1
|
Wu Z, Chen T, Sun W, Chen Y, Ying H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: a review. Front Microbiol 2024; 15:1485624. [PMID: 39430105 PMCID: PMC11486702 DOI: 10.3389/fmicb.2024.1485624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
lysine is an essential amino acid with significant importance, widely used in the food, feed, and pharmaceutical industries. To meet the increasing demand, microbial fermentation has emerged as an effective and sustainable method for L-lysine production. Escherichia coli has become one of the primary microorganisms for industrial L-lysine production due to its rapid growth, ease of genetic manipulation, and high production efficiency. This paper reviews the recent advances in E. coli strain engineering and fermentation process optimization for L-lysine production. Additionally, it discusses potential technological breakthroughs and challenges in E. coli-based L-lysine production, offering directions for future research to support industrial-scale production.
Collapse
Affiliation(s)
- Zijuan Wu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhang X, Niu P, Liu H, Fang H. Production of pyrimidine nucleosides in microbial systems via metabolic engineering: Theoretical analysis research and prospects. Biotechnol Adv 2024; 75:108419. [PMID: 39053562 DOI: 10.1016/j.biotechadv.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Pyrimidine nucleosides, as intermediate materials of significant commercial value, find extensive applications in the pharmaceutical industry. However, the current production of pyrimidine nucleosides largely relies on chemical synthesis, creating environmental problems that do not align with sustainable development goals. Recent progress in systemic metabolic engineering and synthetic biology has enabled the synthesis of natural products like pyrimidine nucleosides through microbial fermentation, offering a more sustainable alternative. Nevertheless, the intricate and tightly regulated biosynthetic pathways involved in the microbial production of pyrimidine nucleosides pose a formidable challenge. This study focuses on metabolic engineering and synthetic biology strategies aimed at enhancing pyrimidine nucleoside production. These strategies include gene modification, transcriptional regulation, metabolic flux analysis, cofactor balance optimization, and transporter engineering. Finally, this research highlights the challenges involved in the further development of pyrimidine nucleoside-producing strains and offers potential solutions in order to provide theoretical guidance for future research endeavors in this field.
Collapse
Affiliation(s)
- Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Pilian Niu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
3
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
You J, Wang Y, Wang K, Du Y, Zhang X, Zhang X, Yang T, Pan X, Rao Z. Utilizing 5' UTR Engineering Enables Fine-Tuning of Multiple Genes within Operons to Balance Metabolic Flux in Bacillus subtilis. BIOLOGY 2024; 13:277. [PMID: 38666889 PMCID: PMC11047901 DOI: 10.3390/biology13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of B. subtilis 168. This sequence resulted in a 5.8-fold increase in the expression level of EGFP. By utilizing the 5' UTR sequence to overexpress individual genes within the rib operon, it was determined that the genes ribD and ribAB serve as rate-limiting enzymes in the riboflavin synthesis pathway. Constructing a 5' UTR library to regulate EGFP expression resulted in a variation range in gene expression levels exceeding 100-fold. Employing the same 5' UTR library to regulate the expression of EGFP and mCherry within the operon led to a change in the expression ratio of these two genes by over 10,000-fold. So, employing a 5' UTR library to modulate the expression of the rib operon gene and construct a synthetic rib operon resulted in a 2.09-fold increase in riboflavin production. These results indicate that the 5' UTR sequence identified and characterized in this study can serve as a versatile synthetic biology toolkit for achieving complex metabolic network reconstruction. This toolkit can facilitate the fine-tuning of gene expression to produce target products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yifan Wang
- Department of Food Science and Technology, Texas A & M University, College Station, TX 77843, USA;
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
5
|
Sarkhel R, Priyadarsini S, Mahawar M. Nutrient limitation and oxidative stress induce the promoter of acetate operon in Salmonella Typhimurium. Arch Microbiol 2024; 206:126. [PMID: 38411730 DOI: 10.1007/s00203-024-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Glyoxylate shunt is an important pathway for microorganisms to survive under multiple stresses. One of its enzymes, malate synthase (encoded by aceB gene), has been widely speculated for its contribution to both the pathogenesis and virulence of various microorganisms. We have previously demonstrated that malate synthase (MS) is required for the growth of Salmonella Typhimurium (S. Typhimurium) under carbon starvation and survival under oxidative stress conditions. The aceB gene is encoded by the acetate operon in S. Typhimurium. We attempted to study the activity of acetate promoter under both the starvation and oxidative stress conditions in a heterologous system. The lac promoter of the pUC19 plasmid was substituted with the putative promoter sequence of the acetate operon of S. Typhimurium upstream to the lacZ gene and transformed the vector construct into E. coli NEBα cells. The transformed cells were subjected to the stress conditions mentioned above. We observed a fourfold increase in the β-galactosidase activity in these cells resulting from the upregulation of the lacZ gene in the stationary phase of cell growth (nutrient deprived) as compared to the mid-log phase. Following exposure of stationary phase cells to hypochlorite-induced oxidative stress, we further observed a 1.6-fold increase in β galactosidase activity. These data suggest the induction of promoter activity of the acetate operon under carbon starvation and oxidative stress conditions. Thus, these observations corroborate our previous findings regarding the upregulation of aceB expression under stressful environments.
Collapse
Affiliation(s)
- Ratanti Sarkhel
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swagatika Priyadarsini
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Indian Council of Agricultural Research- National Research Centre on Camel, Bikaner, Rajasthan, India.
| | - Manish Mahawar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
6
|
Lu WJ, Zhang MS, Lu DL, Li ZW, Yang ZD, Wu L, Ni JT, Chen WD, Deng JJ, Luo XC. Sustainable valorizing high-protein feather waste utilization through solid-state fermentation by keratinase-enhanced Streptomyces sp. SCUT-3 using a novel promoter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:528-538. [PMID: 38134540 DOI: 10.1016/j.wasman.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Feather waste, a rich source of proteins, has traditionally been processed through high-temperature puffing and acid-base hydrolysis, contributing to generation of greenhouse gases and H2S. To address this issue, we employed circular economy techniques to recover the nutritional value of feather waste. Streptomyces sp. SCUT-3, an efficient proteolytic and chitinolytic bacterium, was isolated for feather degradation previously. This study aimed to valorize feather waste for feed purposes by enhancing its feather transformation ability through promoter optimization. Seven promoters were identified through omics analysis and compared to a common Streptomyces promoter ermE*p. The strongest promoter, p24880, effectively enhanced the expression of three candidate keratinases (Sep39, Sep40, and Sep53). The expression efficiency of double-, triple-p24880 and sandwich p24880-sep39-p24880 promoters were further verified. The co-overexpression strain SCUT-3-p24880-sep39-p24880-sep40 exhibited a 16.21-fold increase in keratinase activity compared to the wild-type. Using this strain, a solid-state fermentation process was established that increased the feather/water ratio (w/w) to 1:1.5, shortened the fermentation time to 2.5 days, and increased soluble peptide and free amino acid yields to 0.41 g/g and 0.14 g/g, respectively. The resulting has high protein content (90.49 %), with high in vitro digestibility (94.20 %). This method has the potential to revolutionize the feather waste processing industry.
Collapse
Affiliation(s)
- Wen-Jun Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhen-Dong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Lei Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Jing-Tao Ni
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Wei-Dong Chen
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China; Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Crop Germplasm Resources Conservation and Utilization, Guangzhou 510640, China.
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Okay S. Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters. Methods Mol Biol 2024; 2844:179-195. [PMID: 39068340 DOI: 10.1007/978-1-0716-4063-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are key genetic elements in the initiation and regulation of gene expression. A limited number of natural promoters has been described for the control of gene expression in synthetic biology applications. Therefore, synthetic promoters have been developed to fine-tune the transcription for the desired amount of gene product. Mostly, synthetic promoters are characterized using promoter libraries that are constructed via mutagenesis of promoter sequences. The strength of promoters in the library is determined according to the expression of a reporter gene such as gfp encoding green fluorescent protein. Gene expression can be controlled using inducers. The majority of the studies on gram-negative bacteria are conducted using the expression system of the model organism Escherichia coli while that of the model organism Bacillus subtilis is mostly used in the studies on gram-positive bacteria. Additionally, synthetic promoters for the cyanobacteria, which are phototrophic microorganisms, are evaluated, especially using the model cyanobacterium Synechocystis sp. PCC 6803. Moreover, a variety of algorithms based on machine learning methods were developed to characterize the features of promoter elements. Some of these in silico models were verified using in vitro or in vivo experiments. Identification of novel synthetic promoters with improved features compared to natural ones contributes much to the synthetic biology approaches in terms of fine-tuning gene expression.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
8
|
Zhang Y, Qi H, Wang M. CRISPR/Cas9-Mediated Promoter Engineering in Saccharopolyspora erythraea. Methods Mol Biol 2024; 2844:123-132. [PMID: 39068336 DOI: 10.1007/978-1-0716-4063-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In situ promoter engineering is an effective way to alter target gene expression without introducing excess DNA sequences. Recently, the CRISPR/Cas9 technologies have been proved to be efficient tools for genome editing in actinomycetes, making it easier and more efficient to perform gene insertion and substitution in actinomycetes in a scarless manner. In this chapter, we describe a routine protocol for CRISPR/Cas9-mediated promoter engineering in Saccharopolyspora erythraea NRRL 23338, which is the wild-type producer of erythromycin. This protocol can be adapted to CRISPR/Cas9-mediated gene editing, not limited to promoter engineering, in other actinomycetes, with modifications.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, China.
| | - Hui Qi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, China.
| |
Collapse
|
9
|
Wang X, Xu K, Tan Y, Yu S, Zhao X, Zhou J. Deep Learning-Assisted Design of Novel Promoters in Escherichia coli. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300184. [PMID: 38099247 PMCID: PMC10716054 DOI: 10.1002/ggn2.202300184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Indexed: 12/17/2023]
Abstract
Deep learning (DL) approaches have the ability to accurately recognize promoter regions and predict their strength. Here, the potential for controllably designing active Escherichia coli promoter is explored by combining multiple deep learning models. First, "DRSAdesign," which relies on a diffusion model to generate different types of novel promoters is created, followed by predicting whether they are real or fake and strength. Experimental validation showed that 45 out of 50 generated promoters are active with high diversity, but most promoters have relatively low activity. Next, "Ndesign," which relies on generating random sequences carrying functional -35 and -10 motifs of the sigma70 promoter is introduced, and their strength is predicted using the designed DL model. The DL model is trained and validated using 200 and 50 generated promoters, and displays Pearson correlation coefficients of 0.49 and 0.43, respectively. Taking advantage of the DL models developed in this work, possible 6-mers are predicted as key functional motifs of the sigma70 promoter, suggesting that promoter recognition and strength prediction mainly rely on the accommodation of functional motifs. This work provides DL tools to design promoters and assess their functions, paving the way for DL-assisted metabolic engineering.
Collapse
Affiliation(s)
- Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Shangyang Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
10
|
Liu HL, Wu JM, Deng XT, Yu L, Yi PH, Liu ZQ, Xue YP, Jin LQ, Zheng YG. Development of an aminotransferase-driven biocatalytic cascade for deracemization of d,l-phosphinothricin. Biotechnol Bioeng 2023; 120:2940-2952. [PMID: 37227020 DOI: 10.1002/bit.28432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.
Collapse
Affiliation(s)
- Han-Lin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jia-Min Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Tong Deng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lan Yu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Pu-Hong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Wang Z, Chen Z, Tang Y, Zhang M, Huang M. Regulation of transcriptome networks that mediate ginsenoside biosynthesis by essential ecological factors. PLoS One 2023; 18:e0290163. [PMID: 37590202 PMCID: PMC10434944 DOI: 10.1371/journal.pone.0290163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Ginseng, a valuable Chinese medicinal herb, is renowned worldwide for its effectiveness in alleviating certain conditions and promoting overall health. In this study, we performed weighted gene co-expression network analysis (WGCNA) on the accumulation of essential saponins under the influence of 13 essential environmental factors (including air temperature, air bottom temperature, surface mean temperature, soil temperature, surface shortwave radiation, soil moisture, soil water content, rainfall, total precipitation, elevation, soil type, soil pH, and soil water potential). We identified a total of 40 transcript modules associated with typical environmental factors and the accumulation of essential saponins. Among these, 18 modules were closely related to the influence of typical environmental factors, whereas 22 modules were closely related to the accumulation of essential saponins. These results were verified by examining the transcriptome, saponin contents, environmental factor information and the published data and revealed the regulatory basis of saponin accumulation at the transcriptome level under the influence of essential environmental factors. We proposed a working model of saponin accumulation mediated by the transcriptional regulatory network that is affected by typical environmental factors. An isomorphic white-box neural network was constructed based on this model and the predicted results of the white-box neural network correlated with saponin accumulation. The effectiveness of our correlation-directed graph in predicting saponin contents was verified by bioinformatics analysis based on results obtained in this study and transcripts known to affect the biosynthesis of saponin Rb1. The directed graph represents a useful tool for manipulating saponin biosynthesis while considering the influence of essential environmental factors in ginseng and other medicinal plants.
Collapse
Affiliation(s)
- Zhongce Wang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Zhiguo Chen
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, China
| | - You Tang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Meiping Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Meng Huang
- College of Electrical and Information Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| |
Collapse
|
12
|
Huttanus HM, Triola EKH, Velasquez-Guzman JC, Shin SM, Granja-Travez RS, Singh A, Dale T, Jha RK. Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations. Front Bioeng Biotechnol 2023; 11:1202388. [PMID: 37545889 PMCID: PMC10400447 DOI: 10.3389/fbioe.2023.1202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/25/2023] [Indexed: 08/08/2023] Open
Abstract
Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.
Collapse
Affiliation(s)
- Herbert M. Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Ellin-Kristina H. Triola
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Jeanette C. Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Rommel S. Granja-Travez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Anmoldeep Singh
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| |
Collapse
|
13
|
Robainas-Del-Pino Y, Viader-Salvadó JM, Herrera-Estala AL, Guerrero-Olazarán M. Functional characterization of the Komagataella phaffii 1033 gene promoter and transcriptional terminator. World J Microbiol Biotechnol 2023; 39:246. [PMID: 37420160 DOI: 10.1007/s11274-023-03682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The methylotrophic yeast Komagataella phaffii (syn. Pichia pastoris) is a widely used host for extracellularly producing heterologous proteins via an expression cassette integrated into the yeast genome. A strong promoter in the expression cassette is not always the most favorable choice for heterologous protein production, especially if the correct folding of the protein and/or post-translational processing is the limiting step. The transcriptional terminator is another regulatory element in the expression cassette that can modify the expression levels of the heterologous gene. In this work, we identified and functionally characterized the promoter (P1033) and transcriptional terminator (T1033) of a constitutive gene (i.e., the 1033 gene) with a weak non-methanol-dependent transcriptional activity. We constructed two K. phaffii strains with two combinations of the regulatory DNA elements from the 1033 and AOX1 genes (i.e., P1033-TAOX1 and P1033-T1033 pairs) and evaluated the impact of the regulatory element combinations on the transcript levels of the heterologous gene and endogenous 1033 and GAPDH genes in cells grown in glucose or glycerol, and on the extracellular product/biomass yield. The results indicate that the P1033 has a 2-3% transcriptional activity of the GAP promoter and it is tunable by cell growth and the carbon source. The combinations of the regulatory elements rendered different transcriptional activity of the heterologous and endogenous genes that were dependent on the carbon source. The promoter-terminator pair and the carbon source affected the heterologous gene translation and/or protein secretion pathway. Moreover, low heterologous gene-transcript levels along with glycerol cultures increased translation and/or protein secretion.
Collapse
Affiliation(s)
- Yanelis Robainas-Del-Pino
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - José María Viader-Salvadó
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ana Lucía Herrera-Estala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Guerrero-Olazarán
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
14
|
Jia Y, Huang C, Mao Y, Zhou S, Deng Y. Screening and Constructing a Library of Promoter-5'-UTR Complexes with Gradient Strength in Pediococcus acidilactici. ACS Synth Biol 2023; 12:1794-1803. [PMID: 37172276 DOI: 10.1021/acssynbio.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The GRAS (generally recognized as safe) strain Pediococcus acidilactici is well known for its antibacterial and probiotic functions. Furthermore, as P. acidilactici has excellent high temperature and salt resistance, it is an ideal host for the production of food enzymes, food additives, and pharmaceuticals. In this regard, it is desirable and feasible to enhance the production of these products through the metabolic engineering of P. acidilactici. However, the rare gene expression elements greatly obstruct the development of engineering P. acidilactici. In this study, we screened and constructed a library of promoter-5'-UTR (PUTR) complexes in P. acidilactici DY15 for regulating gene expression at the transcription and translation levels. In the post-log phase, the mRNA and protein expression level ranges of the 90 screened native PUTRs were 0.059-2010% and 0.77-245%, respectively, of the P32 promoter. Besides, several PUTRs exhibited great expression stability under high temperature, salt, and ethanol stress. We analyzed the structure of PUTRs and obtained the conserved regions of the promoter and 5'-UTR. Based on the identified core regions of PUTRs, we constructed a panel of combinatorial PUTRs with higher and stable protein expression levels. The strongest combinatorial PUTR was 853% of the P32 promoter in the protein expression level. Finally, the obtained PUTRs were applied to optimize the expression level of aminotransferase and improve the phenyllactic acid (PLA) production in P. acidilactici DY15. The achieved yield was 950.6 mg/L, which was 79.2% higher than the wild-type strain. These results indicated that the obtained PUTRs with gradient strength had great potential for precisely regulating gene expression to achieve various goals in P. acidilactici.
Collapse
Affiliation(s)
- Yize Jia
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Chao Huang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yin Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023; 271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.
Collapse
|
16
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
He S, Zhang Z, Lu W. Natural promoters and promoter engineering strategies for metabolic regulation in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2023; 50:6986260. [PMID: 36633543 PMCID: PMC9936215 DOI: 10.1093/jimb/kuac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Sharomyces cerevisiae is currently one of the most important foreign gene expression systems. S. cerevisiae is an excellent host for high-value metabolite cell factories due to its advantages of simplicity, safety, and nontoxicity. A promoter, as one of the basic elements of gene transcription, plays an important role in regulating gene expression and optimizing metabolic pathways. Promoters control the direction and intensity of transcription, and the application of promoters with different intensities and performances will largely determine the effect of gene expression and ultimately affect the experimental results. Due to its significant role, there have been many studies on promoters for decades. While some studies have explored and analyzed new promoters with different functions, more studies have focused on artificially modifying promoters to meet their own scientific needs. Thus, this article reviews current research on promoter engineering techniques and related natural promoters in S. cerevisiae. First, we introduce the basic structure of promoters and the classification of natural promoters. Then, the classification of various promoter strategies is reviewed. Finally, by grouping related articles together using various strategies, this review anticipates the future development direction of promoter engineering.
Collapse
Affiliation(s)
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- Correspondence should be addressed to: W. Y. Lu, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China. Phone: +86-22-853-56523. Fax: +86-22-274-00973. E-mail:
| |
Collapse
|
18
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Construction and Optimization of Malonyl-CoA Sensors in Saccharomyces cerevisiae by Combining Promoter Engineering Strategies. Processes (Basel) 2022. [DOI: 10.3390/pr10122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biosensors can be used for high-throughput screening, real-time monitoring of metabolites, and dynamic regulation of metabolic processes, which have been a popular research direction in recent years. Here, five promoters from Saccharomyces cerevisiae were selected to construct Malonyl-CoA sensors with the fapO/fapR system derived from Bacillus subtilis, and pCCW12 was finally selected for further optimization. Based on pCCW12, a series of sensors with different response sensitivities were obtained by selecting different fapO insertion sites and combining the best two or three of them. Then, through a combination of promoter hybrid, intron insertion, and transcription factor modification strategies, we obtained sensors with different effects, one of which, the H-pCCW12(TFBS)-Cti6~fapR sensor, had the lowest background noise, doubled response range and higher response sensitivity compared to the original sensor. Sensors with different characteristics constructed in this study, can be applied to Malonyl-CoA related high-throughput screening and finer regulation of metabolism. It also proves that the combined application of different promoter engineering strategies is a feasible idea for the precise construction and regulation of biosensors.
Collapse
|
20
|
Du Y, Wang M, Chen Sun C, Yu H. Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5' untranslated region for versatile applications in Corynebacterium glutamicum. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:88-96. [PMID: 39416452 PMCID: PMC11446368 DOI: 10.1016/j.biotno.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2024]
Abstract
As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism Corynebacterium glutamicum, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the -35 and -10 regions, and the 5'-terminal untranslated region (5'UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using C. glutamicum ATCC13032 as the host. Here, we explored the effect of sequence length between the -35 and -10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5'-terminal untranslated region (5'UTR) and screened out the optimal PtacM4 mutant with a 5'UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5'UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.
Collapse
Affiliation(s)
- Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Miaomiao Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
22
|
Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis. Microbiol Spectr 2022; 10:e0132222. [PMID: 36036634 PMCID: PMC9604022 DOI: 10.1128/spectrum.01322-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of efficient, low-cost, and robust expression systems is important for the mass production of proteins and natural products in large amounts using cell factories. Glycerol is an ideal carbon source for large-scale fermentation due to its low cost and favorable maintenance of the fermentation process. Here, we used the antiterminator protein GlpP and its target promoter PglpD to construct a highly efficient glycerol-inducible expression system (GIES) in Bacillus subtilis. This system was able to express heterologous genes in an autoinducible manner based on the sequential utilization of glucose and glycerol under the regulation of carbon catabolite repression. In such a system, the concentration of glycerol regulated the strength of gene expression, and the concentration of glucose affected both the timing of induction and the strength of gene expression. By enhancing GlpP, the GIES was further strengthened for high-level intracellular expression of aspartase and secretory expression of nattokinase. High yields of nattokinase in a 5-L fermenter through batch and fed-batch fermentation demonstrated the potential to apply the GIES for large-scale enzyme production. Through the evolution of the -10 box of PglpD, mutants with gradient activities were obtained. In addition, hybrid glycerol-inducible promoters were successfully constructed by combining the constitutive promoters and the 5' untranslated region of PglpD. Collectively, this study developed a GIES to obtain high-value products from inexpensive glycerol. More importantly, the great potential of the pair of inherent terminator and antiterminator protein as a portable biological tool for various purposes in synthetic biology is proposed. IMPORTANCE In this study, a GIES was constructed in B. subtilis by employing the antiterminator protein GlpP and the GlpP-regulated promoter PglpD. Based on the sequential utilization of glucose and glycerol by B. subtilis, the GIES was able to express genes in an autoinducible manner. The amounts and ratio of glucose and glycerol can regulate the gene induction timing and expression strength. The GIES was further applied for high yields of nattokinase, and its robustness in production scale-up was confirmed in a 5-L fermenter. The high-level expression of heterologous proteins demonstrated the huge application potential of the GIES. Furthermore, mutants of PglpD with gradient activities and hybrid glycerol-inducible promoters were obtained through the evolution of the -10 box of PglpD and the combination of the constitutive promoters and the 5' untranslated region of PglpD, respectively. These results demonstrated the use of the antiterminator protein as a regulator for various purposes in synthetic biology.
Collapse
|
23
|
Zhu Y, Du S, Yan Y, Pan F, Wang R, Li S, Xu H, Luo Z. Systematic engineering of Bacillus amyloliquefaciens for efficient production of poly-γ-glutamic acid from crude glycerol. BIORESOURCE TECHNOLOGY 2022; 359:127382. [PMID: 35644456 DOI: 10.1016/j.biortech.2022.127382] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Microbial production of poly-γ-glutamic acid (γ-PGA) from non-food raw materials is a promising alternative to food feedstocks-based biosynthesis. A superior cell factory of Bacillus amyloliquefaciens for the efficient synthesis of γ-PGA from crude glycerol was constructed through systematic metabolic engineering. Firstly, some phase-dependent promoters were screened from B. amyloliquefaciens, which can be used for fine regulation of subsequent metabolic pathways. Secondly, the glycerol utilization pathway and the γ-PGA synthesis pathway were co-optimized utilizing the above-screened promoters, which increased the titer of γ-PGA by 1.75-fold. Then, the titer of γ-PGA increased to 15.6 g/L by engineering transcription factors degU and blocking competitive pathways. Finally, combining these strategies with an optimized fermentation process, 26.4 g/L γ-PGA was obtained from crude glycerol as a single carbon source (a 3.72-fold improvement over the initial strain). Overall, these strategies will have great potential for synthesizing other products from crude glycerol in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
24
|
Yang H, Wang H, Wang F, Zhang K, Qu J, Guan J, Shen W, Cao Y, Xia Y, Chen X. Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome. J Ind Microbiol Biotechnol 2022; 49:kuac016. [PMID: 35648451 PMCID: PMC9338883 DOI: 10.1093/jimb/kuac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022]
Abstract
D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haokun Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fuxiang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunjie Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinfeng Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianmin Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Mitra S, Dhar R, Sen R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol Adv 2022; 60:108023. [PMID: 35872292 DOI: 10.1016/j.biotechadv.2022.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Non-ribosomal peptides have gained significant attention as secondary metabolites of high commercial importance. This group houses a diverse range of bioactive compounds, ranging from biosurfactants to antimicrobial and cytotoxic agents. However, low yield of synthesis by bacteria and excessive losses during purification hinders the industrial-scale production of non-ribosomal peptides, and subsequently limits their widespread applicability. While isolation of efficient producer strains and optimization of bioprocesses have been extensively used to enhance yield, further improvement can be made by optimization of the microbial strain using the tools and techniques of metabolic engineering, synthetic biology, systems biology, and adaptive laboratory evolution. These techniques, which directly target the genome of producer strains, aim to redirect carbon and nitrogen fluxes of the metabolic network towards the desired product, bypass the feedback inhibition and repression mechanisms that limit the maximum productivity of the strain, and even extend the substrate range of the cell for synthesis of the target product. The present review takes a comprehensive look into the biosynthesis of bacterial NRPs, how the same is regulated by the cell, and dives deep into the strategies that have been undertaken for enhancing the yield of NRPs, while also providing a perspective on other potential strategies that can allow for further yield improvement. Furthermore, this review provides the reader with a holistic perspective on the design of cellular factories of NRP production, starting from general techniques performed in the laboratory to the computational techniques that help a biochemical engineer model and subsequently strategize the architectural plan.
Collapse
Affiliation(s)
- Sayak Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
26
|
Song H, Yang Y, Li H, Du J, Hu Z, Chen Y, Yang N, Mei M, Xiong Z, Tang K, Yi L, Zhang Y, Yang S. Determination of Nucleotide Sequences within Promoter Regions Affecting Promoter Compatibility between Zymomonas mobilis and Escherichia coli. ACS Synth Biol 2022; 11:2811-2819. [PMID: 35771099 DOI: 10.1021/acssynbio.2c00187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A promoter plays a crucial role in controlling the expression of the target gene in cells, thus being one of the key biological parts for synthetic biology practices. Although significant efforts have been made to identify and characterize promoters with different strengths in various microorganisms, the compatibility of promoters within different hosts still lacks investigation. In this study, we chose the native Pgap promoter of Zymomonas mobilis to investigate nucleotide sequences within promoter regions affecting promoter compatibility between Escherichia coli and Z. mobilis. Pgap is one of the strongest promotors in Z. mobilis that has many excellent characteristics to be developed as microbial cell factories. Using EGFP as a reporter, a Z. mobilis-derived Pgap mutant library was constructed and sorted in E. coli, with candidate promoters exhibiting high fluorescence intensity collected. A total of 53 variants were finally selected and sequenced by Sanger sequencing. The sequencing results grouped these variants into 12 different Pgap variant types, among which seven types presented higher promoter strength than native Pgap in E. coli. The next-generation sequencing technique was then employed to identify key mutations within the Pgap promoter region that affect the promoter compatibility. Finally, six important sites were identified and confirmed to help increase Pgap strength in E. coli while keeping similar strength of native Pgap in Z. mobilis. Compared to native Pgap, synthetic promoters combining these sites had enhanced strength; especially, Pgap-6M combining all six sites exhibited 20-fold greater strength than native Pgap in E. coli. This study thus not only determined six important sites affecting promoter compatibility but also confirmed a series of Pgap promoter variants with strong promoter activity in both E. coli and Z. mobilis. In addition, a strategy was established in this study to investigate and determine nucleotide sequences in promoter regions affecting promoter compatibility, which can be applied in other microorganisms to help reveal universal factors affecting promoter compatibility and design promoters with desired strengths among different microbial cell factories.
Collapse
Affiliation(s)
- Haoyue Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jun Du
- Beijing Tsingke Biotechnology Co., Ltd., Beijing 101111, China
| | - Zhousheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiqiang Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ke Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
27
|
Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2022; 106:5105-5121. [DOI: 10.1007/s00253-022-12034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
28
|
Jie-Liu, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects. Microbiol Res 2022; 262:127101. [DOI: 10.1016/j.micres.2022.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
|
29
|
Gram-Level Production of Balanol through Regulatory Pathway and Medium Optimization in Herb Fungus Tolypocladium ophioglossoides. J Fungi (Basel) 2022; 8:jof8050510. [PMID: 35628765 PMCID: PMC9143294 DOI: 10.3390/jof8050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
As a potential protein kinase C inhibitor, the fungus metabolite balanol has become more attractive in recent decades. In our previous work, we revealed its biosynthetic pathway through overexpression of the cluster-situated regulator gene blnR in Chinese herb fungus Tolypocladium ophioglossoides. However, information on the regulation of blnR is still largely unknown. In this study, we further investigated the regulation of balanol biosynthesis by BlnR through the analysis of affinity binding using EMSA and RNA-seq analysis. The results showed that BlnR positively regulates balanol biosynthesis through binding to all promoters of bln gene members, including its own promoter. Microscopic observation revealed blnR overexpression also affected spore development and hypha growth. Furthermore, RNA-seq analysis suggested that BlnR can regulate other genes outside of the balanol biosynthetic gene cluster, including those involved in conidiospore development. Finally, balanol production was further improved to 2187.39 mg/L using the optimized medium through statistical optimization based on response surface methodology.
Collapse
|
30
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
31
|
Zhao X, Zong Y, Wei W, Lou C. Multiplexed Promoter Engineering for Improving Thaxtomin A Production in Heterologous Streptomyces Hosts. Life (Basel) 2022; 12:689. [PMID: 35629358 PMCID: PMC9146380 DOI: 10.3390/life12050689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaxtomin A is a potent bioherbicide in both organic and conventional agriculture; however, its low yield hinders its wide application. Here, we report the direct cloning and heterologous expression of the thaxtomin A gene cluster in three well-characterized Streptomyces hosts. Then, we present an efficient, markerless and multiplex large gene cluster editing method based on in vitro CRISPR/Cas9 digestion and yeast homologous recombination. With this method, we successfully engineered the thaxtomin A cluster by simultaneously replacing the native promoters of the txtED operon, txtABH operon and txtC gene with strong constitutive promoters, and the yield of thaxtomin A improved to 289.5 µg/mL in heterologous Streptomyces coelicolor M1154. To further optimize the biosynthetic pathway, we used constraint-based combinatorial design to build 27 refactored gene clusters by varying the promoter strength of every operon, and the highest titer of thaxtomin A production reached 504.6 μg/mL. Taken altogether, this work puts forward a multiplexed promoter engineering strategy to engineer secondary metabolism gene clusters for efficiently improving fermentation titers.
Collapse
Affiliation(s)
- Xuejin Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeqing Zong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Weijia Wei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.Z.); (W.W.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Chunbo Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
32
|
Gao L, Wu X, Li C, Xia X. Exploitation of Strong Constitutive and Stress-driven Promoters from Acetobacter pasteurianus for Improving Acetic acid Tolerance. J Biotechnol 2022; 350:24-30. [PMID: 35390361 DOI: 10.1016/j.jbiotec.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Acetobacter pasteurianus is an excellent cell factory for production of highly-strength acetic acid, and attracts an increasing attention in metabolic engineering. However, the available well-characterized constitutive and inducible promoters are rather limited to adjust metabolic fluxes in A. pasteurianus. In this study, we screened a panel of constitutive and acid stress-driven promoters based on time-series of RNA-seq data and characterized in A. pasteurianus and Escherichia coli. Nine constitutive promoters ranged in strength from 1.7-fold to 100-fold that of the well-known strong promoter Padh under non-acetic acid environment. Subsequently, an acetic acid-stable red fluorescent visual reporting system was established and applied to evaluate acid stress-driven promoter in A. pasteurianus during highly-acidic fermentation environment. PgroES was identified as acid stress-driven strong promoters, with expression outputs varied from 100% to 200% when acetic acid treatment. To assess their application potential, ultra-strong constitutive promoter Ptuf and acid stress-driven strong promoter PgroES were selected to overexpress acetyl-CoA synthase and greatly improved acetic acid tolerance. Notably, the acid stress-driven promoter displayed more favorable for regulating strain robustness against acid stress by overexpressing tolerance gene. In summary, this is the first well-characterized constitutive and acid stress-driven promoter library from A. pasteurianus, which could be used as a promising toolbox for metabolic engineering in acetic acid bacteria and other gram-negative bacteria.
Collapse
Affiliation(s)
- Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, PR China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Chenyu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
| |
Collapse
|
33
|
Kadono T, Tomaru Y, Sato N, Watanabe Y, Suzuki K, Yamada K, Adachi M. Characterization of Chaetoceros lorenzianus-infecting DNA virus-derived promoters of genes from open reading frames of unknown function in Phaeodactylum tricornutum. Mar Genomics 2022; 61:100921. [PMID: 35030498 DOI: 10.1016/j.margen.2021.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Promoters are key elements for the regulation of gene expression. Recently, we investigated the activity of promoters derived from marine diatom-infecting viruses (DIVs) in marine diatoms. Previously, we focused on potential promoter regions of the replication-associated protein gene and the capsid protein gene of the DIVs. In addition to these genes, two genes of unknown function (VP1 and VP4 genes) have been found in the DIV genomes. In this study, the promoter regions of the VP1 gene and VP4 gene derived from a Chaetoceros lorenzianus-infecting DNA virus (named ClP3 and ClP4, respectively) were newly isolated. ClP4 was found to be a constitutive promoter and displayed the highest activity. In particular, the 3' region of ClP4 (ClP4 3' region) showed a higher promoter activity than full-length ClP4. The ClP4 3' region might involve high-level promoter activity of ClP4. In addition, the ClP4 3' region may be useful for substance production and metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, National Research and Development Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nao Sato
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Yamada
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
34
|
Wang Y, Liu R, Liu H, Li X, Shen L, Zhang W, Song X, Liu W, Liu X, Zhong Y. Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues. Microb Cell Fact 2022; 21:5. [PMID: 34983541 PMCID: PMC8725555 DOI: 10.1186/s12934-021-01727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass. Results In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a series of 5’ truncated promoters in different lengths were established based on the strong constitutive promoter Pcdna1. The strongest promoter amongst them was Pcdna1-3 (− 640 to − 1 bp upstream of the translation initiation codon ATG), exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (− 821 to − 622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter Pcbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter Pcdna1-3, generating the novel synthetic hybrid promoter Pcc. This engineered promoter Pcc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than Pcbh1 and Pcdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, Pcc was applied to overexpress the Aspergillus niger β-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2, achieving 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of Pcc promoter. The bglA-eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively. Conclusions The synthetic hybrid promoter Pcc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01727-8.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ruiyan Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xihai Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Linjing Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
35
|
Methods for the Development of Recombinant Microorganisms for the Production of Natural Products. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2396:1-17. [PMID: 34786671 DOI: 10.1007/978-1-0716-1822-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metabolic engineering strives to develop microbial strains that are capable of producing a target chemical in a biological organism. There are still many challenges to overcome in order to achieve titers, yields, and productivities necessary for industrial production. The use of recombinant microorganisms to meet these needs is the next step for metabolic engineers. In this chapter, we aim to provide insight on both the applications of metabolic engineering for natural product biosynthesis as well as optimization methods.
Collapse
|
36
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
37
|
Zhang Y, Liu H, Liu Y, Huo K, Wang S, Liu R, Yang C. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Int J Biol Macromol 2021; 191:608-617. [PMID: 34582907 DOI: 10.1016/j.ijbiomac.2021.09.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Polyhydroxyalkanoate (PHA), a class of biopolyester synthesized by various bacteria, is considered as an alternative to petroleum-based plastics because of its excellent physochemical and material properties. Pseudomonas putida KT2440 can produce medium-chain-length PHA (mcl-PHA) from glucose, fatty acid and glycerol, and its whole-genome sequences and cellular metabolic networks have been intensively researched. In this study, we aim to improve the PHA yield of P. putida KT2440 using a novel promoter engineering-based strategy. Unlike previous studies, endogenous strong promoters screening from P. putida KT2440 instead of synthetic or exogenous promoters was applied to the optimization of PHA biosynthesis pathway. Based on RNA-seq and promoter prediction, 30 putative strong promoters from P. putida KT2440 were identified. Subsequently, the strengths of these promoters were characterized by reporter gene assays. Furthermore, each of 10 strong promoters screened by transcriptional level and GFP fluorescence was independently inserted into upstream of PHA synthase gene (phaC1) on chromosome. As a result, the transcriptional levels of the phaC1 and phaC2 genes in almost all of the promoter-substituted strains were improved, and the relative PHA yields of the three promoter-substituted strains KTU-P1C1, KTU-P46C1 and KTU-P51C1 were improved obviously, reaching 30.62 wt%, 33.24 wt% and 33.29 wt% [the ratio of PHA weight to cell dry weight (CDW)], respectively. By further deletion of the glucose dehydrogenase gene in KTU-P1C1, KTU-P46C1 and KTU-P51C1, the relative PHA yield of the resulting mutant strain KTU-P46C1-∆gcd increased by 5.29% from 33.24% to 38.53%. Finally, by inserting P46 into upstream of pyruvate dehydrogenase gene in the genome of KTU-P46C1-∆gcd, the relative PHA yield and CDW of the resulting strain KTU-P46C1A-∆gcd reached nearly 42 wt% and 4.06 g/l, respectively, which increased by 90% and 40%, respectively, compared with the starting strain KTU. In particular, the absolute PHA yield of KTU-P46C1A-∆gcd reached 1.7 g/l, with a 165% improvement compared with the strain KTU. Herein, we report the highest PHA yield obtained by P. putida KT2440 in shake-flask fermentation to date. We demonstrate for the first time the effectiveness of endogenous strong promoters for improving the PHA yield and biomass of P. putida KT2440. More importantly, our findings highlight great potential of this strategy for enhanced production of secondary metabolites and heterologous proteins in P. putida KT2440.
Collapse
Affiliation(s)
- Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
38
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
39
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
40
|
Deng J, Wu Y, Zheng Z, Chen N, Luo X, Tang H, Keasling JD. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:202. [PMID: 34663323 PMCID: PMC8522093 DOI: 10.1186/s12934-021-01691-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background Saccharomyces cerevisiae is an important synthetic biology chassis for microbial production of valuable molecules. Promoter engineering has been frequently applied to generate more synthetic promoters with a variety of defined characteristics in order to achieve a well-regulated genetic network for high production efficiency. Galactose-inducible (GAL) expression systems, composed of GAL promoters and multiple GAL regulators, have been widely used for protein overexpression and pathway construction in S. cerevisiae. However, the function of each element in synthetic promoters and how they interact with GAL regulators are not well known. Results Here, a library of synthetic GAL promoters demonstrate that upstream activating sequences (UASs) and core promoters have a synergistic relationship that determines the performance of each promoter under different carbon sources. We found that the strengths of synthetic GAL promoters could be fine-tuned by manipulating the sequence, number, and substitution of UASs. Core promoter replacement generated synthetic promoters with a twofold strength improvement compared with the GAL1 promoter under multiple different carbon sources in a strain with GAL1 and GAL80 engineering. These results represent an expansion of the classic GAL expression system with an increased dynamic range and a good tolerance of different carbon sources. Conclusions In this study, the effect of each element on synthetic GAL promoters has been evaluated and a series of well-controlled synthetic promoters are constructed. By studying the interaction of synthetic promoters and GAL regulators, synthetic promoters with an increased dynamic range under different carbon sources are created. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01691-3.
Collapse
Affiliation(s)
- Jiliang Deng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanling Wu
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhaohui Zheng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nanzhu Chen
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute for Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
41
|
Li J, Yi F, Chen G, Pan F, Yang Y, Shu M, Chen Z, Zhang Z, Mei X, Zhong W. Function Enhancement of a Metabolic Module via Endogenous Promoter Replacement for Pseudomonas sp. JY-Q to Degrade Nicotine in Tobacco Waste Treatment. Appl Biochem Biotechnol 2021; 193:2793-2805. [PMID: 34061306 DOI: 10.1007/s12010-021-03566-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Nicotine-degrading Pseudomonas sp. JY-Q is a preferred strain utilized in reconstituted tobacco process for tobacco waste treatment. However, its efficiency of nicotine metabolism still requires to be improved via genomic technology such as promoter engineering based on genomic information. Concerning upstream module of nicotine metabolic pathway, we found that two homologous genes of nicotine dehydrogenase (nicA2 and nox) coexisted in strain JY-Q. However, the transcriptional amount of nox was 20-fold higher than that of nicA2. Thus, the nicA2 expression required improvement. Combinatorial displacement was accomplished for two predicted endogenous promoters, named as PnicA2 and Pnox for nicA2 and nox, respectively. The mutant with Pnox as the promoters for both nicA2 and nox exhibited the best nicotine metabolic capacity which increased by 66% compared to the wild type. These results suggested that endogenous promoter replacement is also feasible for function improvement of metabolic modules and strain enhancement of biodegradation capacity to meet real environment demand.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fengmei Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
42
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
43
|
Qian Y, Kong W, Lu T. Precise and reliable control of gene expression in Agrobacterium tumefaciens. Biotechnol Bioeng 2021; 118:3962-3972. [PMID: 34180537 DOI: 10.1002/bit.27872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
Agrobacterium tumefaciens is a soil-borne bacterium that is known for its DNA delivery ability and widely exploited for plant transformation. Despite continued interest in improving the utility of the organism, the lack of well-characterized engineering tools limits the realization of its full potential. Here, we present a synthetic biology toolkit that enables precise and effective control of gene expression in A. tumefaciens. We constructed and characterized six inducible expression systems. Then, we optimized the one regulated by cumic acid through amplifier introduction and promoter engineering and evaluated its 15 cognate promoters. To establish fine-tunability, we constructed a series of spacers and a promoter library to systematically modulate both translational and transcriptional rates. We finally demonstrated the application of the tools by co-expressing genes with altered expression levels using a single signal. This study provides precise expression tools for A. tumefaciens, facilitating rational engineering of the bacterium for advanced plant biotechnological applications.
Collapse
Affiliation(s)
- Yuanchao Qian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
44
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
45
|
Riley LA, Guss AM. Approaches to genetic tool development for rapid domestication of non-model microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:30. [PMID: 33494801 PMCID: PMC7830746 DOI: 10.1186/s13068-020-01872-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and chemical production. They have received significant interest the last several years, but advancement is still slow due to the lack of a robust genetic toolbox in most organisms. Typically, "domestication" of a new non-model microorganism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and heterologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
Collapse
Affiliation(s)
- Lauren A Riley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
46
|
Wei LJ, Zhong YT, Nie MY, Liu SC, Hua Q. Biosynthesis of α-Pinene by Genetically Engineered Yarrowia lipolytica from Low-Cost Renewable Feedstocks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:275-285. [PMID: 33356235 DOI: 10.1021/acs.jafc.0c06504] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
α-Pinene, an important biologically active natural monoterpene, has been widely used in fragrances, medicines, and fine chemicals, especially, in high-density renewable fuels such as jet fuel. The development of an α-pinene production platform in a highly modifiable microbe from renewable substitute feedstocks could lead to a green, economical avenue, and sustainable biotechnological process for the biosynthesis of α-pinene. Here, we report engineering of an orthogonal biosynthetic pathway for efficient production of α-pinene in oleaginous yeast Yarrowia lipolytica that resulted in an α-pinene titer of 19.6 mg/L when using glucose as the sole carbon source, a significant 218-fold improvement than the initial titer. In addition, the potential of using waste cooking oil and lignocellulosic hydrolysate as carbon sources for α-pinene production from the engineered Y. lipolytica strains was analyzed. The results indicated that α-pinene titers of 33.8 and 36.1 mg/L were successfully obtained in waste cooking oil and lignocellulosic hydrolysate medium, thereby representing the highest titer reported to date in yeast. To our knowledge, this is also the first report related to microbial production of α-pinene from waste cooking oil and lignocellulosic hydrolysate.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yu-Tao Zhong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ming-Yue Nie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
47
|
Su C, Tuan NQ, Lee MJ, Zhang XY, Cheng JH, Jin YY, Zhao XQ, Suh JW. Enhanced Production of Active Ecumicin Component with Higher Antituberculosis Activity by the Rare Actinomycete Nonomuraea sp. MJM5123 Using a Novel Promoter-Engineering Strategy. ACS Synth Biol 2020; 9:3019-3029. [PMID: 32916055 DOI: 10.1021/acssynbio.0c00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ecumicins are potent antituberculosis natural compounds produced by the rare actinomycete Nonomuraea sp. MJM5123. Here, we report an efficient genetic manipulation platform of this rare actinomycete. CRISPR/Cas9-based genome editing was achieved based on successful sporulation. Two genes in the ecumicin gene cluster were further investigated, ecuN and ecuE, which potentially encode a pretailoring cytochrome P450 hydroxylase and the core peptide synthase, respectively. Deletion of ecuN led to an enhanced ratio of the ecumicin compound EcuH16 relative to that of EcuH14, indicating that EcuN is indeed a P450 hydroxylase, and there is catalyzed hydroxylation at the C-3 position in unit12 phenylalanine to transform EcuH16 to the compound EcuH14. Furthermore, promoter engineering of ecuE by employing the strong promoter kasO*P was performed and optimized. We found that integrating the endogenous ribosome-binding site (RBS) of ecuE together with the RBS from kasO*P led to improved ecumicin production and resulted in a remarkably high EcuH16/EcuH14 ratio. Importantly, production of the more active component EcuH16 was considerably increased in the double RBSs engineered strain EPR1 compared to that in the wild-type strain, reaching 310 mg/L. At the same time, this production level was 2.3 times higher than that of the control strain EPA1 with only one RBS from kasO*P. To the best of our knowledge, this is the first report of genome editing and promoter engineering on the rare actinomycete Nonomuraea.
Collapse
Affiliation(s)
- Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Nguyen-Quang Tuan
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Mi-Jin Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Xia-Ying Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jin-Hua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Ying-Yu Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
- R&D Center, MANBANGBIO CO., LTD, Cheoingu, Yongin, Gyeonggi-Do 17058, Republic of Korea
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| |
Collapse
|
48
|
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020; 19:173. [PMID: 32883293 PMCID: PMC7650271 DOI: 10.1186/s12934-020-01436-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini-review, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications.
Collapse
Affiliation(s)
- Yuan Su
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
49
|
Tang H, Wu Y, Deng J, Chen N, Zheng Z, Wei Y, Luo X, Keasling JD. Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae. Metabolites 2020; 10:metabo10080320. [PMID: 32781665 PMCID: PMC7466126 DOI: 10.3390/metabo10080320] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Promoters play an essential role in the regulation of gene expression for fine-tuning genetic circuits and metabolic pathways in Saccharomyces cerevisiae (S. cerevisiae). However, native promoters in S. cerevisiae have several limitations which hinder their applications in metabolic engineering. These limitations include an inadequate number of well-characterized promoters, poor dynamic range, and insufficient orthogonality to endogenous regulations. Therefore, it is necessary to perform promoter engineering to create synthetic promoters with better properties. Here, we review recent advances related to promoter architecture, promoter engineering and synthetic promoter applications in S. cerevisiae. We also provide a perspective of future directions in this field with an emphasis on the recent advances of machine learning based promoter designs.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Yanling Wu
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Jiliang Deng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Nanzhu Chen
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Zhaohui Zheng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China;
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
- Correspondence: (X.L.); (J.D.K.)
| | - Jay D. Keasling
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (X.L.); (J.D.K.)
| |
Collapse
|
50
|
Ma L, Guo L, Yang Y, Guo K, Yan Y, Ma X, Huo YX. Protein-based biorefining driven by nitrogen-responsive transcriptional machinery. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:29. [PMID: 32127916 PMCID: PMC7045595 DOI: 10.1186/s13068-020-1667-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Protein-based bioconversion has been demonstrated as a sustainable approach to produce higher alcohols and ammonia fertilizers. However, owing to the switchover from transcription mediated by the bacterial RNA polymerase σ70 to that mediated by alternative σ factors, the biofuel production driven by σ70-dependent promoters declines rapidly once cells enter the stationary phase or encounter stresses. To enhance biofuel production, in this study the growth phase-independent and nitrogen-responsive transcriptional machinery mediated by the σ54 is exploited to drive robust protein-to-fuel conversion. RESULTS We demonstrated that disrupting the Escherichia coli ammonia assimilation pathways driven by glutamate dehydrogenase and glutamine synthetase could sustain the activity of σ54-mediated transcription under ammonia-accumulating conditions. In addition, two σ54-dependent promoters, argTp and glnAp2, were identified as suitable candidates for driving pathway expression. Using these promoters, biofuel production from proteins was shown to persist to the stationary phase, with the net production in the stationary phase being 1.7-fold higher than that derived from the optimal reported σ70-dependent promoter P LlacO1. Biofuel production reaching levels 1.3- to 3.4-fold higher than those of the σ70-dependent promoters was also achieved by argTp and glnAp2 under stressed conditions. Moreover, the σ54-dependent promoters realized more rapid and stable production than that of σ70-dependent promoters during fed-batch fermentation, producing up to 4.78 g L - 1 of total biofuels. CONCLUSIONS These results suggested that the nitrogen-responsive transcriptional machinery offers the potential to decouple production from growth, highlighting this system as a novel candidate to realize growth phase-independent and stress-resistant biofuel production.
Collapse
Affiliation(s)
- Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yunpeng Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
| | - Kai Guo
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602 USA
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081 People’s Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 China
| |
Collapse
|