal process: effect of phosphorus concentration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45925-45937. [PMID: 32808124 DOI: 10.1007/s11356-020-10499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and nitrous oxide (N2O) production in biological nutrient removal has been studied widely due to the strong negative effects on the environment. Nitrite-denitrifying phosphorus removal (N-DPR), as a significant source of NO and N2O production, has received great attention. However, the mechanism of NO and N2O production at different phosphorus concentrations is not well understood. Therefore, this study was conducted to investigate the effect of phosphorus concentration on pollutant removal, as well as NO and N2O production during the N-DPR process. The results showed that the phosphorus removal efficiency was improved with the increase of phosphorus concentration, which is caused by the enrichment of denitrifying phosphorus accumulating organisms (DPAOs) at high phosphorus concentration. High NO production was observed at phosphorus concentration of 0.5 mg L-1, which is mainly attributed to the slow recovery of reductase activity and low abundance of DPAOs. The maximal N2O accumulation of 31.45 mg L-1 was also achieved at phosphorus concentration of 0.5 mg L-1. The possible reason is that fewer poly-β-hydroxyalkanoates (PHAs) were synthesized by glycogen accumulating organisms (GAOs) at low phosphorus concentration, which could intensify the electron competition among different reductases. In addition, free nitrous acid (FNA) inhibition was another significant reason for high N2O production.
Collapse
Affiliation(s)
- Sha Wang
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710064, Shaanxi, China.
| | - Xiaoqian Ding
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Xiaoling Li
- School of Architectural Engineering Institute, Chang'an University, Xi'an, 710064, Shaanxi, China
| |
Collapse
|
12
|
Wang J, Liu T, Sun W, Chen Q. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid) pollution sites. CHEMOSPHERE 2020; 260:127619. [PMID: 32683027 DOI: 10.1016/j.chemosphere.2020.127619] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination poses considerable threats to various ecosystems, yet little is known about the assembly and adaptation of microbial communities at sites with combined heavy metal(loid) pollution. Here, we examined metal(loid) pollutants and bacterial communities in three zones (Zones Ⅰ, Ⅱ, and Ⅲ) of an abandoned sewage reservoir with different usage years. The contamination level of multiple metal(loid)s was higher in Zone Ⅰ than in the other zones, and arsenic (As), zinc (Zn), selenium (Se), copper (Cu), tin (Sn), molybdenum (Mo), antimony (Sb), cadmium (Cd), lead (Pb), thallium (Tl), and nickel (Ni) were the major contaminants (pollution load index > 1). Bioavailable forms of titanium (Ti), chromium (Cr), Sn, and cobalt (Co) played essential roles in shaping the microbial structure, and physicochemical properties, especially organic matter (OM) and pH, also mediated the microbial diversity and composition in the metal(loid) contaminated zones. Metal-microbe interactions and heatmap analysis revealed that the bioavailability of metal(loid)s promoted the niche partitioning of microbial species. Metal-resistant species were abundant in Zone Ⅰ that had the highest metal-contaminated level, whereas metal-sensitive species prevailed in Zone Ⅲ that had the lowest pollution level. The bioavailable metal(loid)s rather than physicochemical and spatial variables explained a larger portion of the variance in the microbial community, and the homogeneous selection was the dominant ecological process driving the assembly of the microbial community. Overall, our study highlighted the importance of metal(loid) bioavailability in shaping microbial structure, future bioremediation, and environmental management of metal(loid) contaminated sites.
Collapse
Affiliation(s)
- Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Tang Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
13
|
Solís-González CJ, Loza-Tavera H. Alicycliphilus: current knowledge and potential for bioremediation of xenobiotics. J Appl Microbiol 2019; 126:1643-1656. [PMID: 30661281 DOI: 10.1111/jam.14207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/31/2023]
Abstract
Alicycliphilus is a promising candidate for participating in the development of novel xenobiotics bioremediation processes. Members of the Alicycliphilus genus are environmental bacteria mostly found in polluted sites such as landfills and contaminated watercourses, and in sewage sludges from wastewater treatment plants. They exhibit a versatile metabolism and the ability to use oxygen, nitrate and chlorate as terminal electron acceptors, which allow them to biodegrade xenobiotics under oxic or anoxic conditions. Pure cultures of Alicycliphilus strains are able to biodegrade some pollutants such as industrial solvents (acetone, cyclohexanol and N-methylpyrrolidone), aromatic hydrocarbons (benzene, toluene and anthracene), as well as polyurethane varnishes and foams, and they can even transform Cr(VI) to Cr(III). In addition, Alicycliphilus has also been identified in bacterial communities involved in wastewater treatment plants for denitrification, and the degradation of emerging pollutants such as triclosan, nonylphenol, N-heterocyclic aromatic compounds (indole and quinoline), and antibiotics (tetracycline and oxytetracycline). This work summarizes the current knowledge on the Alicycliphilus genus, describing its different metabolic characteristics, focusing on its xenobiotic biodegradation abilities and examining the distinct pathways and molecular bases that sustain them. We also discuss the progress made in genetic manipulation and 'omics' analyses, as well as Alicycliphilus participation in novel bioremediation strategies.
Collapse
Affiliation(s)
- C J Solís-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - H Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Zhang S, Sun X, Wang X, Qiu T, Gao M, Sun Y, Cheng S, Zhang Q. Bioaugmentation with Diaphorobacter polyhydroxybutyrativorans to enhance nitrate removal in a poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-supported denitrification reactor. BIORESOURCE TECHNOLOGY 2018; 263:499-507. [PMID: 29775906 DOI: 10.1016/j.biortech.2018.04.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
A newly isolated and identified Diaphorobacter polyhydroxybutyrativorans strain (SL-205) was employed to enhance the denitrification performance of a laboratory-scale solid-phase denitrification (SPD) reactor using poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source, and dynamic variations in microbial communities in the reactor were investigated. Results indicated that bioaugmentation with strain SL-205 enabled rapid reactor startup and improved denitrification performance relative to the reactor inoculated with activated sludge. Illumina sequencing revealed that bioaugmentation also significantly increased Proteobacteria abundance along with increased influent nitrate loading. Additionally, two genera of PHBV-degrading denitrifers, Diaphorobacter and Acidovorax, exhibited higher abundance, and elevated expression of denitrification-associated genes (narG, nirK, and nirS) was observed following bioaugmentation relative to the control at influent nitrate loading ranging from 1.28 g N/(L·d) to 1.6 g N/(L·d).
Collapse
Affiliation(s)
- Shusong Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xingbin Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shoutao Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing 100097, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing 100068, China
| |
Collapse
|
15
|
Wu D, Yi X, Tang R, Feng C, Wei C. Single microbial fuel cell reactor for coking wastewater treatment: Simultaneous carbon and nitrogen removal with zero alkaline consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:497-506. [PMID: 29195198 DOI: 10.1016/j.scitotenv.2017.11.262] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
The use of several individual reactors for sequential removal of organic compounds and nitrogen, in addition to the required alkaline addition in aerobic reactors, remain outstanding technical challenges to the traditional biological treatment of coking wastewater. Here, we report the utilization of a single microbial fuel cell (MFC) reactor that performs simultaneous carbon and nitrogen removal with zero alkaline consumption, as evidenced by the results of the batch-fed and continuous-flow experiments. The MFC exhibited faster reaction kinetics for COD and total nitrogen (TN) removal than the same configured reactor analogous to the traditional aerobic biological reactor (ABR). At a hydraulic retention time (HRT) of 125 h, the efficiencies of COD and TN removal in the MFC reached 83.8±3.6% and 97.9±2.1%, respectively, much higher than the values of 73.8±2.9% and 50.2±5.0% obtained in the ABR. Furthermore, the degradation in the MFC of the main organic components, including phenolic compounds (such as phenol, 2-methylphenol, 3-methylphenol, 4-methylphenol, and 2,4-dimethlyphenol) and nitrogenous heterocyclic compounds (such as quinolone, pyridine, indole, and isoquinolone) was greater than that in the ABR. The enhancing effect was attributed to the ability of the MFC to self-adjust the pH. It was also manifested by the increased abundances of heterotrophs, nitrifiers, and denitrifiers in the MFC. The correlations between the current density and the rates of COD and TN removal suggest that the extent of the current from the anode to the cathode is a critical parameter for the overall performance of MFCs in the treatment of coking wastewater.
Collapse
Affiliation(s)
- Di Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Rong Tang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China.
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
16
|
An alternative carbon source withdrawn from anaerobic fermentation of soybean wastewater to improve the deep denitrification of tail water. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang X, Ye C, Zhang Z, Guo Y, Yang R, Chen S. Effects of temperature shock on N 2O emissions from denitrifying activated sludge and associated active bacteria. BIORESOURCE TECHNOLOGY 2018; 249:605-611. [PMID: 29091844 DOI: 10.1016/j.biortech.2017.10.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
To investigate the effects of temperature shock on N2O emissions, four treatments with rapidly changing incubation temperature from the control (20 °C) to 4, 12, 25, or 34 °C were conducted. Results showed that higher N2O emissions (0.023-0.37%) were observed when reactor contents received temperature shocks. N2O emissions increased as the temperature interval increased. Nitrate, nitrite, and nitrous oxide reduction rates generally followed the order: 34 °C > 25 °C > 20 °C > 12 °C > 4°C. Overall, the low-temperature shocks down-regulated and high-temperature shocks up-regulated the expression of denitrifying genes. However, the transcription rate of norB/nosZ and nirS/nosZ could not explain higher N2O emission. The increased N2O emissions might be more related to post-transcriptional regulation and enzyme activity (Q10 value). The results of cDNA sequencing showed that the active microbial community was relatively stable. Among the members of top 15 genera with active transcripts, Flavobacterium, Comamonadaceae and Xanthomonadales were the dominant denitrifying bacteria.
Collapse
Affiliation(s)
- Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengsong Ye
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaoji Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruili Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
18
|
Wang Y, Tian H, Huang F, Long W, Zhang Q, Wang J, Zhu Y, Wu X, Chen G, Zhao L, Bakken LR, Frostegård Å, Zhang X. Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline. Sci Rep 2017; 7:14778. [PMID: 29116183 PMCID: PMC5677008 DOI: 10.1038/s41598-017-15122-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/23/2017] [Indexed: 11/08/2022] Open
Abstract
Quinoline is biodegradable under anaerobic conditions, but information about the degradation kinetics and the involved microorganisms is scarce. Here, the dynamics of a quinoline-degrading bacterial consortium were studied in anoxic batch cultures containing nitrate. The cultures removed 83.5% of the quinoline during the first 80 hours, which were dominated by denitrification, and then switched to methanogenesis when the nitrogen oxyanions were depleted. Time-resolved community analysis using pyrosequencing revealed that denitrifiying bacteria belonging to the genus Thauera were enriched during the denitrification stage from 12.2% to 38.8% and 50.1% relative abundance in DNA and cDNA libraries, respectively. This suggests that they are key organisms responsible for the initial attack on quinoline. Altogether, 13 different co-abundance groups (CAGs) containing 76 different phylotypes were involved, directly or indirectly, in quinoline degradation. The dynamics of these CAGs show that specific phylotypes were associated with different phases of the degradation. Members of Rhodococcus and Desulfobacterium, as well as Rhodocyclaceae- and Syntrophobacteraceae-related phylotypes, utilized initial metabolites of the quinoline, while the resulting smaller molecules were used by secondary fermenters belonging to Anaerolineae. The concerted action by the different members of this consortium resulted in an almost complete anaerobic mineralization of the quinoline.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P.R. China
| | - Hao Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Fei Huang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Wenmin Long
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Qianpeng Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jing Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Ying Zhu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xiaogang Wu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Guanzhou Chen
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, N-1432, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, N-1432, Norway
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| |
Collapse
|