1
|
Guo Y, Chen A, Liu K, Ji C. Structural insights and functional characterization of a novel β-glucosidase derived from Thermotoga profunda. Biochem Biophys Res Commun 2024; 732:150405. [PMID: 39033552 DOI: 10.1016/j.bbrc.2024.150405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
β-Glucosidase is a crucial cellulase, as its activity determines the efficiency of cellulose hydrolysis into glucose. This study addresses the functional and structural characteristics of Thermotoga profunda β-glucosidase (Tp-BGL). Tp-BGL exhibited a Km of 0.3798 mM for p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and 4.44 mM for cellobiose, with kcat/Km of 1211.16 and 4.18 s-1 mM-1, respectively. In addition, Tp-BGL showed significant pH adaptability and thermal stability, with a Tm of 85.7 °C and retaining >90 % of its activity after incubation at 80 °C for 90 min. The crystal structure of Tp-BGL was resolved at 1.95 Å resolution, and reveals a typical TIM barrel structure. Comparative structural analysis highlighted that the major distinction between Tp-BGL and the other glucosidases lies in their loop regions.
Collapse
Affiliation(s)
- Yanchao Guo
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Anke Chen
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Kelin Liu
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chaoneng Ji
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Sotiropoulou AI, Hatzinikolaou DG, Chrysina ED. Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Acta Crystallogr D Struct Biol 2024; 80:733-743. [PMID: 39361356 PMCID: PMC11448918 DOI: 10.1107/s2059798324009252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.
Collapse
Affiliation(s)
- Anastasia I Sotiropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 72 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| |
Collapse
|
3
|
Gourlay LJ, Mangiagalli M, Moroni E, Lotti M, Nardini M. Structural determinants of cold activity and glucose tolerance of a family 1 glycoside hydrolase (GH1) from Antarctic Marinomonas sp. ef1. FEBS J 2024; 291:2897-2917. [PMID: 38400529 DOI: 10.1111/febs.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Cold-active enzymes support life at low temperatures due to their ability to maintain high activity in the cold and can be useful in several biotechnological applications. Although information on the mechanisms of enzyme cold adaptation is still too limited to devise general rules, it appears that very diverse structural and functional changes are exploited in different protein families and within the same family. In this context, we studied the cold adaptation mechanism and the functional properties of a member of the glycoside hydrolase family 1 (GH1) from the Antarctic bacterium Marinomonas sp. ef1. This enzyme exhibits all typical functional hallmarks of cold adaptation, including high catalytic activity at 5 °C, broad substrate specificity, low thermal stability, and higher lability of the active site compared to the overall structure. Analysis of the here-reported crystal structure (1.8 Å resolution) and molecular dynamics simulations suggest that cold activity and thermolability may be due to a flexible region around the active site (residues 298-331), whereas the dynamic behavior of loops flanking the active site (residues 47-61 and 407-413) may favor enzyme-substrate interactions at the optimal temperature of catalysis (Topt) by tethering together protein regions lining the active site. Stapling of the N-terminus onto the surface of the β-barrel is suggested to partly counterbalance protein flexibility, thus providing a stabilizing effect. The tolerance of the enzyme to glucose and galactose is accounted for by the presence of a "gatekeeping" hydrophobic residue (Leu178), located at the entrance of the active site.
Collapse
Affiliation(s)
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies, National Research Council of Italy, SCITE-CNR, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| |
Collapse
|
4
|
Mo H, Chen X, Tang M, Qu Y, Li Z, Liu W, Yang C, Chen Y, Sun J, Yang H, Du G. Expression of a thermostable glucose-stimulated β-glucosidase from a hot-spring metagenome and its promising application to produce gardenia blue. Bioorg Chem 2024; 143:107036. [PMID: 38141330 DOI: 10.1016/j.bioorg.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
This study reports a thermostable glucose-stimulated β-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential β-glucosidase in biotechnology applications.
Collapse
Affiliation(s)
- Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Manwen Tang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Ying Qu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Wang Liu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Chunlin Yang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Yijian Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Yang
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China.
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Ouyang B, Wang G, Zhang N, Zuo J, Huang Y, Zhao X. Recent Advances in β-Glucosidase Sequence and Structure Engineering: A Brief Review. Molecules 2023; 28:4990. [PMID: 37446652 DOI: 10.3390/molecules28134990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
β-glucosidases (BGLs) play a crucial role in the degradation of lignocellulosic biomass as well as in industrial applications such as pharmaceuticals, foods, and flavors. However, the application of BGLs has been largely hindered by issues such as low enzyme activity, product inhibition, low stability, etc. Many approaches have been developed to engineer BGLs to improve these enzymatic characteristics to facilitate industrial production. In this article, we review the recent advances in BGL engineering in the field, including the efforts from our laboratory. We summarize and discuss the BGL engineering studies according to the targeted functions as well as the specific strategies used for BGL engineering.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Nian Zhang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiali Zuo
- School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunhong Huang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
7
|
Crystal structure of metagenomic β-glycosidase MeBglD2 in complex with various saccharides. Appl Microbiol Biotechnol 2022; 106:4539-4551. [PMID: 35723691 DOI: 10.1007/s00253-022-12018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Metagenomic MeBglD2 is a glycoside hydrolase family 1 (GH1) β-glycosidase that has β-glucosidase, β-fucosidase, and β-galactosidase activities, and is highly activated in the presence of monosaccharides and disaccharides. The β-glucosidase activity of MeBglD2 increases in a cellobiose concentration-dependent manner and is not inhibited by a high concentration of D-glucose or cellobiose. Previously, we solved the crystal structure of MeBglD2 and designed a thermostable mutant; however, the mechanism of substrate recognition of MeBglD2 remains poorly understood. In this paper, we report the X-ray crystal structures of MeBglD2 complexed with various saccharides, such as D-glucose, D-xylose, cellobiose, and maltose. The results showed that subsite - 1 of MeBglD2, which contained two catalytic glutamate residues (a nucleophilic Glu356 and an acid/base Glu170) was common to other GH1 enzymes, but the positive subsites (+ 1 and + 2) had different binding modes depending on the type of sugar. Three residues (Glu183, Asn227, and Asn229), located at the positive subsites of MeBglD2, were involved in substrate specificity toward cellobiose and/or chromogenic substrates in the presence of additive sugars. The docking simulation of MeBglD2-cellobiose indicated that Asn229 and Trp329 play important roles in the recognition of + 1 D-glucose in cellobiose. Our findings provide insights into the unique substrate recognition mechanism of GH1, which can incorporate a variety of saccharides into its positive subsites. KEY POINTS: • Metagenomic glycosidase, MeBglD2, recognizes various saccharides • Structures of metagenomic MeBglD2 complexed with various saccharides are determined • MeBglD2 has a unique substrate recognition mechanism at the positive subsites.
Collapse
|
8
|
Paul M, Mohapatra S, Kumar Das Mohapatra P, Thatoi H. Microbial cellulases - An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. BIORESOURCE TECHNOLOGY 2021; 340:125710. [PMID: 34365301 DOI: 10.1016/j.biortech.2021.125710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity. Further, maintaining the stability of cellulases by the preservation of their secondary structures using immobilization techniques will also play an integral role in its industrial production. In silico approaches for increasing the catalytic activity of cellulase enzymes is also significant along with a range of substrate specificity. In addition, enhanced productivity of cellulases by tailoring the related genes through the process of genetic engineering and higher cellulase recovery after saccharification seems to be promising areas for efficient and large-scale enzyme production concepts.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India
| | - Sonali Mohapatra
- Department of Biotechnology, College of Engineering & Technology, Bhubaneswar 751003, Odisha, India
| | - Pradeep Kumar Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India; PAKB Environment Conservation Centre, Raiganj University, Raiganj - 733134, Uttar Dinajpur, West Bengal, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada 757003, Odisha, India.
| |
Collapse
|
9
|
Saleh Zada N, Belduz AO, Güler HI, Khan A, Sahinkaya M, Kaçıran A, Ay H, Badshah M, Shah AA, Khan S. Cloning, expression, biochemical characterization, and molecular docking studies of a novel glucose tolerant β-glucosidase from Saccharomonospora sp. NB11. Enzyme Microb Technol 2021; 148:109799. [PMID: 34116753 DOI: 10.1016/j.enzmictec.2021.109799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Most of the presently known β-glucosidases are sensitive to end-product inhibition by glucose, restricting their potential use in many industrial applications. Identification of novel glucose tolerant β-glucosidase can prove a pivotal solution to eliminate end-product inhibition and enhance the overall lignocellulosic saccharification process. In this study, a novel gene encoding β-glucosidase BglNB11 of 1405bp was identified in the genome of Saccharomonospora sp. NB11 and was successfully cloned and heterologously expressed in E. coli BL21 (DE3).The presence of conserved amino acids; NEPW and TENG indicated that BglNB11 belonged to GH1 β-glucosidases. The recombinant enzyme was purified using a Ni-NTA column, with the molecular mass of 51 kDa, using SDS-PAGE analysis. BglNB11 showed optimum activity at 40 °C and pH 7 and did not require any tested co-factors for activation. The kinetic values, Km, Vmax, kcat, and kcat/Km of purified enzyme were 0.4037 mM, 5735.8 μmol/min/mg, 5042.16 s-1 and 12487.71 s-1 mM-1, respectively. The enzyme was not inhibited by glucose to a concentration of 4 M but was slightly stimulated in the presence of glucose. Molecular docking of BglNB11 with glucose suggested that the relative binding position of glucose in the active site channel might be responsible for modulating end product tolerance and stimulation. β-glucosidase from BglNB11 is an excellent enzyme with high catalytic efficiency and enhanced glucose tolerance compared to many known glucose tolerant β-glucosidases. These unique properties of BglNB11 make it a prime candidate to be utilized in many biotechnological applications.
Collapse
Affiliation(s)
- Numan Saleh Zada
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Halil Ibrahim Güler
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Anum Khan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Miray Sahinkaya
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Arife Kaçıran
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, Samsun, Turkey
| | - Malik Badshah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
10
|
Dadwal A, Sharma S, Satyanarayana T. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification. Front Microbiol 2020; 11:1387. [PMID: 32670240 PMCID: PMC7327088 DOI: 10.3389/fmicb.2020.01387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic biomass is a renewable and sustainable energy source. Cellulases are the enzymes that cleave β-1, 4-glycosidic linkages in cellulose to liberate sugars that can be fermented to ethanol, butanol, and other products. Low enzyme activity and yield, and thermostability are, however, some of the limitations posing hurdles in saccharification of lignocellulosic residues. Recent advancements in synthetic and systems biology have generated immense interest in metabolic and genetic engineering that has led to the development of sustainable technology for saccharification of lignocellulosics in the last couple of decades. There have been several attempts in applying genetic engineering in the production of a repertoire of cellulases at a low cost with a high biomass saccharification. A diverse range of cellulases are produced by different microbes, some of which are being engineered to evolve robust cellulases. This review summarizes various successful genetic engineering strategies employed for improving cellulase kinetics and cellulolytic efficiency.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
11
|
Ribeiro LF, Amarelle V, Alves LDF, Viana de Siqueira GM, Lovate GL, Borelli TC, Guazzaroni ME. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts. Molecules 2019; 24:molecules24162879. [PMID: 31398877 PMCID: PMC6719137 DOI: 10.3390/molecules24162879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.
Collapse
Affiliation(s)
- Lucas Ferreira Ribeiro
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| | - Vanesa Amarelle
- Department of Microbial Biochemistry and Genomics, Biological Research Institute Clemente Estable, Montevideo, PC 11600, Uruguay
| | - Luana de Fátima Alves
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Gabriel Lencioni Lovate
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
12
|
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Watanabe M, Matsuzawa T, Yaoi K. Rational protein design for thermostabilization of glycoside hydrolases based on structural analysis. Appl Microbiol Biotechnol 2018; 102:8677-8684. [PMID: 30109396 DOI: 10.1007/s00253-018-9288-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/27/2022]
Abstract
Glycosidases are used in the food, chemical, and energy industries. These proteins are some of the most frequently used such enzymes, and their thermostability is essential for long-term and/or repeated use. In addition to thermostability, modification of the substrate selectivity and improvement of the glycosidase activities are also important. Thermostabilization of enzymes can be performed by directed evolution via random mutagenesis or by rational design via site-directed mutagenesis; each approach has advantages and disadvantages. In this paper, we introduce thermostabilization of glycoside hydrolases by rational protein design using site-directed mutagenesis along with X-ray crystallography and simulation modeling. We focus on the methods of thermostabilization of glycoside hydrolases by linking the N- and C-terminal ends, introducing disulfide bridges, and optimizing β-turn structures to promote hydrophobic interactions.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|