1
|
Chen X, Zang C, Xie Y, Wang K, Li Y, Lv R, Wen B, Cui Z, Yuan X. Porous hollow microspheres based on industrial solid waste enhance biomethane recovery from corn straw. BIORESOURCE TECHNOLOGY 2024; 412:131395. [PMID: 39216699 DOI: 10.1016/j.biortech.2024.131395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing production of industrial solid waste requires better disposal solutions. Porous hollow microspheres (PHM) are small inorganic materials with high surface area and adsorption capacity, but their potential for use in anaerobic digestion (AD) has not been explored. With PHM as additive, the effects of different industrial solid wastes (waste glass, steel slag, and fly ash) with different loadings (2 %-8 %), respectively, on the AD of corn straw were investigated in this study. The results showed that PHM could supplement trace elements and promote biofilm formation, which effectively shortened the lag period (25.00-60.87 %) and increased the methane yield (4.75 %-16.28 %). The 2 % PHM loading based on steel slag gave the highest methane yield (300.16 NmL/g VSadd). Microbial and PICRUSt2 analyses indicated that PHM enriched hydrolytic and acidogenic bacteria, increased the abundance of methanogenesis-related enzyme genes. This study provides a theoretical basis for the comprehensive utilization of coupled industrial and agricultural wastes.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Changchang Zang
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Yuting Xie
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Ke Wang
- Beijing Huaqi Eco-Tech Co., LTD, Beijing 102200, China
| | - Yang Li
- Beijing Huaqi Eco-Tech Co., LTD, Beijing 102200, China
| | - Ruifang Lv
- Beijing Huaqi Eco-Tech Co., LTD, Beijing 102200, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zongjun Cui
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Sarkar O, Rova U, Christakopoulos P, Matsakas L. Biogas potential of organosolv pretreated wheat straw as mono and co-substrate: substrate synergy and microbial dynamics. Sci Rep 2024; 14:18442. [PMID: 39117660 PMCID: PMC11310495 DOI: 10.1038/s41598-024-68904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Anaerobic digestion (AD) technology can potentially address the gap between energy demand and supply playing a crucial role in the production of sustainable energy from utilization of biogenic waste materials as feedstock. The biogas production from anaerobic digestion is primarily influenced by the chemical compositions and biodegradability of the feedstock. Organosolv-steam explosion offers a constructive approach as a promising pretreatment method for the fractionation of lignocellulosic biomasses delivering high cellulose content.This study showed how synergetic co-digestion serves to overcome the challenges of mono-digestion's low efficiency. Particularly, the study evaluated the digestibility of organosolv-steam pretreated wheat straw (WSOSOL) in mono as well as co-digesting substrate with cheese whey (CW) and brewery spent grains (BSG). The highest methane yield was attained with co-digestion of WSOSOL + CW (338 mL/gVS) representing an enhanced biogas output of 1-1.15 times greater than its mono digestion. An ammonium production was favored under co-digestion strategy accounting for 921 mg/L from WSOSOL + BSG. Metagenomic study was conducted to determine the predominant bacteria and archaea, as well as its variations in their populations and their functional contributions during the AD process. The Firmicutes have been identified as playing a significant role in the hydrolysis process and the initial stages of AD. An enrichment of the most prevalent archaea genera enriched were Methanobacterium, Methanothrix, and Methanosarsina. Reactors digesting simpler substrate CW followed the acetoclastic, while digesting more complex substrates like BSG and WSOSOL followed the hydrogenotrophic pathway for biomethane production. To regulate the process for an enhanced AD process to maximize CH4, a comprehensive understanding of microbial communities is beneficial.
Collapse
Affiliation(s)
- Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden.
| |
Collapse
|
3
|
Chen X, He H, Zhu N, Jia P, Tian J, Song W, Cui Z, Yuan X. Food waste impact on dry anaerobic digestion of straw in a novel reactor: Biogas yield, stability, and hydrolysis-methanogenesis processes. BIORESOURCE TECHNOLOGY 2024; 406:131023. [PMID: 38914235 DOI: 10.1016/j.biortech.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Gradient anaerobic digestion reactor (GADR) can improve substrate utilization efficiency by solving the problem of the "short circuit" of materials. However, the substrate's composition significantly affects the reactor's performance. This study investigated the impact of food waste (FW) levels on corn straw's dry anaerobic digestion (AD) in a novel GADR. The results show that biomethane production can be improved by coupling urban and agricultural solid waste recycling. The mechanism is to increase the hydrolysis and acid production efficiency, and the abundance of enzymes related to methanogenesis. The maximum methane yield (494.2 mL CH4/g VS) and the highest anaerobic biodegradability (85.7 %) were obtained when the FW was added at 60 %. The co-digestion of FW and straw can improve the hydrolysis and acid production efficiency and methane yield, which improves the buffering capacity and stability of the system compared with the single digestion of FW.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Huiban He
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Na Zhu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Peiqiao Jia
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jinxiang Tian
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wenyue Song
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Bhujbal SK, Ghosh P, Vijay VK, Kumar M. Ruminal content biochar supplementation for enhanced biomethanation of rice straw: Focusing on biochar characterization and dose optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167250. [PMID: 37741391 DOI: 10.1016/j.scitotenv.2023.167250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Anaerobic digestion (AD) of agricultural wastes is a promising approach for energy recovery and crop residue management. However, its recalcitrant chemical structure hinders microbial hydrolysis and reduces biomethane production under AD. Biochar supplementation has been proven to promote the digestibility and biomethanation of lignocellulosic substrates. Therefore, this study investigated the influence of different pyrolysis temperatures (450 °C, 550 °C, and 650 °C) on the physicochemical properties of biochar. Furthermore, the impact of ruminal content biochar supplementation (1 %, 2 %, and 3 %) on the AD of rice straw with rumen fluid as inoculum has been investigated. The ruminal content biochar (RUCB) supplemented reactors showed an increment in biomethane yield and the highest cumulative biomethane yield 243.11 mL/g volatile solids (VS)) was recorded at 2 % RUCB supplementation, followed by 227.12 mL/g VS at 1 % RUCB supplementation and 162.86 mL/g VS at 3 % RUCB supplementation (P > 0.05). Compared to the control reactors (128.68 mL/g VS), RUCB supplemented reactors exhibited 1.88-fold, 1.76-fold, and 1.26-fold increments in biomethane yield due to pH stabilization and facilitation of microbial biofilm formation on the biochar. The correlation analysis showed that biomethane production is positively correlated with VS reduction (R2 = 0.9852). This study proposed a potential strategy to utilize ruminal content waste as a feedstock for biochar production and its application in AD for accelerating the biomethanation of rice straw.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| |
Collapse
|
5
|
Potential of hydrochar/pyrochar derived from sawdust of oriental plane tree for stimulating methanization by mitigating propionic acid inhibition in mesophilic anaerobic digestion of swine manure. Heliyon 2023; 9:e13984. [PMID: 36925554 PMCID: PMC10011200 DOI: 10.1016/j.heliyon.2023.e13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
VFAs accumulation in anaerobic digestion systems can lead to disturbance of the acid base balance, which has brought major challenges for methane production. Meanwhile, less research explored the potential of biochar derived from wood wastes of oriental plane tree (Platanus orientalis L.) for stimulating methanization in mesophilic anaerobic digestion. In this study, the effects of pyrochar and hydrochar derived from sawdust of oriental plane tree on mesophilic anaerobic digestion of swine manure were compared for the first time. Fourier infrared transform analysis indicated that more functional groups existed on the surface of hydrochar, whereas higher ash content and BET specific surface area were found in pyrochar. The maximum methane production rate during anaerobic digestion was observed in the pyrochar treatment, which increased by 59.5% compared with the control without biochar. Although stimulative effects on dissolved organic carbon and volatile fatty acids production were both observed in the pyrochar and hydrochar treatments, the pyrochar treatment was much easier to trigger multipath methanogenesis and direct interspecific electron transport and subdue propionic acid accumulation compared to the hydrochar treatment. Moreover, redundancy analysis indicated that the variations in acetic acid and dissolved organic carbon were mostly associated with microbial succession. These results suggest that pyrochar has better promoting effects than HC in terms of methane generation and propionic acid inhibition alleviation owing to its special porous structures, functional groups (e.g., C=O, C-O and O-H), and physicochemical properties. These excellent properties play a greater role in recruiting functional archaea and bacteria to regulate the levels of volatile fatty acids and dissolved organic carbon to enhance the methane yield of anaerobic digestion. This study provides novel and valuable information for further engineering applications of pyrochar and hydrochar derived from sawdust of oriental plane tree in energy production and environmental waste treatment.
Collapse
|
6
|
Zhang S, Xiao M, Liang C, Chui C, Wang N, Shi J, Liu L. Multivariate insights into enhanced biogas production in thermophilic dry anaerobic co-digestion of food waste with kitchen waste or garden waste: Process properties, microbial communities and metagenomic analyses. BIORESOURCE TECHNOLOGY 2022; 361:127684. [PMID: 35882315 DOI: 10.1016/j.biortech.2022.127684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Multisubstrate synergetic anaerobic co-digestion can effectively overcome low efficiency of food waste (FW) mono-digestion. This study investigated the effect of supplementing FW with kitchen waste (KW) or garden waste (GW) on thermophilic dry anaerobic co-digestion. FW-KW and FW-GW co-digestion enhanced biogas production by 24.69 % and 44.96 % at organic loading rate (OLR) of 3 g VS L-1 d-1, and increased OLR tolerance from 3 to 4 g VS L-1 d-1 through mitigating ammonia nitrogen inhibition and volatile fatty acids accumulation. Co-digestion enriched the dominant hydrolytic bacteria Defluviitoga, resulting in an acceleration of substrate hydrolysis. FW-KW co-digestion improved biogas production by increasing gene abundance related to key enzymes in methanogenesis pathways and promoting the conversion of intermediate products into methane. FW-GW co-digestion enhanced biogas production by enriching ABC transporters-associated genes, leading to efficient substrate utilization. This study provides a promising approach for FW treatment with multivariate insights into thermophilic dry anaerobic co-digestion.
Collapse
Affiliation(s)
- Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Liang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmeng Chui
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
7
|
Gao M, Yang J, Liu Y, Zhang J, Li J, Liu Y, Wu B, Gu L. Deep insights into the anaerobic co-digestion of waste activated sludge with concentrated leachate under different salinity stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155922. [PMID: 35577084 DOI: 10.1016/j.scitotenv.2022.155922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Treatment of high-salinity organic wastewater (e.g., concentrated leachate) is a major challenge. Anaerobic co-digestion can effectively treat high-salinity organic wastewater and recover energy. In this study, the concentrated landfill leachate and waste activated sludge (WAS) were anaerobic co-digested in the lab-scale continuous stirred tank reactors (CSTR) to understand their co-digestion performance under different salinity stresses. As revealed by the results, when the salinity was low (<10 g/L), the removal ratio of organic matter in the digester was kept at a high level (>91.3%), and the concentration of total volatile fatty acids (TVFAs) was low (<100 mg COD/L), indicating that the digester could operate efficiently and stably. However, when the salinity level was elevated from 10 g/L to 30 g/L, the removal ratio of organic matter in the digester decreased from ~91.3% to ~64.5%, the TVFAs continued to accumulate, the yields of biogas and methane also dropped sharply, and the performance of the digester decreased gradually. The results of microbial community and diversity analysis showed that there is limited adaptability of microbial community to high salinity in such process. Salinity could cause significant changes in the microbial community and diversity, thereby affecting the digestive performance. Metagenomic analysis showed that under high salinity conditions, the content of genes encoding hydrolase and methanogenic enzyme decreased, whereas the pathway of acetotrophic methanogenesis was weakened. Mechanism study showed that with the increase of salinity, the activity of microbial cells decreased, the structure of sludge flocs was damaged more significantly, and the extracellular polymeric substances (EPS) secreted by microbe increased continuously, which was used to resist the toxic effects of salinity stresses on microorganisms. The results of this study could provide certain theoretical guidance for anaerobic digestion under salinity stresses.
Collapse
Affiliation(s)
- Meng Gao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jiahui Yang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yang Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Junjie Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jianhao Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| |
Collapse
|
8
|
Effects of Increasing Concentrations of Enrofloxacin on Co-Digestion of Pig Manure and Corn Straw. SUSTAINABILITY 2022. [DOI: 10.3390/su14105894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enrofloxacin (ENR) is one of the most commonly used antibiotics in pig farms. In this study, using fresh pig manure and corn straw powder as substrates, the effects of different concentrations of ENR (2.5, 10, and 20 mg/L) on anaerobic digestion in completely mixed anaerobic reactors were investigated. A relatively low concentration of ENR (2.5 mg/L) increased methane production by 47.58% compared with the control group. Among the volatile fatty acids (VFAs) in the reactors, the propionic acid content was the lowest, and the concentrations of acetic acid kinase and coenzyme F420 were highest in the first seven days during peak gas production. However, methane production in the reactors with 10 mg/L and 20 mg/L ENR decreased by 8.59% and 20.25%, respectively. Furthermore, the accelerated hydrolysis of extracellular polymeric substances causes a significant accumulation of VFA levels. The microbial community in anaerobic reactors was analyzed by 16S rRNA sequencing. Proteiniphilum was the dominant bacterial genus. In addition, ENR at 2.5 mg/L effectively increased the abundance and diversity of anaerobic microorganisms, whereas a high concentration of ENR (10 and 20 mg/L) significantly decreased these parameters. This study demonstrated that different concentrations of ENR had significantly different effects on anaerobic digestion.
Collapse
|
9
|
Jiang X, Xie Y, Liu M, Bin S, Liu Y, Huan C, Ji G, Wang X, Yan Z, Lyu Q. Study on anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: Methane production, microbial community and three-dimension fluorescence excitation-emission matrix analysis. BIORESOURCE TECHNOLOGY 2022; 347:126748. [PMID: 35065225 DOI: 10.1016/j.biortech.2022.126748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Constantly increased sewage sludge (SS) and fruit and vegetable wastes (FVW) are becoming the major organic solid wastes in human society. Thus, anaerobic digestion is employed as a low carbon energy strategy to reduce their environmental pollution risk. Anaerobic co-digestion system was developed based on the carbon to nitrogen ratio strategy. Results showed that the daily biogas production was higher in co-digester, and the volumetric biogas production rate (VBPR) significantly enhanced for 1.3 ∼ 3 folds, and the highest VBPR was 2.04 L/L • day with optimal OLR of 2.083 Kg L-1 d-1. Analytic results indicated that co-digestion could improve the biodegradable of feedstocks, which transforming to more VFAs and biogas. Compared with mono SS digester, mixed substrates relieved ammonia nitrogen inhibition and enhanced the hydrolytic acidification and methanogenesis. Meanwhile, the excessive humification of organics was suppressed. This study supported the concepts of improving carbon recovery from SS and FVW.
Collapse
Affiliation(s)
- Xinru Jiang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Yandong Xie
- College of Life Science, Guangxi Normal University, Guilin 541006, PR China.
| | - Minggang Liu
- Sichuan environmental protection industry group company, Chengdu 610106, PR China.
| | - Shiyu Bin
- College of Life Science, Guangxi Normal University, Guilin 541006, PR China.
| | - Yang Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Chenchen Huan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Gaosheng Ji
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Xinhui Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Zhiying Yan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Qingyang Lyu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Slezak R, Grzelak J, Krzystek L, Ledakowicz S. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. ENVIRONMENTAL TECHNOLOGY 2021; 42:4269-4278. [PMID: 32255721 DOI: 10.1080/09593330.2020.1753818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work was to determine the effect of initial pH on the production of volatile fatty acids (VFA) and hydrogen (H2) in the dark fermentation processes of kitchen waste. The study was conducted in batch bioreactors of working volume 1 L for different initial pH in the range from 5.5 to 9.0. The dark fermentation processes were carried out for 4 days at 37°C. Initial organic load of the kitchen waste in all bioreactors amounted to 25.5 gVS/L. Buffering of pH during the fermentation process was carried out with the use of ammonia contained mainly in digested sludge. The optimal conditions for the production of VFA and H2 were achieved at the initial pH of 8. Production of VFA and H2 in these conditions was, respectively, 13.9 g/L and 72.4 mL/gVS. The main produced components of VFA were acetic and butyric acids. The production of ethanol and lactic acid was at very low levels due to the high ratio of the volatile fatty acids to total organic content of 0.86. With the optimal initial pH of 8 the yield of CO2 production was 0.30 gC/gC. High initial pH value (above 8) extended the lag phase duration in the course of H2 production. The dominant groups of micro-organisms at the most favourable initial pH of 8 for the production of VFA and H2 were Bacteroidetes, Firmicutes, Spirochaetes and Waste Water of Evry 1 (WWE1) at the phylum level.
Collapse
Affiliation(s)
- Radosław Slezak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Justyna Grzelak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Liliana Krzystek
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Stanisław Ledakowicz
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
11
|
Gao M, Li S, Zou H, Wen F, Cai A, Zhu R, Tian W, Shi D, Chai H, Gu L. Aged landfill leachate enhances anaerobic digestion of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112853. [PMID: 34044237 DOI: 10.1016/j.jenvman.2021.112853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is considered as a sustainable pathway to recover energy from organic wastes, but the digestive efficiency for waste activated sludge (WAS) is not as expected due to the limitations in WAS hydrolysis. This study proposes an effective strategy to simultaneously treat WAS and landfill leachate, aiming to promote WAS hydrolysis and enhance organics converting to methane. The effects of landfill leachate on the four stages (i.e., solubilization, hydrolysis, acidogenesis, and methanogenesis) of AD of WAS, as well as the effect mechanisms were investigated. Results showed that adding appropriate amounts of landfill leachate could promote the steps of solubilization, hydrolysis and acidogenesis of WAS, but had no-effect on methanogenesis. The hydrolysis and acidogenesis efficiency in the leachate added digesters were 2.0%-8.4% and 35.2%-72.7% higher than the control digester. Mechanism studies indicated that humic acid (HA) contained in the leachate was conducive to the processes of both hydrolysis and acidogenesis, but detrimental to the methanogenesis. Effects of heavy metals (HMs) on AD of WAS was also dose-dependent. Digestive performance was inhibited by excessive HMs but promoted by moderate dosages. Humic acid and metal ions tend to interact to form complexes, and thus relieve their each inhibition effects. It is also found that the stability of sludge flocs was reduced by the leachate through reducing both apparent activation energy (AAE) and median particle size (MPS) of the sludge. Microbial community and diversity results revealed that the relative abundance of microbes responsible for hydrolysis and acidogenesis increased when landfill leachate was present. This research provides a more technically and economically feasible approach to co-treating and co-utilizing WAS and landfill leachate.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Huijing Zou
- Hunan Architectural Design Institute Co., Ltd, Hunan, 410125, PR China
| | - Fushan Wen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, Chongqing, 400045, PR China
| | - Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Wenjing Tian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| |
Collapse
|
12
|
Pan SY, Tsai CY, Liu CW, Wang SW, Kim H, Fan C. Anaerobic co-digestion of agricultural wastes toward circular bioeconomy. iScience 2021; 24:102704. [PMID: 34258548 PMCID: PMC8253966 DOI: 10.1016/j.isci.2021.102704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A huge amount of agricultural wastes and waste activated-sludge are being generated every year around the world. Anaerobic co-digestion (AcD) has been considered as an alternative for the utilization of organic matters from such organic wastes by producing bioenergy and biochemicals to realize a circular bioeconomy. Despite recent advancement in AcD processes, the effect of feedstock compositions and operating conditions on the biomethane production processe has not been critically explored. In this paper, we have reviewed the effects of feedstock (organic wastes) characteristics, including particle size, carbon-to-nitrogen ratio, and pretreatment options, on the performance of an anaerobic digestion process. In addition, we provided an overview of the effect of key control parameters, including retention time, temperature, pH of digestate, volatile fatty acids content, total solids content, and organic loading rate. Lastly, based on the findings from the literature, we have presented several perspectives and prospects on priority research to promote AcD to a steppingstone for a circular bioeconomy.
Collapse
Affiliation(s)
- Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Cheng-Yen Tsai
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Chen-Wuing Liu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Sheng-Wei Wang
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan (ROC)
| | - Hyunook Kim
- Department of Environmental Engineering, The University of Seoul, 163, Seoulsiripdae‑ro, Dongdaemun‑gu, Seoul 02504, South Korea
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| |
Collapse
|
13
|
Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw. ENERGIES 2021. [DOI: 10.3390/en14112990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignin-feeding insect gut is a natural ligninolytic microbial bank for the sustainable conversion of crop straw to biogas. However, limited studies have been done on highly efficient microbes. Here, an efficient ligninolytic strain Enterobacter hormaechei KA3 was isolated from the gut microbiomes of lignin-feeding Hypomeces squamosus Fabricius, and its effects on lignin degradation and anaerobic digestion were investigated. No research has been reported. Results showed that strain KA3 had better lignin-degrading ability for corn straw with a higher lignin-degrading rate (32.05%) and lignin peroxidase activity (585.2 U/L). Furthermore, the highest cumulative biogas yield (59.19 L/kg-VS) and methane yield (14.76 L/kg-VS) were obtained for KA3 inoculation, which increased by 20% and 31%, respectively, compared to CK. Higher removal rates of COD, TS, and vs. of 41.6%, 43.11%, and 66.59% were also found. Moreover, microbial community diversity increased as digestion time prolonged in TG, and bacteria were more diverse than archaea. The dominant genus taxon, for methanogens, was Methanosate in TG, while in CK was Methanosarcina. For bacteria, dominant taxa were similar for all groups, which were Solibacillus and Clostridium. Therefore, strain KA3 improved the methane conversion of the substrate. This study could provide a new microbial resource and practical application base for lignin degradation.
Collapse
|
14
|
Deng Y, Li W, Ruan W, Huang Z. Applying EEM- PARAFAC Analysis With Quantitative Real-Time PCR to Monitor Methanogenic Activity of High-Solid Anaerobic Digestion of Rice Straw. Front Microbiol 2021; 12:600126. [PMID: 33643232 PMCID: PMC7905213 DOI: 10.3389/fmicb.2021.600126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The methanogenic activity is an important indicator to assess the efficiency of high-solid anaerobic digestion. However, it is not yet elucidated clearly how to detect the parameter rapidly and reliably in the rice straw feeding reactor. Co-inoculated with ruminal digesta and anaerobic sludge, the digestion performance was studied at three different organic loading rates (OLRs). The excitation emission matrix–parallel factor analysis (EEM–PARAFAC) was used to detect dynamic changes in the characteristic of fluorescence components. Our results revealed that CH4 productivity reached 280.90 mL/g volatile solid (VS) with a 54.39% CH4 content under the OLR of 2.26 g/(L⋅d), which amount to 80.29% of its theoretical value. At the OLR of 2.47 g/(L⋅d), the average accumulated NH4+ concentration was 1082.63 mg/L, which resulted in the hydrogenotrophic Methanobacteriales decreasing from 1.70 × 109 to 1.04 × 106 copies/g in the solid residues, whereas the acetotrophic Methanosarcinales increased from 7.89 × 106 to 9.44 × 106 copies/g. The dynamics of the methanogenic community consequently influenced the bioconversion efficiency of rice straw, and CH4 productivity was reduced to 256.54 mL/g VS. The three fluorescent components, at the excitation/emission wavelength of 420 nm/470 nm, 340 nm/430 nm, and 280 nm/340 nm, were decomposed by PARAFAC model in the digestate. Fluorescence intensities of coenzyme F420 and NADH reflected the dynamic changes of CH4-producing activity and anaerobic digestion efficiency, respectively. The coenzyme F420, unique to hydrogenotrophic methanogens, was correlated with methane yield, suggesting they played a dominant role in the anaerobic reactor. This study demonstrates that the EEM–PARAFAC combined with Q-PCR can be used to characterize methanogenic activity variation during the high-solid anaerobic digestion of rice straw with 15% total solid (TS).
Collapse
Affiliation(s)
- Yuying Deng
- Changzhou Vocational Institute of Engineering, Changzhou, China.,School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Weihua Li
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Wenquan Ruan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhenxing Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Shen R, Jing Y, Feng J, Zhao L, Yao Z, Yu J, Chen J, Chen R. Simultaneous carbon dioxide reduction and enhancement of methane production in biogas via anaerobic digestion of cornstalk in continuous stirred-tank reactors: The influences of biochar, environmental parameters, and microorganisms. BIORESOURCE TECHNOLOGY 2021; 319:124146. [PMID: 32977099 DOI: 10.1016/j.biortech.2020.124146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The composition of biogas produced by anaerobic digestion (AD) is typically not ideal due to high CO2 content. In the study, cottonwood biochar was used as an enhanced mediator for the continuously stirred tank reactor AD of cornstalk. The effects of substrate loading and biochar dosage on biogas composition, volatile fatty acids (VFAs), NH3-N, and microbial community characteristics were systematically explored. The results showed that the highest volumetric biogas production rate with biochar was 1.40 L/L/d, at the same time, the CO2 content in the biogas decreased by 5.90%, while the CH4 content increased by 7.40%, compared with the values in AD without biochar. Moreover, VFAs were degraded effectively, in particular, the propionic acid concentration decreased by 55.7%. Besides, microbial abundance had positive correlations with environmental parameters. This study could provide valuable information for both the elucidation of strengthening mechanisms of biochar and further large-scale engineering application.
Collapse
Affiliation(s)
- Ruixia Shen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Yong Jing
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Jing Feng
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiadong Yu
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Jiankun Chen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Runlu Chen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| |
Collapse
|
16
|
Nagler M, Podmirseg SM, Mayr M, Ascher-Jenull J, Insam H. The masking effect of extracellular DNA and robustness of intracellular DNA in anaerobic digester NGS studies: A discriminatory study of the total DNA pool. Mol Ecol 2020; 30:438-450. [PMID: 33219564 PMCID: PMC7839673 DOI: 10.1111/mec.15740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023]
Abstract
Most commonly, next generation sequencing-based microbiome studies are performed on the total DNA (totDNA) pool; however, this consists of extracellular- (exDNA) and intracellular (iDNA) DNA fractions. By investigating the microbiomes of different anaerobic digesters over time, we found that totDNA suggested lower species richness considering all and/or only common species and yielded fewer unique reads as compared to iDNA. Additionally, exDNA-derived sequences were more similar to those from totDNA than from iDNA and, finally, iDNA showed the best performance in tracking temporal changes in microbial communities. We postulate that abundant sequences present within the exDNA fraction mask the overall results of totDNA and provide evidence that exDNA has the potential to qualitatively bias microbiome studies at least in the anaerobic digester environment as it contains information about cells that were lysed hours or days ago. iDNA, however, was found to be more appropriate in providing reliable genetic information about potentially alive as well as rare microbes within the target habitat.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Markus Mayr
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium. Appl Environ Microbiol 2020; 86:AEM.00199-20. [PMID: 32680862 PMCID: PMC7480376 DOI: 10.1128/aem.00199-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries. Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism. IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.
Collapse
|
18
|
Lianhua L, Shuibin H, Yongming S, Xihui K, Junfeng J, Zhenhong Y, Dingfa L. Anaerobic co-digestion of Pennisetum hybrid and pig manure: A comparative study of performance and microbial community at different mixture ratio and organic loading rate. CHEMOSPHERE 2020; 247:125871. [PMID: 32069711 DOI: 10.1016/j.chemosphere.2020.125871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
To investigate how the changes in performance and the microbial community of the co-digestion system of Pennisetum hybrid and pig manure, two co-digestion systems in a semi-continuous mode were established at different grass:manure mixture ratios (50:50 and 75:25), and at variable organic loading rates (OLRs). The two reactors were in a steady-state at the OLRs of 2.0-5.0 g VS/(L·d), with the specific and volumetric biogas yields of 383.86 ± 65.13 to 574.28 ± 72.04 mL/g VS and 0.87 ± 0.07 to 2.36 ± 0.13 m3/(m3·d), respectively. The co-digestion system with a mixture ratio of 75:25 failed at an OLR of 5.5 g VS/(L⋅d). This failure could be attributed to the accumulation of volatile fatty acids (VFAs) owing to the imbalance between acid-production and -oxidation bacteria. By contrast, the co-digestion system with mixture ratio of 50:50 failed at an OLR of 7.0 g VS/(L⋅d), which was likely due to mechanical issues or improper reactor configuration. The genus Proteiniphilum contributed to the increase in total ammonia nitrogen. These findings provide useful guidance for optimizing co-digestion system, enhancing reactor performance and improving the wastes treatment.
Collapse
Affiliation(s)
- Li Lianhua
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - He Shuibin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sun Yongming
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| | - Kang Xihui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Junfeng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Zhenhong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Liu Dingfa
- Guangdong Foodstuffs Imp. & Exp. (Group) Corp, Guangzhou, 510100, China
| |
Collapse
|
19
|
Pang H, Chen Y, He J, Guo D, Pan X, Ma Y, Qu F, Nan J. Cation exchange resin-induced hydrolysis for improving biodegradability of waste activated sludge: Characterization of dissolved organic matters and microbial community. BIORESOURCE TECHNOLOGY 2020; 302:122870. [PMID: 32004809 DOI: 10.1016/j.biortech.2020.122870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
This study reported an efficient and green approach towards facilitating hydrolysis of waste activated sludge (WAS) using cation exchange resin (CER) as a recyclable additive. Through CER-mediated removal of multivalent cations, WAS flocs were disintegrated into small particles with extracellular polymeric substance (EPS) solubilization. At CER dosage of 1.75 g/g SS, SCOD increased to 2579 mg/L (SCOD/TCOD = 15.9%) after 8-h hydrolysis. Afterwards, CER displayed further sludge hydrolysis performance lasting 2 days, i.e. SCOD/TCOD = 34.2%. Meanwhile, proteins, carbohydrates and other organics in dissolved organic matters (DOMs) were major contributors for volatile fatty acids (VFAs) accumulation, with composition percentage: VFAs (58.9%) > proteins (21.8%) > other organics (8.8%) > humic acids (5.9%) > carbohydrates (4.4%). The biodegradable tryptophan-like and tyrosine-like proteins were major proteins, while other organics included amino acids, aliphatic and metabolic intermediates. More than 85.2% of DOMs were easily biodegradable. Moreover, CER-induced hydrolysis modified microbial community structure through inhibiting VFAs-utilizing microbes, while hydrolytic-acidogenic bacteria were enriched, responsible for DOMs biodegradation.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yiwen Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dabin Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
20
|
Zamorano-López N, Borrás L, Giménez JB, Seco A, Aguado D. Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). BIORESOURCE TECHNOLOGY 2019; 290:121787. [PMID: 31323513 DOI: 10.1016/j.biortech.2019.121787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and Smithella were enhanced after increasing 2-fold the organic loading rate, suggesting their importance in continuous systems producing biogas from raw microalgae.
Collapse
Affiliation(s)
- Núria Zamorano-López
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - Luis Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Juan B Giménez
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Daniel Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
21
|
Piazza G, Ercoli L, Nuti M, Pellegrino E. Interaction Between Conservation Tillage and Nitrogen Fertilization Shapes Prokaryotic and Fungal Diversity at Different Soil Depths: Evidence From a 23-Year Field Experiment in the Mediterranean Area. Front Microbiol 2019; 10:2047. [PMID: 31551981 PMCID: PMC6737287 DOI: 10.3389/fmicb.2019.02047] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 01/20/2023] Open
Abstract
Soil biodiversity accomplishes key roles in agro-ecosystem services consisting in preserving and enhancing soil fertility and nutrient cycling, crop productivity and environmental protection. Thus, the improvement of knowledge on the effect of conservation practices, related to tillage and N fertilization, on soil microbial communities is critical to better understand the role and function of microorganisms in regulating agro-ecosystems. In the Mediterranean area, vulnerable to climate change and suffering for management-induced losses of soil fertility, the impact of conservation practices on soil microbial communities is of special interest for building mitigation and adaptation strategies to climate change. A long-term experiment, originally designed to investigate the effect of tillage and N fertilization on crop yield and soil organic carbon, was utilized to understand the effect of these management practices on soil prokaryotic and fungal community diversity. The majority of prokaryotic and fungal taxa were common to all treatments at both soil depths, whereas few bacterial taxa (Cloacimonates, Spirochaetia and Berkelbacteria) and a larger number of fungal taxa (i.e., Coniphoraceae, Debaryomycetaceae, Geastraceae, Cordicypitaceae and Steccherinaceae) were unique to specific management practices. Soil prokaryotic and fungal structure was heavily influenced by the interaction of tillage and N fertilization: the prokaryotic community structure of the fertilized conventional tillage system was remarkably different respect to the unfertilized conservation and conventional systems in the surface layer. In addition, the effect of N fertilization in shaping the fungal community structure of the surface layer was higher under conservation tillage systems than under conventional tillage systems. Soil microbial community was shaped by soil depth irrespective of the effect of plowing and N addition. Finally, chemical and enzymatic parameters of soil and crop yields were significantly related to fungal community structure along the soil profile. The findings of this study gave new insights on the identification of management practices supporting and suppressing beneficial and detrimental taxa, respectively. This highlights the importance of managing soil microbial diversity through agro-ecological intensified systems in the Mediterranean area.
Collapse
|
22
|
Akyol Ç, Ince O, Bozan M, Ozbayram EG, Ince B. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: What to expect from anaerobic fungus Orpinomyces sp. BIORESOURCE TECHNOLOGY 2019; 277:1-10. [PMID: 30654102 DOI: 10.1016/j.biortech.2019.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Energy-efficient biogas reactors are often designed and operated mimicking natural microbial ecosystems such as the digestive tracts of ruminants. Anaerobic fungi play a crucial role in the degradation of lignocellulose-rich fiber thanks to their high cellulolytic activity. Fungal bioaugmentation is therefore at the heart of our understanding of enhancing anaerobic digestion (AD). The efficiency of bioaugmentation with anaerobic fungus Orpinomyces sp. was evaluated in lignocellulose-based AD configurations. Fungal bioaugmentation increased the methane yield by 15-33% during anaerobic co-digestion of cow manure and selected cereal crops/straws. Harvesting stage of the crops was a decisive parameter to influence methane production together with fungal bioaugmentation. A more efficient fermentation process in the bioaugmented digesters was distinguished by relatively-higher abundance of Synergistetes, which was mainly represented by the genus Anaerobaculum. On the contrary, the composition of the methanogenic archaea did not change, and the majority of methanogens was assigned to Methanosarcina.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - E Gozde Ozbayram
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
23
|
Shi J, Zhang B, Qiu R, Lai C, Jiang Y, He C, Guo J. Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3198-3207. [PMID: 30776217 DOI: 10.1021/acs.est.8b05053] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromate (Cr(VI)), as one of ubiquitous contaminants in groundwater, has posed a major threat to public health and ecological environment. Although various electron donors (e.g., organic carbon, hydrogen, and methane) have been proposed to drive chromate removal from contaminated water, little is known for microbial chromate reduction coupled to elemental sulfur (S(0)) or zerovalent iron (Fe(0)) oxidation. This study demonstrated chromate could be biologically reduced by using S(0) or Fe(0) as inorganic electron donor. After 60-day cultivation, the sludge achieved a high Cr(VI) removal efficiency of 92.9 ± 1.1% and 98.1 ± 1.2% in two independent systems with S(0) or Fe(0) as the sole electron donor, respectively. The deposited Cr(III) was identified as the main reduction product based on X-ray photoelectron spectroscopy. High-throughput 16S rRNA gene sequencing indicated that Cr(VI) reduction coupled to S(0) or Fe(0) oxidation was mediated synergically by a microbial consortia. In such the consortia, S(0)- or Fe(0)-oxidizing bacteria (e.g., Thiobacillus or Ferrovibrio) could generate volatile fatty acids as metabolites, which were further utilized by chromate-reducing bacteria (e.g., Geobacter or Desulfovibrio) to reduce chromate. Our findings advance our understanding on microbial chromate reduction supported by solid electron donors and also offer a promising process for groundwater remediation.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Rui Qiu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Chunyu Lai
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Yufeng Jiang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , P. R. China
| | - Jianhua Guo
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| |
Collapse
|