1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Lin G, Wang G, Xiong Y, Li S, Jiang R, Lu B, Huang B, Xie H. High-performance electrosorption of lanthanum ion by Mn 3O 4-loaded phosphorus-doped porous carbon electrodes via capacitive deionization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120856. [PMID: 38608574 DOI: 10.1016/j.jenvman.2024.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Transition-metal-oxide@heteroatom doped porous carbon composites have attracted considerable research interest because of their large theoretical adsorption capacity, excellent electrical conductivity and well-developed pore structure. Herein, Mn3O4-loaded phosphorus-doped porous carbon composites (Mn3O4@PC-900) were designed and fabricated for the electrosorption of La3+ in aqueous solutions. Due to the synergistic effect between Mn3O4 and PC-900, and the active sites provided by Mn-O-Mn, C/PO, C-P-O and Mn-OH, Mn3O4@PC-900 exhibits high electrosorption performance. The electrosorption value of Mn3O4@PC-900 was 45.34% higher than that of PC-900, reaching 93.02 mg g-1. Moreover, the adsorption selectivity reached 87.93% and 89.27% in La3+/Ca2+ and La3+/Na+ coexistence system, respectively. After 15 adsorption-desorption cycles, its adsorption capacity and retention rate were 50.34 mg g-1 and 54.12%, respectively. The electrosorption process is that La3+ first accesses the pores of Mn3O4@PC-900 to generate an electric double layer (EDL), and then undergoes further Faradaic reaction with Mn3O4 and phosphorus-containing functional groups through intercalation, surface adsorption and complexation. This work is hoped to offer a new idea for exploring transition-metal-oxide @ heteroatom doped porous carbon composites for separation and recovery of rare earth elements (REEs) by capacitive deionization.
Collapse
Affiliation(s)
- Guanfeng Lin
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Guilong Wang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongzhi Xiong
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Simin Li
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongyuan Jiang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beili Lu
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biao Huang
- Materials Engineering College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310003, China
| |
Collapse
|
3
|
Ton-That L, Huynh TNL, Duong BN, Nguyen DK, Nguyen NA, Pham VH, Ho TH, Dinh VP. Kinetic studies of the removal of methylene blue from aqueous solution by biochar derived from jackfruit peel. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1266. [PMID: 37787870 DOI: 10.1007/s10661-023-11867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Kinetic studies play an instrumental role in determining the most appropriate reaction rate model for industrial-scale applications. This study focuses on the kinetics of methylene blue (MB) adsorption from aqueous solutions by biochar derived from jackfruit peel. Various kinetic models, including pseudo-first-order (PFO), pseudo-second-order (PSO), intra-diffusion, and Elovich models, were applied to study MB adsorption kinetics of jackfruit peel biochar. The experiments were performed with two initial concentrations of MB (24.23 mg/L and 41.42 mg/L) over a span of 240 min. Our findings emphasized that the Elovich model provided the best fit of the experimental data for MB adsorption. When compared to other materials, biochar from jackfruit peel emerges as an eco-friendly adsorbent for dye decolorization, with potential applications in the treatment of environmental pollution.
Collapse
Affiliation(s)
- Loc Ton-That
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | | | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Duy-Khoi Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Ngoc-An Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Van-Hien Pham
- Institute of Applied Materials Science, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 700000, Vietnam
| | - Thien-Hoang Ho
- Dong Nai University, 09 Le Quy Don Street, Tan hiep Ward, Bien Hoa City, Ddong Nai province, 76100, Vietnam
| | - Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
4
|
Naseri A, Abed Z, Rajabi M, Asghari A, Lal B, Baigenzhenov O, Arghavani-Beydokhti S, Hosseini-Bandegharaei A. Use of Chrysosporium/carbon nanotubes for preconcentration of ultra-trace cadmium levels from various samples after extensive studies on its adsorption properties. CHEMOSPHERE 2023; 335:139168. [PMID: 37295689 DOI: 10.1016/j.chemosphere.2023.139168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes were used to immobilize Chrysosporium fungus for building an adequate adsorbent to be used as an desirable sorbent for preconcentration and measurement of cadmium ultra-trace levels in various samples. After characterization, the potential of Chrysosporium/carbon nanotubes for the sorption of Cd(II) ions was scrutinized by the aid of central composite design, and comprehensive studies of sorption equilibrium, kinetics and thermodynamic aspects were accomplished. Then, the composite was utilized for preconcentration of ultra-trace cadmium levels, by a mini-column packed with Chrysosporium/carbon nanotubes, before its determination with ICP-OES. The outcomes vouchsafed that (i) Chrysosporium/carbon nanotube has a high tendency for selective and rapid sorption of cadmium ion, at pH 6.1, and (ii) kinetic, equilibrium, and thermodynamic studies showed a high affinity of the Chrysosporium/carbon nanotubes for cadmium ion. Also, the outcomes displayed that cadmium can quantitatively be sorbed at a flow speed lesser than 7.0 mL/min and a 1.0 M HCl solution (3.0 mL) was sufficient to desorbe the analyte. Eventually, preconcentration and measurement of Cd(II) in different foods and waters were successfully accomplished with good accuracy, high precision (RSDs ≤5.65%), and low limit of detection (0.015 μg/L).
Collapse
Affiliation(s)
- Ali Naseri
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Abed
- Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Maryam Rajabi
- Faculty of Chemistry, Semnan University, Semnan, Iran.
| | | | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Sciences, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan
| | | | | |
Collapse
|
5
|
Li MX, Li W, Xiong YS, Lu HQ, Li H, Li K. Preparation of quaternary ammonium-functionalized metal-organic framework/chitosan composite aerogel with outstanding scavenging of melanoidin. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Zhou LS, Xiong YS, Jia R, Li MX, Fan BH, Tang JY, Li W, Lu HQ, Lan YW, Li K. (3-Chloro-2-hydroxypropyl) trimethylammonium chloride and polyethyleneimine co-modified pomelo peel cellulose-derived aerogel for remelt syrup decolorization in sugar refining. Int J Biol Macromol 2023; 229:1054-1068. [PMID: 36627036 DOI: 10.1016/j.ijbiomac.2022.12.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023]
Abstract
The crucial need for quality refined sugar has led to the development of advanced adsorbents, with a focus on the decolorization of remelt syrup. In this study, (3-chloro-2-hydroxypropyl) trimethylammonium chloride and polyethyleneimine co-modified pomelo peel cellulose-derived aerogel (CP-PPA) was fabricated, and synthetic melanoidins were used as model colorants of remelt syrup to evaluate the validity and practicality of CP-PPA for eliminating colored impurities. Integrating abundant amine-functionalized groups (quaternary ammonium and protonated amine) within the pomelo peel-derived aerogel directionally captured electronegative melanoidins via electrostatic interactions. Furthermore, the active sites, types, and relative strength of the weak interactions between CP-PPA and melanoidins were determined using density functional theory simulations. CP-PPA exhibited an excellent equilibration adsorbing capacity for capturing melanoidins of 749.51 mg/g, and a removal efficiency of 93.69 %. Additionally, the adsorption mechanism was thoroughly examined in an effort to improve the economy of the sugar refinement industry.
Collapse
Affiliation(s)
- Li-Shu Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yan-Shu Xiong
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ran Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ming-Xing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Bo-Huan Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jia-Yi Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Wen Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Hai-Qin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.
| | - Yu-Wei Lan
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Xiong YS, Li MX, Jia R, Zhou LS, Fan BH, Tang JY, Gai L, Li W, Lu HQ, Li K. Polyethyleneimine/polydopamine-functionalized self-floating microspheres for caramel adsorption: Interactions and phenomenological mass transfer kinetics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Zhou LS, Lu HQ, Jia R, Xiong YS, Fan BH, Tang JY, Li W, Li MX, Li H, Li K. Insights into mass transfer mechanism and micro-interaction of melanoidin adsorption on polyethyleneimine-functionalised pomelo-peel-derived aerogel. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Wang F, Hu X, Tang C, Liu C, Zhu Z. Phosphate-functionalized ramie stalk adsorbent for efficient removal of Zn 2+ from water: adsorption performance, mechanism, and fixed-bed column treatment of real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6245-6261. [PMID: 35989403 DOI: 10.1007/s11356-022-22590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
A highly efficient adsorbent functionalized with phosphate groups made from a local agricultural waste, ramie stalk, was designed for Zn2+ removal from water. SEM, EDS, FTIR, zeta potential, and XPS tests were used to study the morphology and properties of modified ramie stalk (RS-P). The results showed that the phosphate groups were successfully grafted to the surface of the ramie stalk, which has a multilayered and porous structure and can provide large adsorption sites. Adsorption performance and mechanism were investigated in the static and dynamic adsorption experiments. The adsorption kinetics of Zn2+ by RS-P were better fitted by the pseudo-second-order model, indicating chemical adsorption. Adsorption isotherm was better described by Redlich-Peterson isotherm, which suggested heterogeneous and multi-site adsorption, with a maximum adsorption capacity of 0.558 mmol g-1. The characterization of adsorbents before and after adsorption indicated that a combined action of electrostatic interaction and ion exchange was the primary mechanism of adsorption. Dynamic adsorption experiments with fixed-bed column displayed excellent water treatment capabilities. RS-P exhibited good reusability in 5 cycles without much deterioration in its adsorption performances. Complex co-existing ions impaired Zn2+ adsorption during real wastewater treatment. This research benefits agricultural waste recycling and provides safe water to ensure economic, social, and environmental sustainability.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China.
| | - XiaoLi Hu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Cheng Tang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Changlu Liu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Zhaoju Zhu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| |
Collapse
|
10
|
Cheng X, Chen C, Hu Y, Guo X, Wang J. Photosynthesis and growth of Amaranthus tricolor under strontium stress. CHEMOSPHERE 2022; 308:136234. [PMID: 36041533 DOI: 10.1016/j.chemosphere.2022.136234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Amaranthaceae are effective plants for cleaning soil contaminated by heavy metals and radionuclides. In this paper, Amaranthus tricolor was used to investigate the response of the plant photosynthesis to various concentration of strontium ions (0.2, 0.6, 3 and 6 mM), in order to determine the possibility of A. tricolor to remediate strontium contamination. The results showed that strontium ions (0.2-6 mM) had effect on light energy conversion and utilization in A. tricolor. Low level of strontium (0.2 mM) promoted the energy utilization in A. tricolor, while higher Sr concentration (3 mM or higher) increased the excess light energy in the plants. Under strontium stress of 6 mM, the acceptor side of PSII in A. tricolor leaves was more vulnerable to strontium stress than the donor side. Furthermore, strontium stress led to accumulation of QA- and block in QB downstream of the electron transfer chain in PSII of A. tricolor leaves. The tolerance ability of A. tricolor to strontium and remediation is also reflected in its biomass and strontium content in plants. Strontium at 3 mM or below promoted the growth of A. tricolor, while higher concentration inhibited the plant growth, but without obvious wilting or curling of leaves. The maximal dry weight increased by 36.29% in shoots, and 60.14% in roots when the spiked-strontium concentration reached 0.2 mM. The maximal strontium content achieved 8.75 mg/g dry wt in shoots, and 1.71 mg/g dry wt in roots respectively, when strontium concentration was 6 mM. Transfer factors (TFs: ratio of Sr content in shoots to that in roots) of strontium in A. tricolor ranged from 2.85 to 5.93, while bio-concentration factors (BCFs: ratio of Sr content in shoots to that in solutions) ranged from 22.57 to 49.66. In summary, A. tricolor showed the excellent potential to remediate strontium contamination.
Collapse
Affiliation(s)
- Xuening Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Can Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yuming Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Xiliang Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
11
|
Effective melanoidin adsorption of polyethyleneimine- functionalised molasses-based porous carbon: Adsorption behaviours and microscopic mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Palansooriya KN, Yoon IH, Kim SM, Wang CH, Kwon H, Lee SH, Igalavithana AD, Mukhopadhyay R, Sarkar B, Ok YS. Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. ENVIRONMENTAL RESEARCH 2022; 214:114072. [PMID: 35987372 DOI: 10.1016/j.envres.2022.114072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Radioactive elements released into the environment by accidental discharge constitute serious health hazards to humans and other organisms. In this study, three gasified biochars prepared from feedstock mixtures of wood, chicken manure, and food waste, and a KOH-activated biochar (40% food waste + 60% wood biochar (WFWK)) were used to remove cesium (Cs+) and strontium (Sr2+) ions from water. The physicochemical properties of the biochars before and after adsorbing Cs+ and Sr2+ were determined using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, extended X-Ray absorption fine structure (EXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). The WFWK exhibited the highest adsorption capacity for Cs+ (62.7 mg/g) and Sr2+ (43.0 mg/g) among the biochars tested herein. The removal of radioactive 137Cs and 90Sr exceeded 80% and 47%, respectively, in the presence of competing ions like Na+ and Ca2+. The functional groups present in biochar, including -OH, -NH2, and -COOH, facilitated the adsorption of Cs+ and Sr2+. The Cs K-edge EXAFS spectra revealed that a single coordination shell was assigned to the Cs-O bonding at 3.11 Å, corresponding to an outer-sphere complex formed between Cs and the biochar. The designer biochar WFWK may be used as an effective adsorbent to treat radioactive 137Cs- and 90Sr-contaminated water generated during the operation of nuclear power plants and/or unintentional release, owing to the enrichment effect of the functional groups in biochar via alkaline activation.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - In-Ho Yoon
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sung-Man Kim
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Hyeonjin Kwon
- Decontamination Technology Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sang-Ho Lee
- Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, 132001, Haryana, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
He J, Mao L, Ma X, Hua J, Cui Z, He B, Pei H, Li J. Highly-Efficient adsorptive separation of Cs+ from aqueous solutions by porous polyimide membrane containing Dibenzo-18-Crown-6. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhuang S, Zhu K, Xu L, Hu J, Wang J. Adsorption of Co 2+ and Sr 2+ in aqueous solution by a novel fibrous chitosan biosorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153998. [PMID: 35192812 DOI: 10.1016/j.scitotenv.2022.153998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel fibrous chitosan biosorbent was prepared using LiOH/KOH/urea/H2O (4.5:7:8:80.5 by weight) as spinning solvent. The fibrous chitosan exhibited a higher adsorption capacity and a faster adsorption rate for Co2+ and Sr2+, compared with spherical chitosan due to its high specific surface area (16.9 m2 g-1), uniform fineness (24.1 μm), and good mechanical strength. The adsorption capacity of fibrous chitosan for Co2+ and Sr2+ was 31.3 mg g-1 and 20.0 mg g-1, respectively, which was higher than that of spherical chitosan (22.5 mg g-1for Co2+ and 8.9 mg g-1 for Sr2+). The coordination between -NH2/-OH of chitosan and the nuclide ions was the rate-limiting step. The improvement of adsorption performance was due to the higher specific surface area which increased the exposure degree of functional groups (adsorptive sites). This new wet-spun fibrous chitosan biosorbent showed great potential in the adsorptive removal of nuclides ions from aqueous solution.
Collapse
Affiliation(s)
- Shuting Zhuang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
15
|
Chang Song W, Kim B, Young Park S, Park G, Oh JW. Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Intisar A, Ramzan A, Sawaira T, Kareem AT, Hussain N, Din MI, Bilal M, Iqbal HMN. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials - A review. CHEMOSPHERE 2022; 293:133538. [PMID: 34998849 DOI: 10.1016/j.chemosphere.2022.133538] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Increasing demand of food and agriculture is leading us towards the increasing use and introduction of pesticides to the environment. The upright increase of pesticides in water and associated adverse effects have become a great point of concern to develop proficient methods for their mitigation from water. Various different methods have been traditionally employed for this purpose. Recently, nanotechnology has turned out to be the field of prodigious interest for this purpose, and various specific methods were developed and employed to remove pesticides from water. In this study, nanotechnological methods such as adsorption and degradation have been thoroughly discussed along with their applications and limitations where different types of nanoparticles, nanocomposites, nanotubes, and nanomembranes have played a vital role. However, in this study the most commonly adopted method of adsorption is considered to be the better technique due to its low cost, efficiency, and ease of operation. The adsorption kinetic models were described to explain the efficiency of the nano-adrsorbants in order to evaluate the mass transfer processes. However, various degradation methodologies including photocatalysis and catalytic reduction have also been elaborated. Numerous robust metal, metal oxide and functionalized magnetic nanomaterials have been emphasized, categorized, and compared for the removal of pesticides from water. Additionally, current challenges faced by researchers and future directions have also been provided.
Collapse
Affiliation(s)
- Azeem Intisar
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Arooj Ramzan
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Tehzeeb Sawaira
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ama Tul Kareem
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab Lahore, Pakistan
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
17
|
Xiong Y, Yang X, Liu Y, Chen X, Wang G, Lu B, Lin G, Huang B. Fabrication of phosphorus doping porous carbon derived from bagasse for highly-efficient removal of La3+ ions via capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Organic ligands for the development of adsorbents for Cs+ sequestration: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rahman IMM, Ye Y, Alam MF, Sawai H, Begum ZA, Furusho Y, Ohta A, Hasegawa H. Selective Separation of Radiocesium from Complex Aqueous Matrices Using Dual Solid-Phase Extraction Systems. J Chromatogr A 2021; 1654:462476. [PMID: 34438301 DOI: 10.1016/j.chroma.2021.462476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
The release of radiocesium (r-Cs) into natural aqueous systems is of concern because of its extended solubility as an alkaline metal ion and its facile incorporation into living beings. A technique for the selective separation of Cs from an aqueous matrix using dual solid-phase extraction (SPE) systems in a series is proposed in this paper. The SPEs equipped with chelates (Nobias Chelate-PA1 and Nobias Chelate-PB1), an ion-exchange resin (Nobias Ion SC-1), or macrocycles (MetaSEP AnaLig Cs-01 and MetaSEP AnaLig Cs-02) were evaluated in terms of selectivity and retention/recovery behavior toward Cs and other potentially competing ions (Li, Na, K, Rb, Ba, Ca, Mg, and Sr). The simulated solution of 133Cs, a chemical analog of r-Cs, was used to optimize the separation process. Operating parameters such as pH (3-13), flow rate (0.2-5.0 mL min-1), and elution behavior (HCl, 0.1-5.0 mol L-1) were optimized to ensure maximum removal of Cs from the aqueous matrices. The dual SPE system comprised Nobias Chelate-PB1 that minimized the competing impact of ions, while selective Cs retention was attained with MetaSEP AnaLig Cs-02. The proposed process was verified using real r-Cs-contaminated water from Fukushima, Japan, to observe the quantitative separation and preconcentration of r-Cs from the complex matrices.
Collapse
Affiliation(s)
- Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Yan Ye
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - M Ferdous Alam
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan; Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka 1344, Bangladesh
| | - Hikaru Sawai
- Department of Industrial Engineering, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka City, Ibaraki 312-8508, Japan
| | - Zinnat A Begum
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan; Department of Civil Engineering, Southern University Bangladesh, Arefin Nagar, Bayezid Bostami, Chattogram 4210, Bangladesh
| | - Yoshiaki Furusho
- GL Sciences Inc., 6-22-1 Nishi Shinjuku, Shinjuku-ku, Tokyo 163-1130, Japan
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
20
|
Preparation and characterization of ZnO/Chitosan nanocomposite for Cs(I) and Sr(II) sorption from aqueous solutions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07935-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
An Overview of the Sorption Studies of Contaminants on Poly(Ethylene Terephthalate) Microplastics in the Marine Environment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9040445] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marine pollution is one of the biggest environmental problems, mainly due to single-use or disposable plastic waste fragmenting into microplastics (MPs) and nanoplastics (NPs) and entering oceans from the coasts together with human-made MPs. A rapidly growing worry concerning environmental and human safety has stimulated research interest in the potential risks induced by the chemicals associated with MPs/NPs. In this framework, the present review analyzes the recent advances in adsorption and desorption studies of different contaminants species, both organic and metallic, on MPs made of Poly(Ethylene terephthalate). The choice of PET is motivated by its great diffusion among plastic items and, unfortunately, also in marine plastic pollution. Due to the ubiquitous presence of PET MPS/NPs, the interest in its role as a vector of contaminants has abruptly increased in the last three years, as demonstrated by the very high number of recent papers on sorption studies in different environments. The present review relies on a chemical engineering approach aimed at providing a deeper overview of both the sorption mechanisms of organic and metal contaminants to PET MPs/NPs and the most used adsorption kinetic models to predict the mass transfer process from the liquid phase to the solid adsorbent.
Collapse
|
22
|
Liu X, Wang J. Adsorptive removal of Sr 2+ and Cs + from aqueous solution by capacitive deionization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3182-3195. [PMID: 32902750 DOI: 10.1007/s11356-020-10691-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The electro-assisted adsorptive removal of Sr2+ and Cs+ ions from aqueous solution by capacitive deionization (CDI) was studied using activated carbon cloth (ACC) as electrode. Various influencing factors, including initial concentration and the applied voltage, on the removal efficiency of Sr2+ and Cs+ were examined. The results showed that ACC electrode had a large amount of oxygen- and nitrogen-containing functional groups. The removal efficiency of Sr2+ and Cs+ was 40.58% and 62.05%, respectively, which decreased when their initial concentration increased from 3 to 20 mg L-1. The removal efficiency of Sr2+ and Cs+ increased by 26.64% and 17.84% with increase of the applied voltage. CDI process is favorable to remove high valence ions due to the ion-exchange and charge interaction mechanisms. The mixed-order (MO) model could fit the adsorption kinetics of Sr2+ and Cs+ (R2 = 0.938). The Redlich-Peterson isotherm could be used for Sr2+ and Cs+ adsorption. After adsorption, Sr and Cs partly deposited on the surface of the ACC, which did not change the surface structure of the ACC electrode.
Collapse
Affiliation(s)
- Xiaojing Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
23
|
Liu X, Wang J. Electro-assisted adsorption of Cs(I) and Co(II) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141524. [PMID: 32836125 DOI: 10.1016/j.scitotenv.2020.141524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, a new composite of activated carbon cloth/graphene oxide (ACC/GO) was prepared, characterized and used as electrode material for the electro-assisted adsorptive removal of Co2+ and Cs+ from aqueous solution. The ACC/GO composite was synthesized by a vacuum filtration method, and characterized by cyclic voltammetry and various surface characterization methods. Effect of applied voltage and initial concentration of Co2+ and Cs+ on their removal efficiency was examined. The kinetics and isotherms of Co2+ and Cs+ adsorption were investigated to explain the adsorption mechanism. At 0 V, the removal efficiency of Co2+ and Cs+ was 10.1% and 21.4%; at 1.2 V, electro-assistance increased the removal efficiency of Co2+ and Cs+ to 40.8% and 39.7%, respectively. Moreover, ACC/GO composite electrode had higher adsorption capacity compared to the pristine ACC electrode, due to its higher specific surface area and more oxygen-containing functional groups. The maximum adsorption capacity of Co2+ and Cs+ was 16.7 mg g-1 and 22.9 mg g-1, respectively at 1.2 V and 20 mg L-1 by ACC/GO composite electrode. The modeling and experimental results demonstrated that the removal mechanism involved in physical adsorption, chemical adsorption, and electro-adsorption. Overall, the prepared ACC/GO composite electrode had high capacitive deionization performance in removing heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Xiaojing Liu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
24
|
Biosorption of Sr2+ and Cs+ onto Undaria pinnatifida: Isothermal titration calorimetry and molecular dynamics simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method. CHEMOSPHERE 2020; 258:127279. [PMID: 32947678 DOI: 10.1016/j.chemosphere.2020.127279] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 05/28/2023]
Abstract
Adsorption is widely applied separation process, especially in environmental remediation, due to its low cost and high efficiency. Adsorption isotherm models can provide mechanism information of the adsorption process, which is important for the design of adsorption system. However, the classification, physical meaning, application and solving method of the isotherms have not been systematical analyzed and summarized. In this paper, the adsorption isotherms were classified into adsorption empirical isotherms, isotherms based on Polanyi's theory, chemical adsorption isotherms, physical adsorption isotherms, and the ion exchange model. The derivation and physical meaning of the isotherm models were discussed in detail. In addition, the application of the isotherm models were analyzed and summarized based on over 200 adsorption equilibrium data in literature. The statistical parameters for evaluating the fitness of the models were also discussed. Finally, a user interface (UI) was developed based on Excel software for solving the isotherm models, which was provided in supplemental material and can be easily used to model the adsorption equilibrium data. This paper will provide theoretical basis and guiding methodology for the selection and use of the adsorption isotherms.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
26
|
Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122156. [PMID: 32006847 DOI: 10.1016/j.jhazmat.2020.122156] [Citation(s) in RCA: 656] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Adsorption technology has been widely applied in water and wastewater treatment, due to its low cost and high efficiency. The adsorption kinetic models have been used to evaluate the performance of the adsorbent and to investigate the adsorption mass transfer mechanisms. However, the physical meanings and the solving methods of the kinetic models have not been well established. The proper interpretation of the physical meanings and the standard solving methods for the adsorption kinetic models are very important for the applications of the kinetic models. This paper mainly focused on the physical meanings, applications, as well as the solving methods of 16 adsorption kinetic models. Firstly, the mathematical derivations, physical meanings and applications of the adsorption reaction models, the empirical models, the diffusion models, and the models for adsorption onto active sites were analyzed and discussed in detail. Secondly, the model validity evaluation equations were summarized based on literature. Thirdly, a convenient user interface (UI) for solving the kinetic models was developed based on Excel software and provided in supplementary information, which is helpful for readers to simulate the adsorption kinetic process.
Collapse
Affiliation(s)
- Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Xuan Guo
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
27
|
Hu Y, Wang J, Shen Y. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121335. [PMID: 31590081 DOI: 10.1016/j.jhazmat.2019.121335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.
Collapse
Affiliation(s)
- Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
28
|
Wang R, Luo Z, Tan Q, Wang R, Chen S, Shu J, Chen M, Xiao Z. Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4404-4413. [PMID: 31832937 DOI: 10.1007/s11356-019-06907-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Crystalline silicotitanate (CST) was synthesized via a sol-gel hydrothermal method using Na2Si2O3·9H2O and TiCl4 as silicon and titanium sources. The effects of pH, silicon concentration, hydrothermal temperature, and time on the CST synthesis were studied at a fixed molar ratio of silicon:titanium (0.98:1). Pure nano-CST crystals were synthesized at pH = 12.5, silicon concentration of 5 g L-1, 170 °C for 7 days. The average CST particle size was < 100 nm, with a Sr2+/Cs+ distribution coefficient up to 1.9 × 106 mL g-1/9.4 × 103 mL g-1 under the optimum conditions. In addition, nano-CST absorbed Sr2+/Cs+ over a wide pH range. The nano-CST also displayed a much faster equilibrium time, 4 h, as compared with previous studies. Furthermore, nano-CST adsorption of Sr2+/Cs+ followed a Langmuir adsorption model and was consistent with pseudo-second-order kinetics.
Collapse
Affiliation(s)
- Rong Wang
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhenggang Luo
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Qiuxia Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Rui Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Shuyuan Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| | - Zhengxue Xiao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
| |
Collapse
|
29
|
Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. NUCLEAR ENGINEERING AND TECHNOLOGY 2020. [DOI: 10.1016/j.net.2019.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Performance and deterioration of forward osmosis membrane exposed to various dose of gamma-ray irradiation. ANN NUCL ENERGY 2020. [DOI: 10.1016/j.anucene.2019.106950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Liu X, Wu J, Wang J. Electro-enhanced removal of cobalt ions from aqueous solution by capacitive deionization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134144. [PMID: 32380616 DOI: 10.1016/j.scitotenv.2019.134144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Electro-enhanced removal of cobalt (Co) ions from aqueous solution by capacitive deionization (CDI) was investigated in this study. The effect of applied voltage and initial Co ions concentration, as well as coexisted ions on removal efficiency of Co ions was determined. Co ions adsorption performance was also evaluated by kinetic models, isotherm models and three mass transfer models. The results indicated that the removal efficiency of Co ions had positive correlation with applied voltage (R2 = 0.9991), which increased from 15.11% to 36.54% when the applied voltage increased from 0 V to 1.2 V. However, the removal efficiency of Co ions decreased gradually from 36.54% to 9.51% with the increasing initial Co ions concentration from 5 to 30 mg L-1. The coexisted ions (Sr and Cs) also largely inhibited the removal efficiency of Co ions and make it reduce to 8.37%. After fitting the adsorption data, pseudo-second order (PSO) model was better than pseudo-first order (PFO) for each applied voltage and initial concentration. A monolayer adsorption is the main adsorption mechanism of Co ions adsorption on the activated carbon cloth (ACC) because of the higher regression coefficient (0.964) by Langmuir isotherm. Based on kinetics together with the equilibrium isotherm, three mass transfer models were established and adsorption of the ions onto the active sites (AAS) model is the rate-limiting step due to the best fitting for the kinetic adsorption data of Co ions on ACC electrode. In addition, the Co ions were uniformly distributed on ACC electrode after adsorption.
Collapse
Affiliation(s)
- Xiaojing Liu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jinling Wu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
32
|
Zhuang S, Wang J. Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111682] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Wei Y, Salih KAM, Lu S, Hamza MF, Fujita T, Vincent T, Guibal E. Amidoxime Functionalization of Algal/Polyethyleneimine Beads for the Sorption of Sr(II) from Aqueous Solutions. Molecules 2019; 24:E3893. [PMID: 31671819 PMCID: PMC6864727 DOI: 10.3390/molecules24213893] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023] Open
Abstract
There is a need for developing new sorbents that incorporate renewable resources for the treatment of metal-containing solutions. Algal-polyethyleneimine beads (APEI) (reinforced with alginate) are functionalized by grafting amidoxime groups (AO-APEI). Physicochemical characteristics of the new material are characterized using FTIR, XPS, TGA, SEM, SEM-EDX, and BET. AO-APEI beads are tested for the recovery of Sr(II) from synthetic solutions after pH optimization (≈ pH 6). Uptake kinetics is fast (equilibrium ≈ 60-90 min). Sorption isotherm (fitted by the Langmuir equation) shows remarkable sorption capacity (≈ 189 mg Sr g-1). Sr(II) is desorbed using 0.2 M HCl/0.5 M CaCl2 solution; sorbent recycling over five cycles shows high stability in terms of sorption/desorption performances. The presence of competitor cations is studied in relation to the pH; the selectivity for Sr(II) is correlated to the softness parameter. Finally, the recovery of Sr(II) is carried out in complex solutions (seawater samples): AO-APEI is remarkably selective over highly concentrated metal cations such as Na(I), K(I), Mg(II), and Ca(II), with weaker selectivity over B(I) and As(V). AO-APEI appears to be a promising material for selective recovery of strontium from complex solutions (including seawater).
Collapse
Affiliation(s)
- Yuezhou Wei
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Khalid A M Salih
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Siming Lu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Mohammed F Hamza
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
- C2MA, IMT-Mines Ales, Univ. Montpellier, F-30319 Alès cedex, France.
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Thierry Vincent
- C2MA, IMT-Mines Ales, Univ. Montpellier, F-30319 Alès cedex, France.
| | - Eric Guibal
- C2MA, IMT-Mines Ales, Univ. Montpellier, F-30319 Alès cedex, France.
| |
Collapse
|
34
|
Liu X, Wu J, Hou LA, Wang J. Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis. CHEMOSPHERE 2019; 232:87-95. [PMID: 31152907 DOI: 10.1016/j.chemosphere.2019.05.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 05/21/2023]
Abstract
The removal of Co, Sr and Cs ions form simulated radioactive wastewater using forward osmosis (FO) process was investigated. The effect of various factors on nuclide transport was examined, including membrane orientation, NaCl concentration, flow velocity, and the main factors were identified by correlation analysis. The mechanisms of nuclides transfer through membrane were explored. The results indicated that the active layer facing draw solution (AL-DS) had higher nuclide flux than AL-FS. At AL-FS mode, the highest flux of Co, Sr and Cs were only 1.54, 10.22 and 15.63 mg m-2 h-1 respectively by cellulose triacetate with embedded polyester screen support (CTA-ES) membrane. At AL-DS mode, the flux of Co and Cs increased when NaCl concentration and flow velocity increased. Convection, diffusion and electrostatic interactions were found to influence the nuclide transport all together. The Pearson correlation and partial correlation analysis identified that the diffusion coefficient of nuclides and reverse NaCl flux were the most important factors affecting nuclide flux through cellulose triacetate membrane. The water flux, NaCl concentration, flow velocity and partition coefficient were not the main affecting factors for nuclide flux.
Collapse
Affiliation(s)
- Xiaojing Liu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jinling Wu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Li-An Hou
- Xi'an High Tech Inst, Xi'an, 710025, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|