1
|
Kalashnikova IG, Nekrasova AI, Korobeynikova AV, Bobrova MM, Ashniev GA, Bakoev SY, Zagainova AV, Lukashina MV, Tolkacheva LR, Petryaikina ES, Nekrasov AS, Mitrofanov SI, Shpakova TA, Frolova LV, Bulanova NV, Snigir EA, Mukhin VE, Yudin VS, Makarov VV, Keskinov AA, Yudin SM. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines 2024; 12:2351. [PMID: 39457662 PMCID: PMC11505256 DOI: 10.3390/biomedicines12102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
Collapse
Affiliation(s)
- Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.I.N.); (A.V.K.); (M.M.B.); (G.A.A.); (S.Y.B.); (A.V.Z.); (M.V.L.); (L.R.T.); (E.S.P.); (A.S.N.); (S.I.M.); (T.A.S.); (L.V.F.); (N.V.B.); (E.A.S.); (V.E.M.); (V.S.Y.); (V.V.M.); (A.A.K.); (S.M.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Huang Y, Wang S, Huang J, Shen Y, Zou L, Liu H. Investigating the Causal Relationship Between Gut Microbiota and Allergic Conjunctivitis: A Two-Sample Mendelian Randomization Study. Ocul Immunol Inflamm 2024:1-10. [PMID: 39353056 DOI: 10.1080/09273948.2024.2388202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To investigate the causal association between gut microbiota and allergic conjunctivitis. METHODS A two-sample Mendelian randomization (MR) analysis was performed using the summary statistics of gut microbiota (18,340) from MiBio-Gen consortium and allergic conjunctivitis data (n = 218,792) obtained from the IEU Open GWAS project. F-statistics and sensitivity analyses were used to address potential biases and ensure the reliability of our findings. Reverse MR analysis was conducted to assess the possible of reverse causal relationships. RESULTS The inverse variance weighted estimates revealed the protective potential of the phylum Euryarchaeota against allergic conjunctivitis (OR = 0.87, p = 6.17 × 10-4). On the other hand, the genus Christensenellaceae R.7 group (OR = 0.75, p = 2.89 × 10-3), family Peptostreptococcaceae (OR = 0.83, p = 6.22 × 10-3), genus Lachnospiraceae FCS020 group (OR = 0.82, p = 0.02) all showed a suggestive protective association with allergic conjunctivitis. Additionally, sensitivity analysis confirmed the robustness of the above associations. In the reverse MR analysis, no significant causal association was found between gut microbiota and allergic conjunctivitis. CONCLUSION This study has revealed a potential causal correlation between the phylum Euryarchaeota and allergic conjunctivitis, offering new insights to improve prevention and treatment of this condition.
Collapse
Affiliation(s)
- Yuanyang Huang
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinfang Huang
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yining Shen
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Cardoso BB, Amorim C, Franco-Duarte R, Alves JI, Barbosa SG, Silvério SC, Rodrigues LR. Epilactose as a Promising Butyrate-Promoter Prebiotic via Microbiota Modulation. Life (Basel) 2024; 14:643. [PMID: 38792663 PMCID: PMC11123345 DOI: 10.3390/life14050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.
Collapse
Affiliation(s)
- Beatriz B. Cardoso
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
| | - Cláudia Amorim
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Joana I. Alves
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sónia G. Barbosa
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Sara C. Silvério
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.B.C.); (C.A.); (J.I.A.); (S.G.B.); (S.C.S.)
- LABBELS—Associate Laboratory, Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
5
|
Acar C, Celik SK, Ozdemirel HO, Tuncdemir BE, Alan S, Mergen H. Composition of the colon microbiota in the individuals with inflammatory bowel disease and colon cancer. Folia Microbiol (Praha) 2024; 69:333-345. [PMID: 37344611 DOI: 10.1007/s12223-023-01072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
The human intestine is a habitat for microorganisms and, recently, the composition of the intestinal microbiota has been correlated with the etiology of diseases such as inflammations, sores, and tumors. Although many studies have been conducted to understand the composition of that microbiota, expanding these studies to more samples and different backgrounds will improve our knowledge. In this work, we showed the colon microbiota composition and diversity of healthy subjects, patients with inflammatory bowel disease (IBD), and colon cancer by metagenomic sequencing. Our results indicated that the relative abundance of prokaryotic and eukaryotic microbes differs between the healthy vs. tumor biopsies, tumor vs. IBD biopsies, and fresh vs. paraffin-embedded tumor biopsies. Fusobacterium, Escherichia-Shigella, and Streptococcus genera were relatively abundant in fresh tumor biopsies, while Pseudomonas was significantly elevated in IBD biopsies. Additionally, another opportunist pathogen Malasseziales was revealed as the most abundant fungal clade in IBD biopsies, especially in ulcerative colitis. We also found that, while the Basidiomycota:Ascomycota ratio was slightly lower in tumor biopsies compared to biopsies from healthy subjects, there was a significant increase in IBD biopsies. Our work will contribute to the known diversity of prokaryotic and eukaryotic microbes in the colon biopsies in patients with IBD and colon cancer.
Collapse
Affiliation(s)
- Ceren Acar
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Inonu University, Malatya, 44280, Turkey.
| | | | - H Ozgur Ozdemirel
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, 06800, Turkey
| | - Beril Erdem Tuncdemir
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, 06800, Turkey
| | - Saadet Alan
- Faculty of Medicine, Department of Medical Pathology, Inonu University, Malatya, 44000, Turkey
| | - Hatice Mergen
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, 06800, Turkey
| |
Collapse
|
6
|
Kuehnast T, Kumpitsch C, Mohammadzadeh R, Weichhart T, Moissl-Eichinger C, Heine H. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J 2024. [PMID: 38555566 DOI: 10.1111/febs.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.
Collapse
Affiliation(s)
- Torben Kuehnast
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Christina Kumpitsch
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Rokhsareh Mohammadzadeh
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Christine Moissl-Eichinger
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
- BioTechMed Graz, Austria
| | - Holger Heine
- Research Center Borstel - Leibniz Lung Center, Division of Innate Immunity, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
7
|
Kushkevych I, Martínková K, Mráková L, Giudici F, Baldi S, Novak D, Gajdács M, Vítězová M, Dordevic D, Amedei A, Rittmann SKMR. Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:79-89. [PMID: 38486888 PMCID: PMC10939707 DOI: 10.15698/mic2024.03.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition - focusing on sulfate-reducing bacteria (SRB) - in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients' disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Lenka Mráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
8
|
Gan Y, Liu J, Jin M, Zhang Y, Huang S, Ma Q, Wu Y, Xu L, Bao J, Fan Y. The Role of the Gut-Joint Axis in the Care of Psoriatic Arthritis: A Two-Sample Bidirectional Mendelian Randomization Study. Dermatol Ther (Heidelb) 2024; 14:713-728. [PMID: 38451424 PMCID: PMC10965888 DOI: 10.1007/s13555-024-01121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Observational studies and clinical trials have supported the association between gut microbiota and psoriatic arthritis. However, the causal link between gut microbiota and psoriatic arthritis is still unclear. METHODS A two-sample bi-directional Mendelian randomization analysis was performed using the summary statistics of gut microbiota from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium. The summary statistics of psoriatic arthritis were extracted directly from the FinnGen consortium, which consists of 3186 psoriatic arthritis patients and 24,086 controls. Sensitivity analyses were conducted to assess the validity of our findings. Enrichment analyses were used to investigate the biofunction and pathways. RESULTS Inverse variance weighted (IVW) estimates suggested that family Rikenellaceae (P = 0.032) and genus Ruminococcaceae UCG011 (P = 0.014) had a detrimental effect on psoriatic arthritis. We also noticed the negative association between the class Methanobacteria (P = 0.032), order Methanobacteriales (P = 0.032), family Methanobacteriaceae (P = 0.032), genus Eubacterium fissicatena group (P = 0.010), genus Methanobrevibacter (P = 0.031), and genus Butyricicoccus (P = 0.041) with psoriatic arthritis. Sensitivity analyses showed that genus Butyricicoccus had pleiotropy and heterogeneity. According to the results of reverse MR analysis, the causal effect of psoriatic arthritis was found on six taxa, respectivelyc family Clostridiaceae1, family Defluviitaleaceae, genus Butyrivibrio, genus Defluviitaleaceae UCG011, genus Clostridium sensu stricto1, and genus Ruminococcaceae UCG011. CONCLUSION This two-sample bidirectional Mendelian randomization analysis suggested that the gut microbiota had a causal effect on psoriatic arthritis and implied the potential role of probiotics in the management and prevention of psoriatic arthritis.
Collapse
Affiliation(s)
- Yihong Gan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yilin Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzuo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yongsheng Fan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Wang T, Leibrock N, Plugge CM, Smidt H, Zoetendal EG. In vitro interactions between Blautia hydrogenotrophica, Desulfovibrio piger and Methanobrevibacter smithii under hydrogenotrophic conditions. Gut Microbes 2023; 15:2261784. [PMID: 37753963 PMCID: PMC10538451 DOI: 10.1080/19490976.2023.2261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Methanogens, reductive acetogens and sulfate-reducing bacteria play an important role in disposing of hydrogen in gut ecosystems. However, how they interact with each other remains largely unknown. This in vitro study cocultured Blautia hydrogenotrophica (reductive acetogen), Desulfovibrio piger (sulfate reducer) and Methanobrevibacter smithii (methanogen). Results revealed that these three species coexisted and did not compete for hydrogen in the early phase of incubations. Sulfate reduction was not affected by B. hydrogenotrophica and M. smithii. D. piger inhibited the growth of B. hydrogenotrophica and M. smithii after 10 h incubations, and the inhibition on M. smithii was associated with increased sulfide concentration. Remarkably, M. smithii growth lag phase was shortened by coculturing with B. hydrogenotrophica and D. piger. Formate was rapidly used by M. smithii under high acetate concentration. Overall, these findings indicated that the interactions of the hydrogenotrophic microbes are condition-dependent, suggesting their interactions may vary in gut ecosystems.
Collapse
Affiliation(s)
- Taojun Wang
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nils Leibrock
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wetsus European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
11
|
Hassani Y, Aboudharam G, Drancourt M, Grine G. Current knowledge and clinical perspectives for a unique new phylum: Nanaorchaeota. Microbiol Res 2023; 276:127459. [PMID: 37557061 DOI: 10.1016/j.micres.2023.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Nanoarchaea measuring less than 500 nm and encasing an average 600-kb compact genome have been studied for twenty years, after an estimated 4193-million-year evolution. Comprising only four co-cultured representatives, these symbiotic organisms initially detected in deep-sea hydrothermal vents and geothermal springs, have been further distributed in various environmental ecosystems worldwide. Recent isolation by co-culture of Nanopusillus massiliensis from the unique ecosystem of the human oral cavity, prompted us to review the evolutionary diversity of nanaorchaea resulting in a rapidly evolving taxonomiy. Regardless of their ecological niche, all nanoarchaea share limited metabolic capacities correlating with an obligate ectosymbiotic or parasitic lifestyle; focusing on the dynamics of nanoarchaea-bacteria nanoarchaea-archaea interactions at the morphological and metabolic levels; highlighting proteins involved in nanoarchaea attachment to the hosts, as well metabolic exchanges between both organisms; and highlighting clinical nanoarchaeology, an emerging field of research in the frame of the recent discovery of Candidate Phyla radiation (CPR) in human microbiota. Future studies in clinical nanobiology will expand knowledge of the nanaorchaea repertoire associated with human microbiota and diseases, to improve our understanding of the diversity of these nanoorganims and their intreactions with microbiota and host tissues.
Collapse
Affiliation(s)
- Yasmine Hassani
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; IHU Méditerranée Infection, Marseille 13005, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, Marseille 13005, France; Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - Michel Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; IHU Méditerranée Infection, Marseille 13005, France
| | - Ghiles Grine
- Aix-Marseille-Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille 13005, France; Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France.
| |
Collapse
|
12
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
13
|
Katagiri S, Ohsugi Y, Shiba T, Yoshimi K, Nakagawa K, Nagasawa Y, Uchida A, Liu A, Lin P, Tsukahara Y, Iwata T, Tohara H. Homemade blenderized tube feeding improves gut microbiome communities in children with enteral nutrition. Front Microbiol 2023; 14:1215236. [PMID: 37680532 PMCID: PMC10482415 DOI: 10.3389/fmicb.2023.1215236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Enteral nutrition for children is supplied through nasogastric or gastrostomy tubes. Diet not only influences nutritional intake but also interacts with the composition and function of the gut microbiota. Homemade blenderized tube feeding has been administered to children receiving enteral nutrition, in addition to ready-made tube feeding. The purpose of this study was to evaluate the oral/gut microbial communities in children receiving enteral nutrition with or without homemade blenderized tube feeding. Among a total of 30 children, 6 receiving mainly ready-made tube feeding (RTF) and 5 receiving mainly homemade blenderized tube feeding (HBTF) were analyzed in this study. Oral and gut microbiota community profiles were evaluated through 16S rRNA sequencing of saliva and fecal samples. The α-diversity representing the number of observed features, Shannon index, and Chao1 in the gut were significantly increased in HBTF only in the gut microbiome but not in the oral microbiome. In addition, the relative abundances of the phylum Proteobacteria, class Gammaproteobacteria, and genus Escherichia-Shigella were significantly low, whereas that of the genus Ruminococcus was significantly high in the gut of children with HBTF, indicating HBTF altered the gut microbial composition and reducing health risks. Metagenome prediction showed enrichment of carbon fixation pathways in prokaryotes at oral and gut microbiomes in children receiving HBTF. In addition, more complex network structures were observed in the oral cavity and gut in the HBTF group than in the RTF group. In conclusion, HBTF not only provides satisfaction and enjoyment during meals with the family but also alters the gut microbial composition to a healthy state.
Collapse
Affiliation(s)
- Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kanako Yoshimi
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Nagasawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aritoshi Uchida
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Tsukahara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
14
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
15
|
Portolese AC, McMullen BN, Baker SK, Chen See JR, Yochum GS, Koltun WA, Lamendella R, Jeganathan NA. The Microbiome of Complicated Diverticulitis: An Imbalance of Sulfur-Metabolizing Bacteria. Dis Colon Rectum 2023; 66:707-715. [PMID: 36856684 DOI: 10.1097/dcr.0000000000002647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND The progression to acute diverticulitis from the relatively benign condition of colonic diverticulosis is not well characterized. A smaller subset may even develop complicated (perforated) diverticulitis resulting in sepsis and/or death. Characterizing the differences between recurrent, uncomplicated diverticulitis, and the more virulent, complicated diverticulitis is necessary to guide clinical decision-making. Alterations to the microbiome offer a possible explanation for local inflammation and the pathophysiology of diverticular disease. OBJECTIVE This study aimed to characterize the mucosal-associated microbiome in patients with recurrent uncomplicated diverticulitis and complicated (perforated) diverticulitis. DESIGN Microbial DNA was extracted from full-thickness surgical specimens for 16S rRNA gene sequencing, targeting the V4 hypervariable region. Sequences were analyzed and a quantitative characterization based on taxonomic classification was performed. SETTING A tertiary care academic medical center. PATIENTS This study compared 48 patients with recurrent, uncomplicated diverticulitis and 35 patients with radiographically confirmed perforated (complicated) diverticulitis. Tissues were harvested from surgical resection specimens to include both diseased regions and nondiseased (adjacent normal) regions. MAIN OUTCOME MEASURES We assessed differences in relative abundance and taxonomic classification of mucosal-associated microbes in surgical resection specimens from diverticular disease. RESULTS When analyzing the tissue of diverticular resection specimens, the complicated diseased segments demonstrated an increased abundance of sulfur-reducing and sulfur-oxidizing bacteria compared to nondiseased, adjacent normal regions. When comparing diseased segments, tissues of patients with complicated diverticulitis had a marked increase in sulfur-reducing microbes. LIMITATIONS We characterized the mucosal-associated microbiome present at the time of surgical resection, limiting conclusions on its role in pathophysiology. Furthermore, antibiotic usage and bowel preparation before surgery may result in perturbations to microbial flora. CONCLUSIONS The microbiome of complicated diverticulitis is marked by a localized imbalance of sulfur-metabolizing microbes. The abundance of sulfur-reducing microbes may lead to an excess of hydrogen sulfide and subsequent inflammation. See Video Abstract at http://links.lww.com/DCR/C175 . LA MICROBIOMA DE LA DIVERTICULITIS COMPLICADA UN DESEQUILIBRIO DE LAS BACTERIAS METABOLIZADORAS DE AZUFRE ANTECEDENTES: La progresión a diverticulitis aguda de la condición relativamente benigna de diverticulosis colónica no está bien caracterizada. Un subgrupo más pequeño puede incluso desarrollar diverticulitis complicada (perforada) que resulta en sepsis y/o muerte. Es necesario caracterizar las diferencias entre la diverticulitis recurrente no complicada y la diverticulitis complicada más virulenta para guiar la toma de decisiones clínicas. Las alteraciones del microbioma ofrecen una posible explicación de la inflamación local y la fisiopatología de la enfermedad diverticular.OBJETIVO: Caracterizar el microbioma asociado a la mucosa en pacientes con diverticulitis no complicada recurrente y diverticulitis complicada (perforada).DISEÑO: El ADN microbiano se extrajo de especímenes quirúrgicos de espesor completo para la secuenciación del gen 16S rRNA, dirigido a la región hipervariable V4. Se analizaron las secuencias y se realizó una caracterización cuantitativa basada en la clasificación taxonómica.AJUSTE: Un centro médico académico de atención terciaria.PACIENTES: Este estudio comparó 48 pacientes con diverticulitis recurrente no complicada y 35 pacientes con diverticulitis perforada (complicada) confirmada radiográficamente. Se recogieron tejidos de especímenes de resección quirúrgica para incluir tanto regiones enfermas como regiones no enfermas (normales adyacentes).PRINCIPALES MEDIDAS DE RESULTADO: Evaluamos las diferencias en la abundancia relativa y la clasificación taxonómica de los microbios asociados a la mucosa en muestras de resección quirúrgica de enfermedad diverticular.RESULTADOS: Al analizar el tejido de las muestras de resección diverticular, los segmentos enfermos complicados demostraron una mayor abundancia de bacterias reductoras de azufre y oxidantes de azufre en comparación con las regiones normales adyacentes no enfermas. Al comparar segmentos enfermos, los tejidos de pacientes complicados tenían un marcado aumento de microbios reductores de azufre.LIMITACIONES: Caracterizamos el microbioma asociado a la mucosa presente en el momento de la resección quirúrgica, lo que limita las conclusiones sobre su papel en la fisiopatología. Además, el uso de antibióticos y la preparación intestinal antes de la cirugía pueden provocar alteraciones en la flora microbiana.CONCLUSIONES: El microbioma de la diverticulitis complicada está marcado por un desequilibrio localizado de microbios metabolizadores de azufre. La abundancia de microbios reductores de azufre puede provocar un exceso de sulfuro de hidrógeno y la consiguiente inflamación. Consulte Video Resumen en http://links.lww.com/DCR/C175 . (Traducción-Dr. Ingrid Melo ).
Collapse
Affiliation(s)
- Austin C Portolese
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | - Samantha K Baker
- Department of Biology, Juniata College, Huntingdon, Pennsylvania
| | | | - Gregory S Yochum
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Walter A Koltun
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Regina Lamendella
- Department of Biological Sciences, Juniata College, Huntington, Pennsylvania
| | - Nimalan A Jeganathan
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
16
|
Khelaifia S, Virginie P, Belkacemi S, Tassery H, Terrer E, Aboudharam G. Culturing the Human Oral Microbiota, Updating Methodologies and Cultivation Techniques. Microorganisms 2023; 11:microorganisms11040836. [PMID: 37110259 PMCID: PMC10143722 DOI: 10.3390/microorganisms11040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Recent years have been marked by a paradigm shift in the study of the human microbiota, with a re-emergence of culture-dependent approaches. Numerous studies have been devoted to the human microbiota, while studies on the oral microbiota still remain limited. Indeed, various techniques described in the literature may enable an exhaustive study of the microbial composition of a complex ecosystem. In this article, we report different methodologies and culture media described in the literature that can be applied to study the oral microbiota by culture. We report on specific methodologies for targeted culture and specific culture techniques and selection methodologies for cultivating members of the three kingdoms of life commonly found in the human oral cavity, namely, eukaryota, bacteria and archaea. This bibliographic review aims to bring together the various techniques described in the literature, enabling a comprehensive study of the oral microbiota in order to demonstrate its involvement in oral health and diseases.
Collapse
Affiliation(s)
- Saber Khelaifia
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Pilliol Virginie
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Souad Belkacemi
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Herve Tassery
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Elodie Terrer
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| | - Gérard Aboudharam
- Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Univ, IRD, MEPHI, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
- Ecole de Médecine Dentaire, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 05, France
| |
Collapse
|
17
|
Oliver L, Camps B, Julià-Bergkvist D, Amoedo J, Ramió-Pujol S, Malagón M, Bahí A, Torres P, Domènech E, Guardiola J, Serra-Pagès M, Garcia-Gil J, Aldeguer X. Definition of a microbial signature as a predictor of endoscopic post-surgical recurrence in patients with Crohn's disease. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1046414. [PMID: 39086694 PMCID: PMC11285546 DOI: 10.3389/fmmed.2023.1046414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 08/02/2024]
Abstract
Background and aims: Although there are several effective drugs for the treatment of Crohn's disease (CD), almost 70% of patients will require surgical resection during their lifetime. This procedure is not always curative, as endoscopic recurrence occurs in 65%-90% of patients in the first year after surgery. The aetiology of the recurrence is unknown; however, several studies have shown how the resident microbiota is modified after surgery. The aim of this study was to evaluate samples from patients with Crohn's disease before and after an intestinal resection to determine whether there were differences in the abundance of different microbial markers, which may predict endoscopic recurrence at baseline. Methods: In this observational study, a stool sample was obtained from 25 patients with Crohn's disease before undergoing surgery, recruited at three Catalan hospitals. From each sample, DNA was purified and the relative abundance of nine microbial markers was quantified using qPCR. Results: An algorithm composed of four microbial markers (E. coli, F. prausnitzii phylogroup I, Bacteroidetes, and Eubacteria) showed a sensitivity and specificity of 90.91% and 85.71%, respectively, and a positive and negative predictive value of 83.33% and 92.31%, respectively. Conclusion: A microbial signature to determine patients who will have post-surgical recurrence was identified. This tool might be very useful in daily clinical practice, allowing the scheduling of personalized therapy and enabling preventive treatment only in patients who really require it.
Collapse
Affiliation(s)
| | - Blau Camps
- Hospital Universitari de Bellvitge, l’Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | - Anna Bahí
- Institut d’Investigació Biomèdica de Girona—IdIBGi Girona, Girona, Spain
| | - Paola Torres
- Hospital Germans Tries i Pujol, CIBEREHD Badalona, Badalona, Spain
| | - Eugeni Domènech
- Hospital Germans Tries i Pujol, CIBEREHD Badalona, Badalona, Spain
| | - Jordi Guardiola
- Hospital Universitari de Bellvitge, l’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Jesus Garcia-Gil
- GoodGut S.L.U, Girona, Spain
- Biology Department, University of Girona, Girona, Spain
| | - Xavier Aldeguer
- GoodGut S.L.U, Girona, Spain
- Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
- Institut d’Investigació Biomèdica de Girona—IdIBGi Girona, Girona, Spain
| |
Collapse
|
18
|
Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. BIOSENSORS 2023; 13:114. [PMID: 36671949 PMCID: PMC9855562 DOI: 10.3390/bios13010114] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In general, volatile organic compounds (VOCs) have a high vapor pressure at room temperature (RT). It has been reported that all humans generate unique VOC profiles in their exhaled breath which can be utilized as biomarkers to diagnose disease conditions. The VOCs available in exhaled human breath are the products of metabolic activity in the body and, therefore, any changes in its control level can be utilized to diagnose specific diseases. More than 1000 VOCs have been identified in exhaled human breath along with the respiratory droplets which provide rich information on overall health conditions. This provides great potential as a biomarker for a disease that can be sampled non-invasively from exhaled breath with breath biopsy. However, it is still a great challenge to develop a quick responsive, highly selective, and sensitive VOC-sensing system. The VOC sensors are usually coated with various sensing materials to achieve target-specific detection and real-time monitoring of the VOC molecules in the exhaled breath. These VOC-sensing materials have been the subject of huge interest and extensive research has been done in developing various sensing tools based on electrochemical, chemoresistive, and optical methods. The target-sensitive material with excellent sensing performance and capturing of the VOC molecules can be achieved by optimizing the materials, methods, and its thickness. This review paper extensively provides a detailed literature survey on various non-biological VOC-sensing materials including metal oxides, polymers, composites, and other novel materials. Furthermore, this review provides the associated limitations of each material and a summary table comparing the performance of various sensing materials to give a better insight to the readers.
Collapse
Affiliation(s)
- Akhilesh Kumar Pathak
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kankan Swargiary
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntaporn Kongsawang
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathorn Jitpratak
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppasin Ajchareeyasoontorn
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Udomkittivorakul
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charusluk Viphavakit
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Perry LM, Cruz SM, Kleber KT, Judge SJ, Darrow MA, Jones LB, Basmaci UN, Joshi N, Settles ML, Durbin-Johnson BP, Gingrich AA, Monjazeb AM, Carr-Ascher J, Thorpe SW, Murphy WJ, Eisen JA, Canter RJ. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer 2023; 11:jitc-2021-004285. [PMID: 36599469 PMCID: PMC9815021 DOI: 10.1136/jitc-2021-004285] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Groundbreaking studies have linked the gut microbiome with immune homeostasis and antitumor immune responses. Mounting evidence has also demonstrated an intratumoral microbiome, including in soft tissue sarcomas (STS), although detailed characterization of the STS intratumoral microbiome is limited. We sought to characterize the intratumoral microbiome in patients with STS undergoing preoperative radiotherapy and surgery, hypothesizing the presence of a distinct intratumoral microbiome with potentially clinically significant microbial signatures. METHODS We prospectively obtained tumor and stool samples from adult patients with non-metastatic STS using a strict sterile collection protocol to minimize contamination. Metagenomic classification was used to estimate abundance using genus and species taxonomic levels across all classified organisms, and data were analyzed with respect to clinicopathologic factors. RESULTS Fifteen patients were enrolled. Most tumors were located at an extremity (67%) and were histologic grade 3 (87%). 40% were well-differentiated/dedifferentiated liposarcoma histology. With a median follow-up of 24 months, 4 (27%) patients developed metastases, and 3 (20%) died. Despite overwhelming human DNA (>99%) intratumorally, we detected a small but consistent proportion of bacterial DNA (0.02-0.03%) in all tumors, including Proteobacteria, Bacteroidetes, and Firmicutes, as well as viral species. In the tumor microenvironment, we observed a strong positive correlation between viral relative abundance and natural killer (NK) infiltration, and higher NK infiltration was associated with superior metastasis-free and overall survival by immunohistochemical, flow cytometry, and multiplex immunofluorescence analyses. CONCLUSIONS We prospectively demonstrate the presence of a distinct and measurable intratumoral microbiome in patients with STS at multiple time points. Our data suggest that the STS tumor microbiome has prognostic significance with viral relative abundance associated with NK infiltration and oncologic outcome. Additional studies are warranted to further assess the clinical impact of these findings.
Collapse
Affiliation(s)
- Lauren M Perry
- Surgery, University of California Davis, Sacramento, California, USA
| | - Sylvia M Cruz
- Surgery, University of California Davis, Sacramento, California, USA
| | - Kara T Kleber
- Surgery, University of California Davis, Sacramento, California, USA
| | - Sean J Judge
- Surgery, University of California Davis, Sacramento, California, USA
| | - Morgan A Darrow
- Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | - Louis B Jones
- Orthopedics, Baylor Scott & White Health, Dallas, TX, Usa
| | - Ugur N Basmaci
- Surgery, University of California Davis, Sacramento, California, USA
| | - Nikhil Joshi
- Bioinformatics Core, University of California Davis Genome Center, Davis, California, USA
| | - Matthew L Settles
- Bioinformatics Core, University of California Davis Genome Center, Davis, California, USA
| | | | - Alicia A Gingrich
- Surgery, University of California Davis, Sacramento, California, USA
| | - Arta Monir Monjazeb
- Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Janai Carr-Ascher
- Medicine, University of California Davis, Sacramento, California, USA
| | - Steve W Thorpe
- Orthopedic Surgery, University of California Davis, Sacramento, California, USA
| | - William J Murphy
- Medicine, University of California Davis, Sacramento, California, USA,Dermatology, University of California Davis, Davis, California, USA
| | - Jonathan A Eisen
- Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
| | - Robert J Canter
- Surgery, University of California Davis, Sacramento, California, USA
| |
Collapse
|
20
|
Dong S, Wu C, He W, Zhong R, Deng J, Tao Y, Zha F, Liao Z, Fang X, Wei H. Metagenomic and metabolomic analyses show correlations between intestinal microbiome diversity and microbiome metabolites in ob/ob and ApoE−/− mice. Front Nutr 2022; 9:934294. [PMID: 36337626 PMCID: PMC9634818 DOI: 10.3389/fnut.2022.934294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity and atherosclerosis are the most prevalent metabolic diseases. ApoE−/− and ob/ob mice are widely used as models to study the pathogenesis of these diseases. However, how gut microbes, gut bacteriophages, and metabolites change in these two disease models is unclear. Here, we used wild-type C57BL/6J (Wt) mice as normal controls to analyze the intestinal archaea, bacteria, bacteriophages, and microbial metabolites of ob/ob and ApoE−/− mice through metagenomics and metabolomics. Analysis of the intestinal archaea showed that the abundances of Methanobrevibacter and Halolamina were significantly increased and decreased, respectively, in the ob/ob group compared with those in the Wt and ApoE−/− groups (p < 0.05). Compared with those of the Wt group, the relative abundances of the bacterial genera Enterorhabdus, Alistipes, Bacteroides, Prevotella, Rikenella, Barnesiella, Porphyromonas, Riemerella, and Bifidobacterium were significantly decreased (p < 0.05) in the ob/ob mice, and the relative abundance of Akkermansia was significantly decreased in the ApoE−/− group. The relative abundances of A. muciniphila and L. murinus were significantly decreased and increased, respectively, in the ob/ob and ApoE−/− groups compared with those of the Wt group (p < 0.05). Lactobacillus_ prophage_ Lj965 and Lactobacillus _ prophage _ Lj771 were significantly more abundant in the ob/ob mice than in the Wt mice. Analysis of the aminoacyl-tRNA biosynthesis metabolic pathway revealed that the enriched compounds of phenylalanine, glutamine, glycine, serine, methionine, valine, alanine, lysine, isoleucine, leucine, threonine, tryptophan, and tyrosine were downregulated in the ApoE−/− mice compared with those of the ob/ob mice. Aminoacyl-tRNA synthetases are considered manifestations of metabolic diseases and are closely associated with obesity, atherosclerosis, and type 2 diabetes. These data offer new insight regarding possible causes of these diseases and provide a foundation for studying the regulation of various food nutrients in metabolic disease models.
Collapse
Affiliation(s)
- Sashuang Dong
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Chengwei Wu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wencan He
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jing Deng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Co., Ltd., Shanghai, China
| | - Furong Zha
- Shanghai Biozeron Biotechnology Co., Ltd., Shanghai, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Xiang Fang
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Hong Wei
| |
Collapse
|
21
|
Sakai SA, Aoshima M, Sawada K, Horasawa S, Yoshikawa A, Fujisawa T, Kadowaki S, Denda T, Matsuhashi N, Yasui H, Goto M, Yamazaki K, Komatsu Y, Nakanishi R, Nakamura Y, Bando H, Hamaya Y, Kageyama SI, Yoshino T, Tsuchihara K, Yamashita R. Fecal microbiota in patients with a stoma decreases anaerobic bacteria and alters taxonomic and functional diversities. Front Cell Infect Microbiol 2022; 12:925444. [PMID: 36189350 PMCID: PMC9515963 DOI: 10.3389/fcimb.2022.925444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant diseases. Generally, stoma construction is performed following surgery for the resection of the primary tumor in patients with CRC. The association of CRC with the gut microbiota has been widely reported, and the gut microbiota is known to play an important role in the carcinogenesis, progression, and treatment of CRC. In this study, we compared the microbiota of patients with CRC between with and without a stoma using fecal metagenomic sequencing data from SCRUM-Japan MONSTAR-SCREEN, a joint industry-academia cancer research project in Japan. We found that the composition of anaerobes was reduced in patients with a stoma. In particular, the abundance of Alistipes, Akkermansia, Intestinimonas, and methane-producing archaea decreased. We also compared gene function (e.g., KEGG Orthology and KEGG pathway) and found that gene function for methane and short-chain fatty acids (SCFAs) production was underrepresented in patients with a stoma. Furthermore, a stoma decreased Shannon diversity based on taxonomic composition but increased that of the KEGG pathway. These results suggest that the feces of patients with a stoma have a reduced abundance of favorable microbes for cancer immunotherapy. In conclusion, we showed that a stoma alters the taxonomic and functional profiles in feces and may be a confounding factor in fecal microbiota analysis.
Collapse
Affiliation(s)
- Shunsuke A. Sakai
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masato Aoshima
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Satoshi Horasawa
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ayumu Yoshikawa
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Department Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Tadamichi Denda
- Divisioin of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological surgery Pediatric surgery, Gifu University Hospital, Gifu, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Section, National Cancer Center Hospital East, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yamato Hamaya
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Graduate School of Frontier Science, Department of Integrated Biosciences, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
- *Correspondence: Riu Yamashita,
| |
Collapse
|
22
|
Wang X, Wu X, Shang Y, Gao Y, Li Y, Wei Q, Dong Y, Mei X, Zhou S, Sun G, Liu L, Lige B, Zhang Z, Zhang H. High-Altitude Drives the Convergent Evolution of Alpha Diversity and Indicator Microbiota in the Gut Microbiomes of Ungulates. Front Microbiol 2022; 13:953234. [PMID: 35875556 PMCID: PMC9301279 DOI: 10.3389/fmicb.2022.953234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Convergent evolution is an important sector of evolutionary biology. High-altitude environments are one of the extreme environments for animals, especially in the Qinghai Tibet Plateau, driving the inquiry of whether, under broader phylogeny, high-altitude factors drive the convergent evolution of Artiodactyla and Perissodactyla gut microbiomes. Therefore, we profiled the gut microbiome of Artiodactyla and Perissodactyla at high and low altitudes using 16S rRNA gene sequencing. According to cluster analyses, the gut microbiome compositions of high-altitude Artiodactyla and Perissodactyla were not grouped together and were far from those of low-altitude Artiodactyla and Perissodactyla. The Wilcoxon’s test in high-altitude ungulates showed significantly higher Sobs and Shannon indices than in low-altitude ungulates. At the phylum level, Firmicutes and Patescibacteria were significantly enriched in the gut microbiomes of high-altitude ungulates, which also displayed a higher Firmicutes/Bacteroidetes value than low-altitude ungulates. At the family level, Ruminococcaceae, Christensenellaceae, and Saccharimonadaceae were significantly enriched in the gut microbiomes of high-altitude ungulates. Our results also indicated that the OH and FH groups shared two significantly enriched genera, Christensenellaceae_R_7_group and Candidatus_Saccharimonas. These findings indicated that a high altitude cannot surpass the order level to drive the convergent evolution of ungulate gut microbiome composition but can drive the convergent evolution of alpha diversity and indicator microbiota in the gut microbiome of ungulates. Overall, this study provides a novel perspective for understanding the adaptation of ungulates to high-altitude environments.
Collapse
Affiliation(s)
- Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | | | - Ying Li
- Wild World Jinan, Jinan, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yuehuan Dong
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xuesong Mei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Shengyang Zhou
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, China
| | | | - Bi Lige
- Forestry and Grassland Station, Golmud, China
| | - Zhihao Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
- *Correspondence: Honghai Zhang,
| |
Collapse
|
23
|
Zhang S, Ning R, Zeng B, Deng F, Kong F, Guo W, Zhao J, Li Y. Gut Microbiota Composition and Metabolic Potential of Long-Living People in China. Front Aging Neurosci 2022; 14:820108. [PMID: 35875797 PMCID: PMC9300991 DOI: 10.3389/fnagi.2022.820108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Individuals with naturally long-life spans have been extensively studied to gain a greater understanding of what factors contribute to their overall health and ability to delay or avoid certain diseases. Our previous work showed that gut microbiota can be a new avenue in healthy aging studies. In the present study, a total of 86 Chinese individuals were assigned into three groups: the long-living group (90 + years old; n = 28), the elderly group (65–75 years old; n = 31), and the young group (24–48 years old; n = 27). These groups were used to explore the composition and functional genes in the microbiota community by using the metagenomic sequencing method. We found that long-living individuals maintained high diversity in gene composition and functional profiles. Furthermore, their microbiota displays less inter-individual variation than that of elderly adults. In the taxonomic composition, it was shown that long-living people contained more short-chain fatty acid (SCFA)-producing bacteria and a decrease in certain pathogenic bacteria. Functional analysis also showed that the long-living people were enriched in metabolism metabolites methanol, trimethylamine (TMA), and CO2 to methane, and lysine biosynthesis, but the genes related to riboflavin (vitamin B2) metabolism and tryptophan biosynthesis were significantly reduced in long-living individuals. Further, we found that long-living people with enriched SCFA- and lactic-producing bacteria and related genes, highly centered on producing key lactic acid genes (ldhA) and the genes of lysine that are metabolized to the butyrate pathway. In addition, we compared the gut microbiota signatures of longevity in different regions and found that the composition of the gut microbiota of the long-lived Chinese and Italian people was quite different, but both groups were enriched in genes related to methane production and glucose metabolism. In terms of SCFA metabolism, the Chinese long-living people were enriched with bacteria and genes related to butyric acid production, while the Italian long-living people were enriched with more acetic acid-related genes. These findings suggest that the gut microbiota of Chinese long-living individuals include more SCFA-producing bacteria and genes, metabolizes methanol, TMA, and CO2, and contains fewer pathogenic bacteria, thereby potentially contributing to the healthy aging of humans.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruihong Ning
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Ying Li,
| |
Collapse
|
24
|
Catlett JL, Carr S, Cashman M, Smith MD, Walter M, Sakkaff Z, Kelley C, Pierobon M, Cohen MB, Buan NR. Metabolic Synergy between Human Symbionts Bacteroides and Methanobrevibacter. Microbiol Spectr 2022; 10:e0106722. [PMID: 35536023 PMCID: PMC9241691 DOI: 10.1128/spectrum.01067-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing techniques to analyze growth under a range of conditions representing the nutrient environment of the host. We verify that B. thetaiotaomicron fermentation products are sufficient for M. smithii growth and that accumulation of fermentation products alters secretion of metabolites by B. thetaiotaomicron to benefit M. smithii. Studies suggest that B. thetaiotaomicron metabolic efficiency is greater in the absence of fermentation products or in the presence of M. smithii. Under certain conditions, B. thetaiotaomicron and M. smithii form interspecies granules consistent with behavior observed for syntrophic partnerships between microbes in soil or sediment enrichments and anaerobic digesters. Furthermore, when vitamin B12, hematin, and hydrogen gas are abundant, coculture growth is greater than the sum of growth observed for monocultures, suggesting that both organisms benefit from a synergistic mutual metabolic relationship. IMPORTANCE The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions. We studied the interactions between two dominant human gut microbes, B. thetaiotaomicron and M. smithii, using a seven-component culturing approach that allows the systematic examination of the metabolic complexity of this binary microbial system. By combining high-throughput methods with machine learning techniques, we were able to investigate the interactions between two dominant genera of the gut microbiome in a wide variety of environmental conditions. Our approach can be broadly applied to studying microbial interactions and may be extended to evaluate and curate computational metabolic models. The software tools developed for this study are available as user-friendly tutorials in the Department of Energy KBase.
Collapse
Affiliation(s)
- Jennie L. Catlett
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sean Carr
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Megan D. Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mary Walter
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zahmeeth Sakkaff
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christine Kelley
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Massimiliano Pierobon
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Myra B. Cohen
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Computer Science, Iowa State University, Ames, Iowa, USA
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
25
|
Krawczyk KT, Locht C, Kowalewicz-Kulbat M. Halophilic Archaea Halorhabdus Rudnickae and Natrinema Salaciae Activate Human Dendritic Cells and Orient T Helper Cell Responses. Front Immunol 2022; 13:833635. [PMID: 35720372 PMCID: PMC9204267 DOI: 10.3389/fimmu.2022.833635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Halophilic archaea are procaryotic organisms distinct from bacteria, known to thrive in hypersaline environments, including salt lakes, salterns, brines and salty food. They have also been identified in the human microbiome. The biological significance of halophiles for human health has rarely been examined. The interactions between halophilic archaea and human dendritic cells (DCs) and T cells have not been identified so far. Here, we show for the first time that the halophilic archaea Halorhabdus rudnickae and Natrinema salaciae activate human monocyte-derived DCs, induce DC maturation, cytokine production and autologous T cell activation. In vitro both strains induced DC up-regulation of the cell-surface receptors CD86, CD80 and CD83, and cytokine production, including IL-12p40, IL-10 and TNF-α, but not IL-23 and IL-12p70. Furthermore, autologous CD4+ T cells produced significantly higher amounts of IFN-γ and IL-13, but not IL-17A when co-cultured with halophile-stimulated DCs in comparison to T cells co-cultured with unstimulated DCs. IFN-γ was almost exclusively produced by naïve T cells, while IL-13 was produced by both naïve and memory CD4+ T cells. Our findings thus show that halophilic archaea are recognized by human DCs and are able to induce a balanced cytokine response. The immunomodulatory functions of halophilic archaea and their potential ability to re-establish the immune balance may perhaps participate in the beneficial effects of halotherapies.
Collapse
Affiliation(s)
- Krzysztof T Krawczyk
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
26
|
Rashed R, Valcheva R, Dieleman LA. Manipulation of Gut Microbiota as a Key Target for Crohn's Disease. Front Med (Lausanne) 2022; 9:887044. [PMID: 35783604 PMCID: PMC9244564 DOI: 10.3389/fmed.2022.887044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) sub-type characterized by transmural chronic inflammation of the gastrointestinal tract. Research indicates a complex CD etiology involving genetic predisposition and immune dysregulation in response to environmental triggers. The chronic mucosal inflammation has been associated with a dysregulated state, or dysbiosis, of the gut microbiome (bacteria), mycobiome (fungi), virome (bacteriophages and viruses), and archeaome (archaea) further affecting the interkingdom syntrophic relationships and host metabolism. Microbiota dysbiosis in CD is largely described by an increase in facultative anaerobic pathobionts at the expense of strict anaerobic Firmicutes, such as Faecalibacterium prausnitzii. In the mycobiome, reduced fungal diversity and fungal-bacteria interactions, along with a significantly increased abundance of Candida spp. and a decrease in Saccharomyces cerevisiae are well documented. Virome analysis also indicates a significant decrease in phage diversity, but an overall increase in phages infecting bacterial groups associated with intestinal inflammation. Finally, an increase in methanogenic archaea such as Methanosphaera stadtmanae exhibits high immunogenic potential and is associated with CD etiology. Common anti-inflammatory medications used in CD management (amino-salicylates, immunomodulators, and biologics) could also directly or indirectly affect the gut microbiome in CD. Other medications often used concomitantly in IBD, such as antibiotics, antidepressants, oral contraceptives, opioids, and proton pump inhibitors, have shown to alter the gut microbiota and account for increased susceptibility to disease onset or worsening of disease progression. In contrast, some environmental modifications through alternative therapies including fecal microbiota transplant (FMT), diet and dietary supplements with prebiotics, probiotics, and synbiotics have shown potential protective effects by reversing microbiota dysbiosis or by directly promoting beneficial microbes, together with minimal long-term adverse effects. In this review, we discuss the different approaches to modulating the global consortium of bacteria, fungi, viruses, and archaea in patients with CD through therapies that include antibiotics, probiotics, prebiotics, synbiotics, personalized diets, and FMT. We hope to provide evidence to encourage clinicians and researchers to incorporate these therapies into CD treatment options, along with making them aware of the limitations of these therapies, and indicate where more research is needed.
Collapse
|
27
|
Hawkins GM, Burkett WC, McCoy AN, Nichols HB, Olshan AF, Broaddus R, Merker JD, Weissman B, Brewster WR, Roach J, Keku TO, Bae-Jump V. Differences in the microbial profiles of early stage endometrial cancers between Black and White women. Gynecol Oncol 2022; 165:248-256. [PMID: 35277280 PMCID: PMC9093563 DOI: 10.1016/j.ygyno.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Black women suffer a higher mortality from endometrial cancer (EC) than White women. Potential biological causes for this disparity include a higher prevalence of obesity and more lethal histologic/molecular subtypes. We hypothesize that another biological factor driving this racial disparity could be the EC microbiome. METHODS Banked tumor specimens of postmenopausal, Black and White women undergoing hysterectomy for early stage endometrioid EC were identified. The microbiota of the tumors were characterized by bacterial 16S rRNA sequencing. The microbial component of endometrioid ECs in The Cancer Genome Atlas (TCGA) database were assessed for comparison. RESULTS 95 early stage ECs were evaluated: 23 Black (24%) and 72 White (76%). Microbial diversity was increased (p < 0.001), and Firmicutes, Cyanobacteria and OD1 phyla abundance was higher in tumors from Black versus White women (p < 0.001). Genus level abundance of Dietzia and Geobacillus were found to be lower in tumors of obese Black versus obese White women (p < 0.001). Analysis of early stage ECs in TCGA found that microbial diversity was higher in ECs from Black versus White women (p < 0.05). When comparing ECs from obese Black versus obese White women, 5 bacteria distributions were distinct, with higher abundance of Lactobacillus acidophilus in ECs from Black women being the most striking difference. Similarly in TCGA, Dietzia and Geobacillus were more common in ECs from White women compared to Black. CONCLUSION Increased microbial diversity and the distinct microbial profiles between ECs of obese Black versus obese White women suggests that intra-tumoral bacteria may contribute to EC disparities and pathogenesis.
Collapse
Affiliation(s)
- Gabrielle M Hawkins
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America
| | - Wesley C Burkett
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America.
| | - Amber N McCoy
- University of North Carolina at Chapel Hill, Department of Medicine, Center for Gastrointestinal Biology and Disease, United States of America.
| | - Hazel B Nichols
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Epidemiology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| | - Andrew F Olshan
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Epidemiology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| | - Russell Broaddus
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America; University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, United States of America.
| | - Jason D Merker
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America; University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, United States of America.
| | - Bernard Weissman
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America; University of North Carolina at Chapel Hill, Department of Pathology and Laboratory Medicine, United States of America.
| | - Wendy R Brewster
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| | - Jeffrey Roach
- University of North Carolina at Chapel Hill, Department of Medicine, Center for Gastrointestinal Biology and Disease, United States of America.
| | - Temitope O Keku
- University of North Carolina at Chapel Hill, Department of Medicine, Center for Gastrointestinal Biology and Disease, United States of America.
| | - Victoria Bae-Jump
- University of North Carolina at Chapel Hill, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, United States of America; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, United States of America.
| |
Collapse
|
28
|
Leszkowicz J, Plata-Nazar K, Szlagatys-Sidorkiewicz A. Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients 2022; 14:1785. [PMID: 35565753 PMCID: PMC9105309 DOI: 10.3390/nu14091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Lactose intolerance and constipation are common in children and impact everyday life, not only for patients but also their families. Both conditions can be comorbid with other diseases or form a part of their clinical presentation, but constipation is not usually associated with lactose intolerance. The typical symptoms of lactose intolerance include abdominal pain, bloating, flatus, diarrhoea, borborygmi, and less frequently nausea and vomiting. In approximately 30% of cases, constipation can be a symptom of lactose intolerance. Constipation is characterized by infrequent bowel movements, hard and/or large stools, painful defecation, and faecal incontinence, and is often accompanied by abdominal pain. This paper provides a narrative review on lactose intolerance, its epidemiology, pathogenesis, the correlation between lactose intolerance and constipation in children, and potential mechanisms of such association.
Collapse
Affiliation(s)
- Julia Leszkowicz
- Department of Paediatrics, Gastroenterology, Allergology and Paediatric Nutrition, Faculty of Medicine, Medical University of Gdańsk, Nowe Ogrody 1-6, 80-803 Gdańsk, Poland; (K.P.-N.); (A.S.-S.)
| | | | | |
Collapse
|
29
|
Zheng H, Cao H, Zhang D, Huang J, Li J, Wang S, Lu J, Li X, Yang G, Shi X. Cordyceps militaris Modulates Intestinal Barrier Function and Gut Microbiota in a Pig Model. Front Microbiol 2022; 13:810230. [PMID: 35369439 PMCID: PMC8969440 DOI: 10.3389/fmicb.2022.810230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of Cordyceps militaris (CM) on intestinal barrier function and gut microbiota in a pig model. A total of 160 pigs were randomly allocated to either a control group (fed the basal diet) or a CM group (fed the basal diet supplemented with 300 mg/kg CM). CM improved intestinal morphology and increased the numbers of goblet cells and intraepithelial lymphocytes. CM also elevated the expression of zona occluden-1, claudin-1, mucin-2 and secretory immunoglobulin A. Furthermore, the mucosal levels of pro-inflammatory cytokines were downregulated while the levels of anti-inflammatory cytokines were upregulated in the CM group. Mechanistically, CM downregulated the expression of key proteins of the TLR4/MyD88/NF-κB signaling pathway. Moreover, CM altered the colonic microbial composition and increased the concentrations of acetate and butyrate. In conclusion, CM can modulate the intestinal barrier function and gut microbiota, which may provide a new strategy for improving intestinal health.
Collapse
|
30
|
Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit Rev Anal Chem 2022; 53:1828-1839. [PMID: 35201946 DOI: 10.1080/10408347.2022.2043145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomarkers are biological molecules associated with physiological changes of the body and aids in the detecting the onset of disease in patients. There is an urgent need for self-monitoring and early detection of cardiovascular and other health complications. Several blood-based biomarkers have been well established in diagnosis and monitoring the onset of diseases. However, the detection level of biomarkers in bed-side analysis is difficult and complications arise due to the endothelial dysfunction. Currently single volatile organic compounds (VOCs) based sensors are available for the detection of human diseases and no dedicated nanosensor is available for the elderly. Moreover, accuracy of the sensors based on a single analyte is limited. Hence, breath analysis has received enormous attention in healthcare due to its relatively inexpensive, rapid, and noninvasive methods for detecting diseases. This review gives a detailed analysis of how biomarker imprinted nanosensor can be used as a noninvasive method for detecting VOC to health issues early using exhaled breath analysis.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan
| | - Palaniappan Ramasamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education & Research, Chennai, Tamil Nadu, India
| | - Narayanan Rajnish
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vaseeharan Baskaralingam
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
31
|
First Detection of Methanogens in Orthopedic Prosthesis Infection: A Four-Case Founding Series. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Orthopedic prosthesis infection must be medically managed after appropriate microbiological documentation. While bacteria and fungi are acknowledged to be causative opportunistic pathogens in this situation, the potential role of methanogens in orthopedic prosthesis infections is still unknown. In a retrospective study, a total of 100 joint and bone samples collected from 25 patients were screened by specific PCR assays for the detection of methanogens. PCR-positive samples were observed by autofluorescence, electron microscopy and tentatively cultured under specific culture conditions. Methanogens were detected by quantitative PCR in 4/100 samples, in the presence of negative controls. Sequencing identified Methanobrevibacter oralis in two cases, Methanobrevibacter smithii in one case and Methanobrevibacter wolinii in one case. Microscopic methods confirmed molecular findings and bacterial culture yielded two strains of Staphylococcus aureus, one strain of Staphylococcus epidermidis and one strain of Proteus mirabilis. These unprecedented data highlight the presence of methanogens in joint and bone samples of patients also diagnosed with bacterial orthopedic prosthesis infection, questioning the role of methanogens as additional opportunistic co-pathogens in this situation.
Collapse
|
32
|
Takakura W, Chang C, Pimentel M, Mo G, Torosyan J, Hosseini A, Wang J, Kowaleski E, Mathur R, Chang B, Pichetshote N, Rezaie A. Exhaled Methane is Associated with a Lower Heart Rate. Cardiology 2021; 147:225-229. [PMID: 34915468 DOI: 10.1159/000521434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND In humans, methane (CH4) is exclusively produced by the intestinal microbiota and has been implicated in several conditions including cardiovascular disease. After microbial production of CH4 in the gut, it steadily crosses into the systemic circulation and reaches the lungs where it can be detected in the exhaled breath, as a surrogate measure for intestinal CH4 production. Recent reports have shown an association between CH4 and vagal dysfunction as well as the inhibition of CH4 activity on ileal contractions with atropine, suggesting its action on the parasympathetic nervous system. Given these findings we hypothesized that CH4 may be affecting resting heart rate based on the potential effect of CH4 on the vagus nerve. OBJECTIVES Given its possible role in the parasympathetic nervous system, we aimed to study the relationship between breath CH4 and resting heart rate (HR) in humans. Additionally, we performed a longitudinal study analyzing the change in HR and its association to breath CH4 over time. METHODS First, we reviewed 1,126 subjects and compared HR in subjects with detectable and undetectable breath CH4. Second, we performed a post-hoc analysis of a randomized control trial to compare the change in HR for those who had an increase in breath CH4 vs those that had a decrease in breath CH4 over 14 weeks. Lastly, we assessed whether a larger decrease in CH4 is associated with a larger increase in HR over time. RESULTS In the retrospective cohort, subjects with detectable CH4 had a lower HR compared to those with undetectable CH4 (73.0±0.83 vs 76.0±0.44 beats/min; p=0.01). In the post-hoc analysis, a decrease in CH4 over time was associated with an increase in heart rate (median ∆ = 6.5 ± 8.32 beats/min, p=0.0006). Lastly, we demonstrated a biological gradient whereby a larger drop in CH4 is associated with a greater increase in heart rate (R= -0.31, p=0.03). CONCLUSION Our findings suggest a potential role for the microbiome (and specifically CH4 from methanogens) to regulate heart rate. Considering these findings, mechanistic studies are warranted to further investigate this potential novel microbiome-neurocardiac axis.
Collapse
Affiliation(s)
- Will Takakura
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA,
| | - Christine Chang
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Gina Mo
- Division of General Internal Medicine, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - John Torosyan
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Edward Kowaleski
- Research Informatic and Scientific Computing Core Cedars-Sinai, Los Angeles, California, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Bianca Chang
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Nipaporn Pichetshote
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Department of Medicine, West Hollywood, California, USA
| |
Collapse
|
33
|
Houshyar Y, Massimino L, Lamparelli LA, Danese S, Ungaro F. Going Beyond Bacteria: Uncovering the Role of Archaeome and Mycobiome in Inflammatory Bowel Disease. Front Physiol 2021; 12:783295. [PMID: 34938203 PMCID: PMC8685520 DOI: 10.3389/fphys.2021.783295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.
Collapse
Affiliation(s)
| | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
34
|
Methanogen Abundance Thresholds Capable of Differentiating In Vitro Methane Production in Human Stool Samples. Dig Dis Sci 2021; 66:3822-3830. [PMID: 33247793 DOI: 10.1007/s10620-020-06721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal methane (CH4) gas production has been associated with a number of clinical conditions and may have important metabolic and physiological effects. AIMS In this study, taxonomic and functional gene analyses and in vitro CH4 gas measurements were used to determine if molecular markers can potentially serve as clinical tests for colonic CH4 production. METHODS We performed a cross-sectional study involving full stool samples collected from 33 healthy individuals. In vitro CH4 gas measurements were obtained after 2-h incubation of stool samples and used to characterize samples as CH4 positive (CH4+) and CH4 negative (CH4-; n = 10 and 23, respectively). Next, we characterized the fecal microbiota through high-throughput DNA sequencing with a particular emphasis on archaeal phylum Euryarchaeota. Finally, qPCR analyses, targeting the mcrA gene, were done to determine the ability to differentiate CH4+ versus CH4- samples and to delineate major methanogen species associated with CH4 production. RESULTS Methanobrevibacter was found to be the most abundant methane producer and its relative abundance provides a clear distinction between CH4+ versus CH4- samples. Its sequencing-based relative abundance detection threshold for CH4 production was calculated to be 0.097%. The qPCR-based detection threshold separating CH4+ versus CH4- samples, based on mcrA gene copies, was 5.2 × 105 copies/g. CONCLUSION Given the decreased time-burden placed on patients, a qPCR-based test on a fecal sample can become a valuable tool in clinical assessment of CH4 producing status.
Collapse
|
35
|
Nagoya M, Kouzuma A, Watanabe K. Codh/Acs-Deficient Methanogens Are Prevalent in Anaerobic Digesters. Microorganisms 2021; 9:microorganisms9112248. [PMID: 34835373 PMCID: PMC8621161 DOI: 10.3390/microorganisms9112248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Methanogens are archaea that grow by producing methane as a catabolic end product and thrive in diverse anaerobic habitats, including soil, sediments, oil reservoirs, digestive tracts, and anaerobic digesters. Methanogens have typically been classified into three types-namely, hydrogenotrophic, acetoclastic, and methylotrophic methanogens. In addition, studies have found methanogens that require both hydrogen/CO2 and organics, such as acetate, for growth. Genomic analyses have shown that these methanogens lack genes for carbon monoxide dehydrogenase/acetyl-CoA synthase (Codh/Acs), one of the oldest enzymes that catalyzes the central step in the Wood-Ljungdahl pathway. Since these methanogens have been found dominant in such habitats as digestive tracts and anaerobic digesters, it is suggested that the loss of Codh/Acs confers ecological advantages on methanogens in these habitats. Comparisons in genomes of methanogens suggest the possibility that these methanogens have emerged recently in anaerobic digesters and are currently under the process of prevalence. We propose that an understanding of the genetic and ecological processes associated with the emergence and prevalence of these methanogens in anaerobic digesters would offer novel evolutionary insights into microbial ecology.
Collapse
|
36
|
Liu CJ, Chen SQ, Zhang SY, Wang JL, Tang XD, Yang KX, Li XR. The comparison of microbial communities in thyroid tissues from thyroid carcinoma patients. J Microbiol 2021; 59:988-1001. [PMID: 34613604 DOI: 10.1007/s12275-021-1271-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
Thyroid carcinoma is a common endocrine organ cancer associated with abnormal hormone secretion, leading to the disorder of metabolism. The intestinal microbiota is vital to maintain digestive and immunologic homeostasis. The relevant information of the microbial community in the gut and thyroid, including composition, structure, and relationship, is unclear in thyroid carcinoma patients. A total of 93 samples from 25 patients were included in this study. The results showed that microbial communities existed in thyroid tissue; gut and thyroid had high abundance of facultative anaerobes from the Proteobacteria phyla. The microbial metabolism from the thyroid and gut may be affected by the thyroid carcinoma cells. The cooccurrence network showed that the margins of different thyroid tissues were unique areas with more competition; the stabilization of microcommunities from tissue and stool may be maintained by several clusters of species that may execute different vital metabolism processes dominantly that are attributed to the microenvironment of cancer.
Collapse
Affiliation(s)
- Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Si-Qian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Si-Yao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Jia-Lun Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China
| | - Xiao-Dan Tang
- Gastroenterology Department, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, P. R. China.,Gastroenterology Department, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, P. R. China
| | - Kun-Xian Yang
- Oncology Department, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, P. R. China. .,Oncology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, P. R. China.
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, P. R. China.
| |
Collapse
|
37
|
Zhang Y, Dong Y, Lu P, Wang X, Li W, Dong H, Fan S, Li D. Gut metabolite Urolithin A mitigates ionizing radiation-induced intestinal damage. J Cell Mol Med 2021; 25:10306-10312. [PMID: 34595829 PMCID: PMC8572803 DOI: 10.1111/jcmm.16951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Ionizing radiation (IR)‐induced intestinal damage is the major and common injury of patients receiving radiotherapy. Urolithin A (UroA) is a metabolite of the intestinal flora of ellagitannin, a compound found in fruits and nuts such as pomegranates, strawberries and walnuts. UroA shows the immunomodulatory and anti‐inflammatory capacity in various metabolic diseases. To evaluate the radioprotective effects, UroA(0.4, 2 and 10 mg/kg) were intraperitoneally injected to C57BL/6 male mice 48, 24, 1 h prior to and 24 h after 9.0Gy TBI. The results showed that UroA markedly upregulated the survival of irradiated mice, especially at concentration of 2 mg/kg. UroA improved the intestine morphology architecture and the regeneration ability of enterocytes in irradiated mice. Then, UroA significantly decreased the apoptosis of enterocytes induced by radiation. Additionally, 16S rRNA sequencing analysis showed the effect of UroA is associated with the recovery of the IR‐induced intestinal microbacteria profile changes in mice. Therefore, our results determinated UroA could be developed as a potential candidate for radiomitigators in radiotherapy and accidental nuclear exposure. And the beneficial functions of UroA might be associated with the inhibition of p53‐mediated apoptosis and remodelling of the gut microbes.
Collapse
Affiliation(s)
- Yuanyang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Ping Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
38
|
Fu R, Li Z, Zhou R, Li C, Shao S, Li J. The mechanism of intestinal flora dysregulation mediated by intestinal bacterial biofilm to induce constipation. Bioengineered 2021; 12:6484-6498. [PMID: 34517785 PMCID: PMC8806846 DOI: 10.1080/21655979.2021.1973356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore mechanism of intestinal flora dysregulation promoting constipation, 60 specific pathogen-free (SPF) mice were used as research objects and were treated with constipation population fecal fluid gavage and distilled water gavage. Then, relationship between intestinal dysregulation and constipation in mice with biofilm-mediated intestinal flora was investigated in vitro. The results showed that recombinant serotonin transporter (SERT) messenger ribonucleic acid (mRNA) level of the constipation population fecal fluid gavage group and the relative expression level of SERT mRNA were 1.61 ± 0.08 and 1.49 ± 0.06, which were higher markedly than those of distilled water group (P < 0.05). The level of 5-hydroxytryptamine (5-HT) in colonic tissue of the constipation population fecal fluid gavage group was 145.36 ± 14.12 ng/mL, and the expression level of 5-HT on the surface of epithelial cells of biofilm-positive colonic tissue was 20.11 ± 2.03, which were significantly lower than those of the distilled water group, with statistical significance (P < 0.05). Besides, the microbial sequencing of fecal flora indicated that The Akk and bacteroidetes ofconstipation population fecal fluid gavage group were higher hugely than those of distilled water group (P < 0.05).In conclusion, after the occurrence of constipation, the diversity of intestinal microflora decreased, and the probiotics reduced. Iintestinal microflora dysregulation would lead to increase of SERT expression level in defecation function and intestinal motility in mice, and the decrease of 5-HT, thereby changing the intestinal movement resulting in mucosal protective barrier damage,thereby causing changes in intestinal movement and the destruction of the intestinal mucosal protective barrier, which eventually resulted in constipation. The occurrence of constipation could be improved by regulating balance of intestinal flora, increasing the diversity of flora, and reducing the genus of opportunistic pathogens.
Collapse
Affiliation(s)
- Ruibiao Fu
- Department of Gastrointestinal Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhongpeng Li
- Department of Gastrointestinal Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Zhou
- Department of Gastrointestinal Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chaoyang Li
- Department of Gastrointestinal Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shuai Shao
- Department of Gastrointestinal Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jin Li
- Department of Gastrointestinal Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
39
|
Abou Chacra L, Fenollar F. Exploring the global vaginal microbiome and its impact on human health. Microb Pathog 2021; 160:105172. [PMID: 34500016 DOI: 10.1016/j.micpath.2021.105172] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Around the world, more than 175,000,000 women are diagnosed every year with gynaecological disease, in many cases contributing to high morbidity and mortality. For this reason, knowledge of the composition of the vaginal microbiome and its variations represents a real health challenge, as this is key to improving therapeutic management. This review traces the history of the poorly known vaginal microbiome and focuses on the latest findings concerning this ecosystem. Studies in the past decade have targeted complex bacterial communities within the vagina. However, due to the development of technology and the emergence of next generation sequencing (NGS), the exact definition of the vaginal microbiome has changed and can no longer be linked solely to the presence of bacteria. In order to reach a global view of the vaginal microbiome, it is essential to take into account all microorganisms that the vagina harbours, including fungi, viruses, archaea, and candidate phyla radiation. Although these communities represent only a minimal percentage of the vaginal microbiome, they may act as modifiers of its basic physiology and may play a key role in the maintenance of microbial communities, as well as metabolic and immune functions. Studies of the complex interactions between these different microorganisms have recently begun and are not yet fully understood. Results to date indicate that these microbial communities together constitute the first line of defence against infections. On the other hand, the slightest disturbance in this microbiome may lead to disease. For this reason, enhanced knowledge of these associations is critical to better identify predispositions to certain illnesses, which may open new therapeutic avenues. Currently however, only the tip of the iceberg is understood and current research on this ecosystem is revolutionising our knowledge and understanding of human health and disease.
Collapse
Affiliation(s)
- Linda Abou Chacra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
40
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
41
|
Hernández-González T, González-Barrio R, Escobar C, Madrid JA, Periago MJ, Collado MC, Scheer FAJL, Garaulet M. Timing of chocolate intake affects hunger, substrate oxidation, and microbiota: A randomized controlled trial. FASEB J 2021; 35:e21649. [PMID: 34164846 DOI: 10.1096/fj.202002770rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Eating chocolate in the morning or in the evening/at night, may differentially affect energy balance and impact body weight due to changes in energy intake, substrate oxidation, microbiota (composition/function), and circadian-related variables. In a randomized controlled trial, postmenopausal females (n = 19) had 100 g of chocolate in the morning (MC), in the evening/at night (EC), or no chocolate (N) for 2 weeks and ate any other food ad libitum. Our results show that 14 days of chocolate intake did not increase body weight. Chocolate consumption decreased hunger and desire for sweets (P < .005), and reduced ad libitum energy intake by ~300 kcal/day during MC and ~150 kcal/day during EC (P = .01), but did not fully compensate for the extra energy contribution of chocolate (542 kcal/day). EC increased physical activity by +6.9%, heat dissipation after meals +1.3%, and carbohydrate oxidation by +35.3% (P < .05). MC reduced fasting glucose (4.4%) and waist circumference (-1.7%) and increased lipid oxidation (+25.6%). Principal component analyses showed that both timings of chocolate intake resulted in differential microbiota profiles and function (P < .05). Heat map of wrist temperature and sleep records showed that EC induced more regular timing of sleep episodes with lower variability of sleep onset among days than MC (60 min vs 78 min; P = .028). In conclusion, having chocolate in the morning or in the evening/night results in differential effects on hunger and appetite, substrate oxidation, fasting glucose, microbiota (composition and function), and sleep and temperature rhythms. Results highlight that the "when" we eat is a relevant factor to consider in energy balance and metabolism.
Collapse
Affiliation(s)
- Teresa Hernández-González
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Rocío González-Barrio
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of Internacional Excellence, University of Murcia, Murcia, Spain
| | - Carolina Escobar
- Department of Anatomy, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juan Antonio Madrid
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain
| | - Maria Jesús Periago
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of Internacional Excellence, University of Murcia, Murcia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Spain
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital, Murcia, Spain.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Shevlyakov A, Nikogosov D, Stewart LA, Toribio-Mateas M. Reference values for intake of six types of soluble and insoluble fibre in healthy UK inhabitants based on the UK Biobank data. Public Health Nutr 2021; 25:1-15. [PMID: 34105446 PMCID: PMC9993053 DOI: 10.1017/s1368980021002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To obtain a set of reference values for the intake of different types of dietary fibre in a healthy UK population. DESIGN This descriptive cross-sectional study used the UK Biobank data to estimate the dietary patterns of healthy individuals. Data on fibre content in different foods were used to calculate the reference values which were then calibrated using real-world data on total fibre intake. SETTING UK Biobank is a prospective cohort study of over 500 000 individuals from across the United Kingdom with the participants aged between 40 and 69 years. PARTICIPANTS UK Biobank contains information on over 500 000 participants. This study was performed using the data on 19 990 individuals (6941 men, 13 049 women) who passed stringent quality control and filtering procedures and had reported above-zero intake of the analysed foods. RESULTS A set of reference values for the intake of six different types of soluble and insoluble fibres (cellulose, hemicelluloses, pectin and lignin), including the corresponding totals, was developed and calibrated using real-world data. CONCLUSIONS To our knowledge, this is the first study to establish specific reference values for the intake of different types of dietary fibre. It is well known that effects exerted by different types of fibre both directly and through modulation of microbiota are numerous. Conceivably, a deficit or excess intake of specific types of dietary fibre may detrimentally affect human health. Filling this knowledge gap opens new avenues for research in discussion in studies of nutrition and microbiota and offers valuable tools for practitioners worldwide.
Collapse
Affiliation(s)
- Artem Shevlyakov
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
| | - Dimitri Nikogosov
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
| | - Leigh-Ann Stewart
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
- School of Health and Education, Middlesex University, The Burroughs, London, UK
| | - Miguel Toribio-Mateas
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
- School of Health and Education, Middlesex University, The Burroughs, London, UK
- London, School of Applied Sciences, London South Bank University, London, UK
| |
Collapse
|
43
|
Vega L, Herrera G, Muñoz M, Patarroyo MA, Maloney JG, Santín M, Ramírez JD. Gut microbiota profiles in diarrheic patients with co-occurrence of Clostridioides difficile and Blastocystis. PLoS One 2021; 16:e0248185. [PMID: 33725006 PMCID: PMC7963057 DOI: 10.1371/journal.pone.0248185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Blastocystis and Clostridioides difficile co-occurrence is considered a rare event since the colonization by Blastocystis is prevented under a decrease in beneficial bacteria in the microbiota when there is C. difficile infection (CDI). This scenario has been reported once, but no information on the gut microbiota profiling is available. The present study is motivated by knowing which members of the microbiota can be found in this rare scenario and how this co-occurrence may impact the abundance of other bacteria, eukaryotes or archaea present in the gut microbiota. This study aimed to describe the bacterial and eukaryotic communities using amplicon-based sequencing of the 16S- and 18S-rRNA regions of three patient groups: (1) Blastocystis and C. difficile infection (B+/C+, n = 31), (2) C. difficile infection only (B˗/C+, n = 44), and (3) without Blastocystis or C. difficile (B˗/C˗, n = 40). Blastocystis was subtyped using amplicon-based sequencing of the 18S-rRNA gene, revealing circulation of subtypes ST1 (43.4%), ST3 (35.85%) and ST5 (20.75%) among the study population. We found that B+/C+ patients had a higher abundance of some beneficial bacteria (such as butyrate producers or bacteria with anti-inflammatory properties) compared with non-Blastocystis-colonized patients, which may suggest a shift towards an increase in beneficial bacteria when Blastocystis colonizes patients with CDI. Regarding eukaryotic communities, statistical differences in the abundance of some eukaryotic genera between the study groups were not observed. Thus, this study provides preliminary descriptive information of a potential microbiota profiling of differential presence by Blastocystis and C. difficile.
Collapse
Affiliation(s)
- Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jenny G. Maloney
- USDA ARS, Environmental Microbial and Food Safety Laboratory, BARC, Beltsville, MD, United States of America
| | - Monica Santín
- USDA ARS, Environmental Microbial and Food Safety Laboratory, BARC, Beltsville, MD, United States of America
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
44
|
Abstract
Acquisition and establishment of the oral microbiota occur in a dynamic process over various stages and involve close and continuous interactions with the host and its environment. In the present review, we discuss the stages of this process in chronological order. We start with the prenatal period and address the following questions: ‘Is the fetus exposed to maternal microbiota during pregnancy?’ and ‘If so, what is the potential role of this exposure?’ We comment on recent reports of finding bacterial DNA in placenta during pregnancies, and provide current views on the potential functions of prenatal microbial encounters. Next, we discuss the physiological adaptations that take place in the newborn during the birth process and the effect of this phase of life on the acquisition of the oral microbiota. Is it really just exposure to maternal vaginal microbes that results in the difference between vaginally and Cesarian section‐born infants? Then, we review the postnatal phase, in which we focus on transmission of microbes, the intraoral niche specificity, the effects of the host behavior and environment, as well as the role of genetic background of the host on shaping the oral microbial ecosystem. We discuss the changes in oral microbiota during the transition from deciduous to permanent dentition and during puberty. We also address the finite knowledge on colonization of the oral cavity by microbes other than the bacterial component. Finally, we identify the main outstanding questions that limit our understanding of the acquisition and establishment of a healthy microbiome at an individual level.
Collapse
Affiliation(s)
- A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Dono Kahharova
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Camara A, Konate S, Tidjani Alou M, Kodio A, Togo AH, Cortaredona S, Henrissat B, Thera MA, Doumbo OK, Raoult D, Million M. Clinical evidence of the role of Methanobrevibacter smithii in severe acute malnutrition. Sci Rep 2021; 11:5426. [PMID: 33686095 PMCID: PMC7940396 DOI: 10.1038/s41598-021-84641-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Gut microbial dysbiosis has been shown to be an instrumental factor in severe acute malnutrition (SAM) and particularly, the absence of Methanobrevibacter smithii, a key player in energy harvest. Nevertheless, it remains unknown whether this absence reflects an immaturity or a loss of the microbiota. In order to assess that, we performed a case–control study in Mali using a propensity score weighting approach. The presence of M. smithii was tested using quantitative PCR on faeces collected from SAM children at inclusion and at discharge when possible or at day 15 for controls. M. smithii was highly significantly associated with the absence of SAM, detected in 40.9% controls but only in 4.2% cases (p < 0.0001). The predictive positive value for detection of M. smithii gradually increased with age in controls while decreasing in cases. Among children providing two samples with a negative first sample, no SAM children became positive, while this proportion was 2/4 in controls (p = 0.0015). This data suggests that gut dysbiosis in SAM is not an immaturity but rather features a loss of M. smithii. The addition of M. smithii as a probiotic may thus represent an important addition to therapeutic approaches to restore gut symbiosis.
Collapse
Affiliation(s)
- Aminata Camara
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Malaria Research and Training Center (MRTC)/Department of Epidemiology of Parasitic Disease/University of Sciences, Techniques and Technologies of Bamako, BP 1805, Bamako, Mali
| | - Salimata Konate
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Malaria Research and Training Center (MRTC)/Department of Epidemiology of Parasitic Disease/University of Sciences, Techniques and Technologies of Bamako, BP 1805, Bamako, Mali
| | - Maryam Tidjani Alou
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Aly Kodio
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Malaria Research and Training Center (MRTC)/Department of Epidemiology of Parasitic Disease/University of Sciences, Techniques and Technologies of Bamako, BP 1805, Bamako, Mali
| | - Amadou Hamidou Togo
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Malaria Research and Training Center (MRTC)/Department of Epidemiology of Parasitic Disease/University of Sciences, Techniques and Technologies of Bamako, BP 1805, Bamako, Mali
| | | | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille University, Marseille, France
| | - Mahamadou Ali Thera
- Malaria Research and Training Center (MRTC)/Department of Epidemiology of Parasitic Disease/University of Sciences, Techniques and Technologies of Bamako, BP 1805, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center (MRTC)/Department of Epidemiology of Parasitic Disease/University of Sciences, Techniques and Technologies of Bamako, BP 1805, Bamako, Mali
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Matthieu Million
- Aix Marseille Univ, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
46
|
Argüello H, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Díaz I, Cabrera-Rubio R, Crispie F, Cotter PD, Mateu E, Martín-Valls G, Carrasco L, Gómez-Laguna J. Porcine reproductive and respiratory syndrome virus impacts on gut microbiome in a strain virulence-dependent fashion. Microb Biotechnol 2021; 15:1007-1016. [PMID: 33656781 PMCID: PMC8913879 DOI: 10.1111/1751-7915.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a viral disease defined by reproductive problems, respiratory distress and a negative impact on growth rate and general condition. Virulent PRRS virus (PRRSV) strains have emerged in the last years with evident knowledge gaps in their impact on the host immune response. Thus, the present study examines the impact of acute PRRS virus (PRRSV) infection, with two strains of different virulence, on selected immune parameters and on the gut microbiota composition of infected pigs using 16S rRNA compositional sequencing. Pigs were infected with a low virulent (PRRS_3249) or a virulent (Lena) PRRSV‐1 strain and euthanized at 1, 3, 6, 8 or 13 days post‐inoculation (dpi). Faeces were collected from each animal at the necropsy time‐point. Alpha and beta diversity analyses demonstrated that infection, particularly with the Lena strain, impacted the microbiome composition from 6 dpi onwards. Taxonomic differences revealed that infected pigs had higher abundance of Treponema and Methanobrevibacter (FDR < 0.05). Differences were more considerable for Lena‐ than for PRRS_3249‐infected pigs, showing the impact of strain virulence in the intestinal changes. Lena‐infected pigs had reduced abundancies of anaerobic commensals such as Roseburia, Anaerostipes, Butyricicoccus and Prevotella (P < 0.05). The depletion of these desirable commensals was significantly correlated to infection severity measured by viraemia, clinical signs, lung lesions and immune parameters (IL‐6, IFN‐γ and Hp serum levels). Altogether, the results from this study demonstrate the indirect impact of PRRSV infection on gut microbiome composition in a strain virulence‐dependent fashion and its association with selected immune markers.
Collapse
Affiliation(s)
- Héctor Argüello
- Infectious Diseases and Epidemiology Unit, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Iván Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland.,Vistamilk, Fermoy, Co. Cork, Ireland
| | - Enric Mateu
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| |
Collapse
|
47
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
48
|
Abstract
Host-associated microbial communities have an important role in shaping the health and fitness of plants and animals. Most studies have focused on the bacterial, fungal or viral communities, but often the archaeal component has been neglected. The archaeal community, the so-called archaeome, is now increasingly recognized as an important component of host-associated microbiomes. It is composed of various lineages, including mainly Methanobacteriales and Methanomassiliicoccales (Euryarchaeota), as well as representatives of the Thaumarchaeota. Host-archaeome interactions have mostly been delineated from methanogenic archaea in the gastrointestinal tract, where they contribute to substantial methane production and are potentially also involved in disease-relevant processes. In this Review, we discuss the diversity and potential roles of the archaea associated with protists, plants and animals. We also present the current understanding of the archaeome in humans, the specific adaptations involved in interaction with the resident microbial community as well as with the host, and the roles of the archaeome in both health and disease.
Collapse
|
49
|
Deschamps C, Fournier E, Uriot O, Lajoie F, Verdier C, Comtet-Marre S, Thomas M, Kapel N, Cherbuy C, Alric M, Almeida M, Etienne-Mesmin L, Blanquet-Diot S. Comparative methods for fecal sample storage to preserve gut microbial structure and function in an in vitro model of the human colon. Appl Microbiol Biotechnol 2020; 104:10233-10247. [PMID: 33085024 DOI: 10.1007/s00253-020-10959-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Elora Fournier
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Frédérique Lajoie
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Cécile Verdier
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Muriel Thomas
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, 75013, Paris, France.,INSERM UMR-S1139, Université de Paris, 75006, Paris, France
| | - Claire Cherbuy
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Monique Alric
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Mathieu Almeida
- MetaGénoPolis, INRAe, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAe, UMR 454 MEDIS, 28 place Henri Dunant, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
50
|
Brázda V, Luo Y, Bartas M, Kaura P, Porubiaková O, Šťastný J, Pečinka P, Verga D, Da Cunha V, Takahashi TS, Forterre P, Myllykallio H, Fojta M, Mergny JL. G-Quadruplexes in the Archaea Domain. Biomolecules 2020; 10:biom10091349. [PMID: 32967357 PMCID: PMC7565180 DOI: 10.3390/biom10091349] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/26/2022] Open
Abstract
The importance of unusual DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes (G4s) have gained in popularity during the last decade, and their presence and functional relevance at the DNA and RNA level has been demonstrated in a number of viral, bacterial, and eukaryotic genomes, including humans. Here, we performed the first systematic search of G4-forming sequences in all archaeal genomes available in the NCBI database. In this article, we investigate the presence and locations of G-quadruplex forming sequences using the G4Hunter algorithm. G-quadruplex-prone sequences were identified in all archaeal species, with highly significant differences in frequency, from 0.037 to 15.31 potential quadruplex sequences per kb. While G4 forming sequences were extremely abundant in Hadesarchaea archeon (strikingly, more than 50% of the Hadesarchaea archaeon isolate WYZ-LMO6 genome is a potential part of a G4-motif), they were very rare in the Parvarchaeota phylum. The presence of G-quadruplex forming sequences does not follow a random distribution with an over-representation in non-coding RNA, suggesting possible roles for ncRNA regulation. These data illustrate the unique and non-random localization of G-quadruplexes in Archaea.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Yu Luo
- Institut Curie, CNRS UMR9187, INSERM U1196, Universite Paris Saclay, 91400 Orsay, France
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Patrik Kaura
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Otilia Porubiaková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jiří Šťastný
- Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
- Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Daniela Verga
- Institut Curie, CNRS UMR9187, INSERM U1196, Universite Paris Saclay, 91400 Orsay, France
| | - Violette Da Cunha
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France
| | - Tomio S Takahashi
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|