1
|
Ma J, Liu H, Chen H, Xiong H, Tong L, Guo G. Is redox zonation an appropriate method for determining the stage of natural remediation in deep contaminated groundwater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172224. [PMID: 38599415 DOI: 10.1016/j.scitotenv.2024.172224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Groundwater contamination resulting from petroleum development poses a significant threat to drinking water sources, especially in developing countries. In situ natural remediation methods, including microbiological processes, have gained popularity for the reduction of groundwater contaminants. However, assessing the stage of remediation in deep contaminated groundwater is challenging and costly due to the complexity of diverse geological conditions and unknown initial concentrations of contaminants. This research proposes that redox zonation may be a more convenient and comprehensive indicator than the concentration of contaminants for determining the stage of natural remediation in deep groundwater. The combination of sequencing microbial composition using the high-throughput 16S rRNA gene and function predicted by FAPROTAX is a useful approach to determining the redox conditions of different contaminated groundwater. The sulfate-reducing environment, represented by Desulfobacteraceae, Peptococcaceae, Desulfovibrionaceae, and Desulfohalobiaceae could be used as characteristic early stages of remediation for produced water contamination in wells with high concentrations of SO42-, benzene, and salinity. The nitrate-reducing environment, enriched with microorganisms related to denitrification, sulfur-oxidizing, and methanophilic microorganisms could be indicative of the mid stages of in situ bioremediation. The oxygen reduction environment, enriched with oligotrophic and pathogenic Sphingomonadaceae, Caulobacteraceae, Syntrophaceae, Legionellales, Moraxellaceae, and Coxiellaceae, could be indicative of the late stages of remediation. This comprehensive approach could provide valuable insights into the process of natural remediation and facilitate improved environmental management in areas of deep contaminated groundwater.
Collapse
Affiliation(s)
- Jie Ma
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Huihui Chen
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Huanhuan Xiong
- Faculty of Resources and Environmental Science and Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Lei Tong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Lobiuc A, Pavăl NE, Dimian M, Covașă M. Nanopore Sequencing Assessment of Bacterial Pathogens and Associated Antibiotic Resistance Genes in Environmental Samples. Microorganisms 2023; 11:2834. [PMID: 38137978 PMCID: PMC10745997 DOI: 10.3390/microorganisms11122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
As seen in earlier and present pandemics, monitoring pathogens in the environment can offer multiple insights on their spread, evolution, and even future outbreaks. The present paper assesses the opportunity to detect microbial pathogens and associated antibiotic resistance genes, in relation to specific pathogen sources, by using nanopore sequencing in municipal waters and wastewaters in Romania. The main results indicated that waters collecting effluents from a meat processing facility exhibit altered communities' diversity and abundance, with reduced values (101-108 and 0.86-0.91) of Chao1 and, respectively, Simpson diversity indices and Campylobacterales as main order, compared with other types of municipal waters where the same diversity index had much higher values of 172-214 and 0.97-0.98, and Burkholderiaceae and Pseudomonadaceae were the most abundant families. Moreover, the incidence and type of antibiotic resistance genes were significantly influenced by the proximity of antibiotic sources, with either tetracycline (up to 45% of total reads) or neomycin, streptomycin and tobramycin (up to 3.8% total reads) resistance incidence being shaped by the sampling site. As such, nanopore sequencing proves to be an easy-to-use, accessible molecular technique for environmental pathogen surveillance and associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covașă
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania; (N.-E.P.); (M.C.)
| |
Collapse
|
3
|
Lv L, Chen J, Liu X, Gao W, Sun L, Wang P, Ren Z, Zhang G, Li W. Roles and regulation of quorum sensing in anaerobic granular sludge: Research status, challenges, and perspectives. BIORESOURCE TECHNOLOGY 2023; 387:129644. [PMID: 37558106 DOI: 10.1016/j.biortech.2023.129644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Anaerobic granular sludge (AnGS) has a complex and important internal microbial communication system due to its unique microbial layered structure. As a concentration-dependent communication system between bacterial cells through signal molecules, QS (quorum sensing) is widespread in AnGS and exhibits great potential to regulate microbial behaviors. Therefore, the universal functions of QS in AnGS have been systematically summarized in this paper, including the influence on the metabolic activity, physicochemical properties, and microbial community of AnGS. Subsequently, the common QS-based AnGS regulation approaches are reviewed and analyzed comprehensively. The regulation mechanism of QS in AnGS is analyzed from two systems of single bacterium and mixed bacteria. This review can provide a comprehensive understanding of QS functions in AnGS systems, and promote the practical application of QS-based strategies in optimization of AnGS treatment process.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiarui Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
4
|
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, Figueras A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160531. [PMID: 36470389 DOI: 10.1016/j.scitotenv.2022.160531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| | - Eva Teira
- University of Vigo, Departamento de Ecología y Biología Animal, Centro de Investigación Marina (CIM), Universidad de Vigo, Facultad de Ciencias do Mar, 36310 Vigo, Spain.
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Susana Gouveia
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Pedro Payo
- GESECO Aguas S.A., Teixugueiras 13, 36212 Vigo, Spain.
| | - Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
5
|
Choudhury M, Bindra HS, Singh K, Singh AK, Nayak R. Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mousam Choudhury
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | | | - Karishma Singh
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Alok Kumar Singh
- School of Biotechnology Sher‐e‐Kashmir University of Agricultural Science and Technology of Jammu Jammu and Kashmir India
| | - Ranu Nayak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
6
|
Tatta ER, Imchen M, Moopantakath J, Kumavath R. Bioprospecting of microbial enzymes: current trends in industry and healthcare. Appl Microbiol Biotechnol 2022; 106:1813-1835. [PMID: 35254498 DOI: 10.1007/s00253-022-11859-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenomics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial enzyme optimization tools. KEY POINTS: • Microbial bioactive molecules are vital for therapeutic and industrial applications. • High-throughput OMIC is the most proficient approach for novel enzyme discovery. • Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme design and discovery.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India.
| |
Collapse
|
7
|
Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. WATER RESEARCH 2021; 201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.
Collapse
Affiliation(s)
- Nuno F F Moreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Teresa Viana
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A L Graça
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nadine Castelhano
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
8
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
9
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
10
|
Baudoin L, Sapinho D, Maddi A, Miotti L. Scientometric analysis of the term 'microbiota' in research publications (1999-2017): a second youth of a century-old concept. FEMS Microbiol Lett 2020; 366:5523130. [PMID: 31240301 DOI: 10.1093/femsle/fnz138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Great progress in microbiota research during last decades resulted in a growing corpus of publications mentioning the term 'microbiota'. Specifically, the human microbiota increasingly recognised nowadays as one of the most important health challenges is becoming an emerging research front. By examining over 28 000 microbiota-related papers from the Web of Science database, our study aims to characterise the evolution of publication patterns in this field between 1999 and 2017. The corpus is first analysed in terms of breakdown by journal subject categories, then an additional insight in the structuring of the microbiota research into different topics is provided by means of topic modelling. Our results demonstrate that over time (i) a substantial increase in the publications number is accompanied by a broad diversification of associated journal subject categories; (ii) the research focus moved outside from its primary research field showing successive shifts from dentistry and ecologically centred areas, through agri-food applied topics, towards the most recent clinical applications. The trends in thematic structure of the field presented from a historical perspective suggest that the current systemic approach to host-microbiota relationship inherited from the ecological background of the concept of microbiota has opened up a number of new research directions and perspectives.
Collapse
Affiliation(s)
- Lesya Baudoin
- Observatoire des Sciences et Techniques, Hcéres, 2 Rue Albert Einstein, Paris, 75013 France
| | - David Sapinho
- Observatoire des Sciences et Techniques, Hcéres, 2 Rue Albert Einstein, Paris, 75013 France
| | - Abdelghani Maddi
- Observatoire des Sciences et Techniques, Hcéres, 2 Rue Albert Einstein, Paris, 75013 France.,CEPN, UMR-CNRS 723, Université Paris 13, Villetaneuse, 93430 France
| | - Luis Miotti
- Observatoire des Sciences et Techniques, Hcéres, 2 Rue Albert Einstein, Paris, 75013 France.,CEPN, UMR-CNRS 723, Université Paris 13, Villetaneuse, 93430 France
| |
Collapse
|
11
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Metagenomic insights into microbial characterizations in explaining the distinction of biofilter performance during start-up. Biodegradation 2020; 31:183-199. [PMID: 32462278 DOI: 10.1007/s10532-020-09902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
As an effective alternative for dissolved nitrogen removal, biofilter closely associates its treatment performance to structural and/or operational conditions. In this study, a set of four different biofilters including MAVF (mature aerated vertical flow), NAVF (new aerated vertical flow), NVF (new non-aerated vertical flow), and BHF (baffled non-aerated horizontal flow) were employed to purify low C/N ratio (3.8) domestic wastewater. All the filters were packed with round ceramsite operated under varying hydraulic loading rates (HLRs) of 0.024-0.18 m/day. During the start-up, both the physicochemical and microbial characterizations were investigated. It was found that, carbon and nitrogen could achieve ideal removal in MAVF once added with further sedimentation, while phosphorus displayed an unsatisfactory sequestration in any of the four filters probably due to the high inflow load and/or lack of alternate anaerobic/aerobic conditions. Filter clustering based on percent removal and removal rate constant displayed a consistent pattern, which was similar to that based on taxa of phylum from 16S rRNA sequencing, or phylum/genus/species from shotgun metagenomic sequencing although there were obvious distinctions in taxa compositions among direct comparison. Meanwhile, gene function annotation revealed that filter clustering based on metabolic pathways was consistent with that based on purification performance. These consistencies might imply that the treatment performance was mainly determined by microbial degradation. The enrichment of specific functional microbes responsible for the degradation of certain pollutants, such as carbohydrates, matched well with the defined purification performance.
Collapse
|
13
|
Zahedi A, Greay TL, Paparini A, Linge KL, Joll CA, Ryan UM. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. WATER RESEARCH 2019; 158:301-312. [PMID: 31051375 DOI: 10.1016/j.watres.2019.04.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.
Collapse
Affiliation(s)
- Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia.
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
14
|
Greay TL, Gofton AW, Zahedi A, Paparini A, Linge KL, Joll CA, Ryan UM. Evaluation of 16S next-generation sequencing of hypervariable region 4 in wastewater samples: An unsuitable approach for bacterial enteric pathogen identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1111-1124. [PMID: 31018427 DOI: 10.1016/j.scitotenv.2019.03.278] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 05/18/2023]
Abstract
Recycled wastewater can carry human-infectious microbial pathogens and therefore wastewater treatment strategies must effectively eliminate pathogens before recycled wastewater is used to supplement drinking and agricultural water supplies. This study characterised the bacterial composition of four wastewater treatment plants (WWTPs) (three waste stabilisation ponds and one oxidation ditch WWTP using activated sludge treatment) in Western Australia. The hypervariable region 4 (V4) of the bacterial 16S rRNA (16S) gene was sequenced using next-generation sequencing (NGS) on the Illumina MiSeq platform. Sequences were pre-processed in USEARCH v10.0 and denoised into zero-radius taxonomic units (ZOTUs) with UNOISE3. Taxonomy was assigned to the ZOTUs using QIIME 2 and the Greengenes database and cross-checked with the NCBI nr/nt database. Bacterial composition of all WWTPs and treatment stages (influent, intermediate and effluent) were dominated by Proteobacteria (29.0-87.4%), particularly Betaproteobacteria (9.0-53.5%) and Gammaproteobacteria (8.6-34.6%). Nitrifying bacteria (Nitrospira spp.) were found only in the intermediate and effluent of the oxidation ditch WWTP, and denitrifying and floc-forming bacteria were detected in all WWTPs, particularly from the families Comamonadaceae and Rhodocyclales. Twelve pathogens were assigned taxonomy by the Greengenes database, but comparison of sequences from genera and families known to contain pathogens to the NCBI nr/nt database showed that only three pathogens (Arcobacter venerupis, Laribacter hongkongensis and Neisseria canis) could be identified in the dataset at the V4 region. Importantly, Enterobacteriaceae genera could not be differentiated. Family level taxa assigned by Greengenes database agreed with NCBI nr/nt in most cases, however, BLAST analyses revealed erroneous taxa in Greengenes database. This study highlights the importance of validating taxonomy of NGS sequences with databases such as NCBI nr/nt, and recommends including the V3 region of 16S in future short amplicon NGS studies that aim to identify bacterial enteric pathogens, as this will improve taxonomic resolution of most, but not all, Enterobacteriaceae species.
Collapse
Affiliation(s)
- Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Alexander W Gofton
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, P.O. Box 1250, Perth, Western Australia, Australia.
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia.
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
15
|
Olson N, Bae J. Biosensors-Publication Trends and Knowledge Domain Visualization. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2615. [PMID: 31181820 PMCID: PMC6603684 DOI: 10.3390/s19112615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022]
Abstract
The number of scholarly publications on the topic of biosensors has increased rapidly; as a result, it is no longer easy to build an informed overview of the developments solely by manual means. Furthermore, with many new research results being continually published, it is useful to form an up-to-date understanding of the recent trends or emergent directions in the field. This paper utilizes bibliometric methods to provide an overview of the developments in the topic based on scholarly publications. The results indicate an increasing interest in the topic of biosensor(s) with newly emerging sub-topics. The US is identified as the country with highest total contribution to this area, but as a collective, EU countries top the list of total contributions. An examination of trends over the years indicates that in recent years, China-based authors have been more productive in this area. If research contribution per capita is considered, Singapore takes the top position, followed by Sweden, Switzerland and Denmark. While the number of publications on biosensors seems to have declined in recent years in the PubMed database, this is not the case in the Web of Science database. However, there remains an indication that the rate of growth in the more recent years is slowing. This paper also presents a comparison of the developments in publications on biosensors with the full set of publications in two of the main journals in the field. In more recent publications, synthetic biology, smartphone, fluorescent biosensor, and point-of-care testing are among the terms that have received more attention. The study also identifies the top authors and journals in the field, and concludes with a summary and suggestions for follow up research.
Collapse
Affiliation(s)
- Nasrine Olson
- Swedish School of Library and Information Science (SSLIS), University of Borås, 501 90 Borås, Sweden.
| | - Juhee Bae
- School of Informatics, University of Skövde, 541 28 Skövde, Sweden.
| |
Collapse
|