1
|
Ma C, Zhang S, Renaud SJ, Zhang Q, Qi H, Zhou H, Jin Y, Yu H, Xu Y, Huang H, Hong Y, Li H, Liao Q, Ding F, Qin M, Wang P, Xie Z. Structural elucidation of a capsular polysaccharide from Bacteroides uniformis and its ameliorative impact on DSS-induced colitis in mice. Int J Biol Macromol 2024; 279:135119. [PMID: 39208897 DOI: 10.1016/j.ijbiomac.2024.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Capsular polysaccharides derived from Bacteroides species have emerged as potential mitigators of intestinal inflammation in murine models. However, research on capsular polysaccharides from B. uniformis, a Bacteroides species with reduced abundance in colons of patients with ulcerative colitis, remains scarce. In this study, we extracted a neutral polysaccharide component from B. uniformis ATCC8492, termed BUCPS1B, using ultrasonic disruption, ethanol precipitation, and anion exchange chromatography. Structural characterization revealed BUCPS1B as a water-soluble polysaccharide with an α-1,4-glucan main chain adorned with minor substituent sugar residues. BUCPS1B alleviated intestinal inflammation in a mouse model of colitis and induced polarization of macrophages into M2-type. Furthermore, BUCPS1B modulated the gut microbiota composition, increased the abundance of the probiotic Akkermansia muciniphila and altered the gut metabolic profile to promote phenylalanine and short chain fatty acids metabolism. BUCPS1B is therefore a promising candidate to prevent inflammation and augment intestinal health.
Collapse
Affiliation(s)
- Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huiyuan Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyun Zhou
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yibao Jin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Houshuang Huang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meirong Qin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Ping Wang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Gong H, Xia Y, Jing G, Yuan M, Zhou H, Wu D, Zuo J, Lei C, Aidebaike D, Wu X, Song X. Berberine alleviates neuroinflammation by downregulating NFκB/LCN2 pathway in sepsis-associated encephalopathy: network pharmacology, bioinformatics, and experimental validation. Int Immunopharmacol 2024; 133:112036. [PMID: 38640713 DOI: 10.1016/j.intimp.2024.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1β). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.
Collapse
Affiliation(s)
- Hailong Gong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Huimin Zhou
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Die Wu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Chuntian Lei
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Delida Aidebaike
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
3
|
Wang T, Liu X, Zhang W, Wang J, Wang T, Yue W, Ming L, Cheng J, Sun J. Traditional Chinese medicine treats ulcerative colitis by regulating gut microbiota, signaling pathway and cytokine: Future novel method option for pharmacotherapy. Heliyon 2024; 10:e27530. [PMID: 38501018 PMCID: PMC10945194 DOI: 10.1016/j.heliyon.2024.e27530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Ulcerative colitis (UC) is a chronic non-specific inflammatory disease with intestinal tract as the main site. The pathogenic of UC has not yet been clarified, and multiple mechanisms can lead to the pathogenesis of UC. Traditional Chinese medicine (TCM) offers an opportunity for UC treatment. TCM has become the preferred treatment for UC with characteristics of multiple targets, multiple pathways and high safety. This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for UC treatment and discussed their pathogenesis based on analyzing the UC-related gut microbiota, signaling pathway and cytokine. In order to provide more systematic and diverse reference for TCM in the prevention and treatment of UC, and provide theoretical reference for clinical treatment of UC. Materials and methods The information was acquired from different databases, including Web of Science, PubMed, CNKI, Wanfang, and VIP databases. We then focused on the recent research progress in UC treatment by TCM. Finally, the deficiencies and future perspectives are proposed. Results Modern pharmacological studies have shown that the compound prescriptions (strengthening spleen, clearing heat and removing dampness, clearing heat and removing toxin), single Chinese herbs (replenishing Qi, clearing heat, tonifying blood, etc.), and active ingredients (alkaloids, polysaccharides, flavonoids, polyphenols, terpenes, etc.) have an efficiency in UC treatment by regulating gut microbiota, signaling pathway and cytokine. Conclusions TCM can achieve its purpose of UC prevention and treatment by acting in multiple ways, and TCM deserves further research and development in this field.
Collapse
Affiliation(s)
- Tiancheng Wang
- College of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinyue Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weijie Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wang
- Department of Accounting, Hongshan College, Nanjing University of Finance and Economics, Nanjing, 210003, China
| | - Tingting Wang
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Wei Yue
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lan Ming
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Jun Cheng
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
4
|
Yu H, Zhang S, Li R, Ma C, Zhang Q, Xia F, Zhou B, Xie Z, Liao Z. Berberine alleviates inflammation and suppresses PLA2-COX-2-PGE2-EP2 pathway through targeting gut microbiota in DSS-induced ulcerative colitis. Biochem Biophys Res Commun 2024; 695:149411. [PMID: 38154262 DOI: 10.1016/j.bbrc.2023.149411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Berberine, isolated from Coptis chinensis and Phellodendron amurense, can attenuate colonic injury and modulate gut microbiota disorders in ulcerative colitis (UC). However, the mechanism and causal relationship between gut microbiota and the efficacy of Berberine on UC are still unclear, which were investigated by pseudo-germ-free (PGF) mice, 16S rRNA gene analysis and transcriptome analysis in this study. The results demonstrated that Berberine improved gut microbiota disorders, colon damage, tight-junction proteins, inflammatory and anti-inflammatory cytokines in DSS-induced colitis mice with intact gut microbiota but not in PGF mice. Besides, immune-related and inflammation-related pathways were closely related to the efficacy that Berberine alleviated colitis by regulating gut microbiota. Furthermore, Berberine reduced PGE2, PLA2, COX-2, Ptges, EP2 and p-Stat3 only in colitis mice with intact gut microbiota. In summary, our study confirms that Berberine inhibits PLA2-COX-2-PGE2-EP2 pathway in UC through gut microbiota, leading to the alleviation of inflammation in colon, which further elucidates the underlying mechanism and promotes the application of Berberine in UC.
Collapse
Affiliation(s)
- Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Ruiming Li
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Sun Yat-sen University, Shenzhen, 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziqiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Yang T, Qin N, Liu F, Zhao Y, Liu W, Fan D. Berberine regulates intestinal microbiome and metabolism homeostasis to treat ulcerative colitis. Life Sci 2024; 338:122385. [PMID: 38184271 DOI: 10.1016/j.lfs.2023.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
AIMS This study aims to investigate the effects of berberine (BBR) on the intestinal microbiome (IM) and serum metabolome in ulcerative colitis (UC). Furthermore, the underlying molecular mechanisms of BBR in treating UC also will be explored systematically. MATERIALS AND METHODS A multi-omics approach that integrates the 16s rDNA, serum metabolome, transcriptomics and bioinformatics was profiled to investigate the potential effects of BBR on the IM, serum metabolites and metabolic pathways, and gene expression. In addition, BBR-induced fecal microbiota transplantation (BBR_FMT) was conducted in pseudo germ-free mice combined with the UC model to explore the effects of the IM on metabolic pathways and gene expression. The results of the transcriptomics and metabolic pathway-related genes were further examined by real-time PCR and western blot. KEY FINDINGS BBR ameliorated the community of IM and significantly promoted the abundance of f__Muribaculaceae, Bacteroides, Dubosiella, Allobaculum and Akkermansia. The metabolic profiles in UC mice were significantly modulated by BBR treatment. Furthermore, the inflammation-related metabolites and metabolic pathways in serum were negatively correlated with the abundance of Bacteroides and Akkermansia, which were induced by BBR treatment. BBR_FMT significantly inhibited the arachidonic acid (AA) metabolism pathway and its multiple markers with the mediation of the IM. SIGNIFICANCE BBR ameliorated serum metabolic homeostasis by regulating the IM. The inhibition of the AA metabolism pathway and its multiple markers was one of the mechanisms of BBR in the treatment of UC.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Niping Qin
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030600, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen 361003, China
| | - Yihan Zhao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Xi'an 712046,China
| | - Wanning Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Yu Y, Liu Y, Meng Z. Role of traditional Chinese medicine in age-related macular degeneration: exploring the gut microbiota's influence. Front Pharmacol 2024; 15:1356324. [PMID: 38333011 PMCID: PMC10850396 DOI: 10.3389/fphar.2024.1356324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a degenerative retinopathy, remains unclear. Administration of anti-vascular endothelial growth factor agents, antioxidants, fundus lasers, photodynamic therapy, and transpupillary warming has proven effective in alleviating symptoms; however, these interventions cannot prevent or reverse AMD. Increasing evidence suggests that AMD risk is linked to changes in the composition, abundance, and diversity of the gut microbiota (GM). Activation of multiple signaling pathways by GM metabolites, including lipopolysaccharides, oxysterols, short-chain fatty acids (SCFAs), and bile acids (BAs), influences retinal physiology. Traditional Chinese medicine (TCM), known for its multi-component and multi-target advantages, can help treat AMD by altering GM composition and regulating the levels of certain substances, such as lipopolysaccharides, reducing oxysterols, and increasing SCFA and BA contents. This review explores the correlation between GM and AMD and interventions for the two to provide new perspectives on treating AMD with TCM.
Collapse
Affiliation(s)
- Yujia Yu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
8
|
Yang Y, Liu Q, Lu X, Ma J, Mei D, Chen Q, Zhao T, Chen J. Sanhuang decoction inhibits autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by activating PI3K-Akt-mTOR pathway. Biomed Pharmacother 2023; 166:115391. [PMID: 37677964 DOI: 10.1016/j.biopha.2023.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) is a typical treatment that corrects malaligned teeth by applying mechanical forces. However, mechanical overload often leads to damage of PDL fibroblasts. Sanhuang decoction (SHD) is commonly used to inhibit inflammation and oxidative stress. However, the mechanism of SHD for OTM treatment is still unclear. Therefore, this study attempts to explore the underlying mechanism through relevant experiments. METHODS In the present paper, we established a OTM rat model and further explored the effects of SHD on the PDL of OTM rats. The OTM model and effects of SHD were determined by micro-CT, and the PDL pathological changes, PDL width and capillaries in PDL were observed by H&E staining. Subsequently, the ROS levels in PDL was determined using flow cytometry analysis with DCFH-DA staining, MDA contents and antioxidative enzymes activities were also measured using commercial kits. Furthermore, the autophagy of PDL fibroblasts and proteins in the PI3K/Akt/mTOR pathway were detected using immunoluminescence, qPCR and western blotting assays. RESULTS The results showed SHD treatment can alleviate the decrease of PDL cells and capillaries induced by OTM, and improve the MDA and ROS levels in PDL, as well as enhance the activities of SOD and GSH-Px. Further experiments indicated SHD decreased the autophagy levels of PDL fibroblasts via promoting the phosphorylation levels of mTOR, PI3K and Akt proteins. CONCLUSION SHD inhibited autophagy of periodontal ligament fibroblasts during orthodontic tooth movement by inhibiting oxidative stress via activating PI3K-Akt-mTOR pathway. Our present findings suggested SHD treatment would be useful for management of the possible disorders occurs in orthodontic tooth movement therapy.
Collapse
Affiliation(s)
- Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Liu
- Department of Prosthodontics, Yinchuan Stomatological Hospital, Yinchuan 750004, PR China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jing Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Donglan Mei
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Tian Zhao
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
9
|
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, Shao W, Geng K, Xie H, Pu Z. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med 2023; 18:112. [PMID: 37674245 PMCID: PMC10481484 DOI: 10.1186/s13020-023-00815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1β, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Jin Tang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Zijing Wu
- Department of Pharmacy, Bengbu First People's Hospital, Bengbu, 233000, China
| | - Yunzhe Huang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| | - Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
10
|
Yang F, Gao R, Luo X, Liu R, Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front Nutr 2023; 10:1187718. [PMID: 37599699 PMCID: PMC10435753 DOI: 10.3389/fnut.2023.1187718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that is widely distributed in the plant kingdom and is commonly found in Coptis chinensis Franch. It has low bioavailability, but it can interact with gut microbiota and affect a variety of diseases. The effects of BBR in diabetes, hyperlipidemia, atherosclerosis, liver diseases, intestinal diseases, mental disorders, autoimmune diseases, and other diseases are all thought to be related to gut microbiota. This review systematically and comprehensively summarize these interactions and their effects, and describes the changes of gut microbiota after the intervention of different doses of berberine and its potential clinical consequences, in order to provide a basis for the rational application of BBR in the future clinical treatment.
Collapse
Affiliation(s)
- Fujie Yang
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongmao Gao
- Department of ICU, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Daqian Xiong
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
12
|
Wang W, Jia S, Miao G, Sun Z, Yu F, Gao Z, Li Y. Bioactive glass in the treatment of ulcerative colitis to regulate the TLR4 / MyD88 / NF-κB pathway. BIOMATERIALS ADVANCES 2023; 152:213520. [PMID: 37336008 DOI: 10.1016/j.bioadv.2023.213520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent intestinal disease of unknown aetiology, and the few treatments approved for UC have serious side effects. In this study, a new type of uniformly monodispersed calcium-enhanced radial mesoporous micro-nano bioactive glass (HCa-MBG) was prepared for UC treatment. We established cellular and rat UC models to explore the effects and mechanism of HCa-MBG and traditional BGs (45S5, 58S) on UC. The results showed that BGs significantly reduced the cellular expression of several inflammatory factors, such as IL-1β, IL-6, TNF-α and NO. In the animal experiments, BGs were shown to repair the DSS-damaged colonic mucosa. Moreover, BGs downregulated the mRNA levels of the inflammatory factors IL-1β, IL-6, TNF-α and iNOS, which were stimulated by DSS. BGs were also found to manage the expression of key proteins in NF-kB signal pathway. However, HCa-MBG was more effective than traditional BGs in terms of improving UC clinical manifestations and reducing the expression of inflammatory factors in rats. This study confirmed for the first time that BGs can be used as an adjuvant drug in UC treatment, thereby preventing UC progression.
Collapse
Affiliation(s)
- Wenhao Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China
| | | | - Guohou Miao
- Department of laboratory, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
| | - Zhenmin Sun
- Weifang Medical University, Weifang 261042, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhixing Gao
- Weifang Medical University, Weifang 261042, China
| | - Yuli Li
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China.
| |
Collapse
|
13
|
Zhou HF, Yang C, Li JY, He YY, Huang Y, Qin RJ, Zhou QL, Sun F, Hu DS, Yang J. Quercetin serves as the major component of Xiang-lian Pill to ameliorate ulcerative colitis via tipping the balance of STAT1/PPARγ and dictating the alternative activation of macrophage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116557. [PMID: 37142141 DOI: 10.1016/j.jep.2023.116557] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal formula, Xiang-lian Pill (XLP), is commonly prescribed for ulcerative colitis (UC) patients to relieve their clinical symptom. Nonetheless, the underlying cellular and molecular mechanisms of XLP's anti-UC effect remain incompletely understood. AIM OF THE STUDY To evaluate the therapeutic effect and elucidate the possible working mechanisms of XLP in UC treatment. The major active component of XLP was also characterized. MATERIALS AND METHODS Colitis was induced in C57BL/6 mice with 3% dextran sulfate sodium (DSS) dissolved in drinking water for 7 consecutive days. The UC mice were grouped and treated with XLP (3640 mg/kg) or vehicle orally during the procedure of DSS induction. Mouse body weight, disease activity index (DAI) score and colon length were recorded. Histopathological changes and inflammatory cell infiltration were evaluated by pathological staining and flow cytometric analysis (FACS). Network pharmacology, bioinformatic analysis, widely targeted and targeted metabolomics analysis were performed to screen the potential effective ingredients and key targets. Bone marrow derived macrophages (BMDMs), peripheral blood mononuclear cells (PBMCs), RAW264.7 and THP-1 cells were used to dissect the anti-inflammatory effect of XLP. RESULTS Oral administration of XLP ameliorated DSS induced mouse colitis, as evidenced by reduced DAI and colonic inflammatory destruction. FACS results demonstrated that XLP treatment effectively restored immune tolerance in colon, inhibited the generation of monocyte derived macrophages and skewed macrophage polarization into M2 phenotype. Network pharmacology analysis suggested that innate effector modules related to macrophage activation comprise the major targets of XLP, and the counter-regulatory STAT1/PPARγ signaling possibly serves as the critical downstream pathway. Subsequent experiments unveiled an imbalance of STAT1/PPARγ signaling in monocytes derived from UC patients, and validated that XLP suppressed LPS/IFN-γ induced macrophage activation (STAT1 mediated) but facilitated IL-4 induced macrophage M2 polarization (PPARγ dependent). Meanwhile, our data showed that quercetin served as the major component of XLP to recapitulate the regulatory effect on macrophages. CONCLUSION Our findings revealed that quercetin serves as the major component of XLP that regulates macrophage alternative activation via tipping the balance of STAT1/PPARγ, which provides a mechanistic explanation for the therapeutic effect of XLP in UC treatment.
Collapse
Affiliation(s)
- Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chao Yang
- Department of Geratology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430015, China.
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu-Yao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Ren-Jie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiao-Li Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Yang Y, Wang Y, Zhao L, Wang F, Li M, Wang Q, Luo H, Zhao Q, Zeng J, Zhao Y, Du F, Chen Y, Shen J, Wei S, Xiao Z, Wu X. Chinese herbal medicines for treating ulcerative colitis via regulating gut microbiota-intestinal immunity axis. CHINESE HERBAL MEDICINES 2023; 15:181-200. [PMID: 37265772 PMCID: PMC10230642 DOI: 10.1016/j.chmed.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Ulcerative colitis (UC) is one of types of inflammatory bowel disease with high recurrence. Recent studies have highlighted that microbial dysbiosis as well as abnormal gut immunity are crucial factors that initiate a series of inflammatory responses in the UC. Modulating the gut microbiota-intestinal immunity loop has been suggested as one of key strategies for relieving UC. Many Chinese herbal medicines including some of single herb, herbal formulas and the derived constituents have been reported with protective effect against UC through modulating gut microbiome and intestinal immunity. Some clinical trials have shown promising results. This review thus focused on the current knowledge on using Chinese herbal medicines for treating UC from the mechanism aspects of regulating intestinal homeostasis involving microbiota and gut immunity. The existing clinical trials are also summarized.
Collapse
Affiliation(s)
- Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Yi Wang
- Sichuan Fifth People’s Hospital, Chengdu 610015, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Haoming Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| |
Collapse
|
15
|
Liu YF, Wang HH, Geng YH, Han L, Tu SH, Wang H. Advances of berberine against metabolic syndrome-associated kidney disease: Regarding effect and mechanism. Front Pharmacol 2023; 14:1112088. [PMID: 36814494 PMCID: PMC9939707 DOI: 10.3389/fphar.2023.1112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is drastically growing worldwide, resulting in MetS-associated kidney disease. According to traditional theories, preventing blood pressure, lipid, glycose, and obesity and improving insulin resistance (IR), a couple of medications are required for MetS. It not only lowers patients' compliance but also elevates adverse reactions. Accordingly, we attempted to seek answers from complementary and alternative medicine. Ultimately, berberine (BBR) was chosen due to its efficacy and safety on MetS through multi-pathways and multi-targets. The effects and mechanisms of BBR on obesity, IR, diabetic nephropathy, hypertension, hyperlipidemia, and hyperuricemia were elaborated. In addition, the overall properties of BBR and interventions for various kidney diseases were also collected. However, more clinical trials are expected to further identify the beneficial effects of BBR.
Collapse
Affiliation(s)
- Ya-Fei Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan-Huan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin-Hong Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-Hao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Nephrology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Luo Z, Li Z, Liang Z, Wang L, He G, Wang D, Shen L, Wang Z, Ma X, Geng F, Wang H, Liu W, Liu H, Li B. Berberine increases stromal production of Wnt molecules and activates Lgr5 + stem cells to promote epithelial restitution in experimental colitis. BMC Biol 2022; 20:287. [PMID: 36528592 PMCID: PMC9759859 DOI: 10.1186/s12915-022-01492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are characterized by sustained inflammation and/or ulcers along the lower digestive tract, and have complications such as colorectal cancer and inflammation in other organs. The current treatments for IBDs, which affect 0.3% of the global population, mainly target immune cells and inflammatory cytokines with a success rate of less than 40%. RESULTS Here we show that berberine, a natural plant product, is more effective than the frontline drug sulfasalazine in treating DSS (dextran sulfate sodium)-induced colitis in mice, and that berberine not only suppresses macrophage and granulocyte activation but also promotes epithelial restitution by activating Lgr5+ intestinal stem cells (ISCs). Mechanistically, berberine increases the expression of Wnt genes in resident mesenchymal stromal cells, an ISC niche, and inhibiting Wnt secretion diminishes the therapeutic effects of berberine. We further show that berberine controls the expression of many circadian rhythm genes in stromal cells, which in turn regulate the expression of Wnt molecules. CONCLUSIONS Our findings suggest that berberine acts on the resident stromal cells and ISCs to promote epithelial repair in experimental colitis and that Wnt-β-Catenin signaling may be a potential target for colitis treatment.
Collapse
Affiliation(s)
- Zecheng Luo
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Li
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Liang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanlin He
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Ma
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Funeng Geng
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Haozhong Wang
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Wenping Liu
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Huijuan Liu
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Bai J, Xiong T, Wang X, Cheng Y, Luo R, Yang X, Fu C. Potential mechanisms of Lian-Zhi-Fan solution for TNBS-induced ulcerative colitis in rats via a metabolomics approach. Front Pharmacol 2022; 13:1014117. [DOI: 10.3389/fphar.2022.1014117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Lian-Zhi-Fan (LZF) decoction is a hospital-prescribed traditional Chinese medicine botanical drug prepared by the fermentation of decocted Coptidis Rhizome (Huanglian), Gardeniae Fructus (Zhizi), and alum (Baifan). It has been used clinically in China for the treatment of anal fistula, perianal abscess, ulcerative colitis (UC), and other anorectal diseases for hundreds of years. However, due to the complexity of traditional Chinese medicine, the potential mechanisms of LZF in the treatment of UC have remained unknown. This study primarily investigated the remarkable pharmacological effects of LZF on TNBS-induced UC rats. To explore the complex targets and regulatory mechanisms of metabolic networks under LZF intervention, a metabolomics approach mediated by HPLC/Q-TOF-MS analysis was used to screen the different metabolites and their metabolic pathways in the serum in order to characterize the possible anti-UC mechanisms of LZF. After rectal administration of LZF for seven consecutive days, significant amelioration effects on body weight loss, DAI score, and colon inflammation were found in UC rats. Based on this, further metabolomics identified 14 potential biomarkers in the treatment of UC with LZF, of which five possessed diagnostic significance: L-alanine, taurocholic acid, niacinamide, cholic acid, and L-valine. These metabolites are mainly involved in 12 metabolic pathways, including nicotate and nicotinamide metabolism, glycospholipid metabolism, arginine and proline metabolism, primary bile acid biosynthesis, and pantothenate and CoA biosynthesis. These metabolic pathways suggest that LZF ameliorates UC by regulating amino acid metabolism, fat metabolism, and energy production. This study provides a useful approach for exploring the potential mechanisms of herbal prescription in UC treatment mediated by metabolomics.
Collapse
|
18
|
Han Q, Deng LR, Zou M, Tang HZ, Huang CY, Chen FJ, Tomlinson B, Li YH. Anemoside B4 protects against chronic relapsing colitis in mice by modulating inflammatory response, colonic transcriptome and the gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154416. [PMID: 36037770 DOI: 10.1016/j.phymed.2022.154416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anemoside B4 (AB4) is reported to prevent acute colitis when given via intraperitoneal injection by two recent studies. However, whether oral AB4 protects against chronic colitis which resembles the clinical phenotype of ulcerative colitis (UC) and its mechanism of action are largely unknown. PURPOSE To systemically investigate the effects of oral AB4 against chronic colitis and illustrate the underlying mechanism of action. METHODS The preventive, therapeutic, and dose-dependent effects of AB4 against UC were examined in mice with acute or chronic relapsing colitis induced by dextran sulfate sodium (DSS). The inflammatory responses, colonic transcriptome, and 16S rDNA sequencing of the intestinal content of mice were analyzed. RESULTS Oral administration of AB4 alleviated disease severity and colon shortening in mice with chronic relapsing colitis in a dose-dependent manner. The effects of AB4 were comparable to those of two positive-control compounds: tofacitinib and berberine. Unlike tofacitinib, AB4 did not have a deleterious effect on DSS-induced splenic swelling and anemia. Furthermore, AB4 inhibited the inflammatory responses of colitis, as evidenced by in-vivo, ex-vivo, and in-vitro studies. Transcriptomics revealed that AB4 treatment reversed the DSS-mediated decrease in the expression of colonic Pelo, B3gat2 and Mir8010. In addition, AB4 reversed DSS-induced alterations in the intestinal microbiome in mice. Through fecal microbiota transplantation, we proved that AB4 partially exerted its anti-colitis effects by modulating the gut microbiota. CONCLUSIONS We demonstrated for the first time that AB4 has dose-dependent therapeutic effects against chronic relapsing colitis by modulating the inflammatory response, colonic gene expression, and intestinal microbiota.
Collapse
Affiliation(s)
- Qian Han
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Li-Rong Deng
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min Zou
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hua-Zheng Tang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chang-Yin Huang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fang-Jun Chen
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan-Hong Li
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
19
|
Wu X, Fu S, Jiang M, Wang J, Tang H, Fang C, Li W, Fu C. Sanhuang Xiexin decoction ameliorates DSS-induced colitis in mice by regulating intestinal inflammation, intestinal barrier, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115537. [PMID: 35843414 DOI: 10.1016/j.jep.2022.115537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanhuang Xiexin decoction (SXD) is a widely applicated traditional Chinese medicine (TCM) with a significant intestinal anti-inflammatory effect. AIM OF THE STUDY To evaluate the therapeutic effect and elucidate the possible underlying mechanisms of SXD on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. METHODS To model UC, 3% DSS was added to the drinking water for 7 days. The UC mice were grouped and treated with three doses of SXD (1.3, 2.6, and 6 g/kg) orally for 7 days. Mice body weight and disease activity index (DAI) scores were recorded daily. After treatment with SXD, the colon was removed, and the colon length and histopathological changes were recorded. Blood cells were counted and colonic inflammatory cytokines and oxidative stress indicators were examined. The key proteins in TLR4-MyD88-NF-κB signaling and the colonic barrier were determined by Western blot analysis. The restorative effect of SXD on intestinal flora was determined. RESULTS Treatment with SXD reduced DAI scores, increased body weight, improved colon shortening, and decreased colonic damage. SXD decreased the numbers of white blood cells (WBCs), increased the numbers of red blood cells (RBCs), and inhibited the expression of inflammatory cytokines and oxidative stress indicators. In addition, SXD displayed an effective anti-inflammatory effect by inhibiting the expression levels of p-IκBα, TLR4, MyD88, and p65. Furthermore, SXD significantly restored the integrity of the colonic barrier and the abundance of beneficial flora. CONCLUSIONS SXD significantly reduced DSS-induced colon damage when the dose was higher than 1.3 g/kg, and the middle dose group (2.6 g/kg) indicated the best effect. SXD effectively ameliorated DSS-induced UC in mice, possibly by inhibiting oxidative stress, protecting the mucosal barrier, inhibiting the TLR4-MyD88-NF-κB signaling pathway, and regulating the intestinal flora.
Collapse
Affiliation(s)
- Xueyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Chengdu Agricultural College, Chengdu, 611130, China
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Wang
- Wenjiang Traditional Chinese Medicine Hospital of Chengdu, Chengdu, 611130, China
| | - Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunlin Fang
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Wen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Hu S, Wei P, Li W, Liu Q, Chen S, Hu C, Guo X, Ma X, Zeng J, Zhang Y. Pharmacological effects of berberine on models of ulcerative colitis: A meta-analysis and systematic review of animal studies. Front Pharmacol 2022; 13:937029. [PMID: 36147325 PMCID: PMC9486070 DOI: 10.3389/fphar.2022.937029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/09/2022] Open
Abstract
Berberine (BBR) is the main active constituent of the Rhizoma coptidis (Huanglian) and has multiple biological activities. Although current evidence suggests that the BBR has a multi-target effect in ulcerative colitis (UC), its action and mechanism are unclear. The purpose of this meta-analysis was to assess the pharmacological effects and potential mechanisms of BBR in UC models. Studies were searched from four databases (PubMed, Embase, Web of Science, and Cochrane Library) until March 2022. Standardized mean difference (SMD) and 95% confidence intervals (CI) were used for the adjudication of outcomes. Stata 15.0 software was used for statistical analysis. Twenty-eight publications and 29 studies involving 508 animals were included in the meta-analysis. The results showed that BBR reduced disease activity index (DAI) scores, alleviated UC-induced colon length (CL) loss, prevented weight loss, and reduced histological colitis score (HCS). Mechanistically, BBR was found to reduce myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, reduce levels of pro-inflammatory factors interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ) and mRNA expression of interleukin 17, increase levels of anti-inflammatory factor interleukin 10 (IL-10), and to increase levels of tight junction protein zonula occludens-1 (ZO-1) and occludin, which may involve antioxidant, anti-apoptotic, neuromodulation, anti-fibrotic, anti-inflammatory, barrier protection, and flora regulation aspects. However, additional attention should be paid to these outcomes due to the heterogeneity and methodological quality of the studies.
Collapse
Affiliation(s)
- Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Wei
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyu Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaochuan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| |
Collapse
|
21
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
22
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
23
|
Yan S, Chang J, Hao X, Liu J, Tan X, Geng Z, Wang Z. Berberine regulates short-chain fatty acid metabolism and alleviates the colitis-associated colorectal tumorigenesis through remodeling intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154217. [PMID: 35660350 DOI: 10.1016/j.phymed.2022.154217] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colitis-associated cancer (CAC) is known to be a complex combination of tumor cells, non-tumor cells and a large intestinal flora. The increasing role of intestinal flora in CAC may represent a new approach to improving CAC treatment. Berberine can reduce colorectal adenoma recurrence and inhibit colorectal carcinogenesis. PURPOSE Berberine has demonstrated efficacy for the control and suppression of CAC. Given the low oral absorption into the blood and large intestinal excretion of berberine, intestinal flora may be one of the important targets of berberine inhibiting the occurrence of colorectal cancer (CRC). The purpose of this study was to investigate the effects of berberine on intestinal flora in CAC mice and its ability to remodel intestinal flora to improve short-chain fatty acid metabolism. STUDY DESIGN AND METHODS The CAC model in mice was induced by Azoxymethane/Dextran sodium sulfate (AOM/DSS). Berberine was administered daily at doses of 50 and 100 mg/kg, and aspirin was used as the positive control. The effect of berberine on colitis-associated colorectal tumorigenesis was assessed by general imaging, tumor counting, and Ki67 staining. Intestinal flora changes were detected by 16S rDNA sequencing technology. Targeted short-chain fatty acid detection was performed by GC-MS/MS, and Lipopolysaccharide (LPS) levels in feces were quantified with an ELISA kit. The signaling pathway of TLR4/NF-κB P65/IL-6/p-STAT3 was evaluated by Western blotting and immunofluorescence. The expression levels of intestinal barrier functional biomarkers Occludin and ZO-1 were detected by immunohistochemistry. Fecal flora transplantation (FMT) was used to evaluate the effect of intestinal flora in inhibiting inflammatory cancer transformation by berberine. RESULTS Berberine reduced the number and load of tumors in CAC mice. Berberine remodeled the composition of pathogenic and beneficial bacteria in mice with colitis-associated colorectal tumorigenesis. Berberine treatment resulted in increases in fecal butyric acid, acetic acid and propionic acid levels, but did not alter isobutyric acid, isovaleric acid, valeric acid and caproic acid. In addition, berberine reduced LPS content in feces in mice with colitis-associated colorectal tumorigenesis. Occludin and ZO-1 were upregulated, and the TLR4/p-NF-κB p65/IL-6/p-STAT3 inflammatory-cancer transformation pathway was inhibited with berberine. The FMT results further verified that the berberine-treated intestinal flora was sufficient to alleviate the occurrence of colonic tumors associated with colitis in mice. CONCLUSION Our study showed that berberine alleviated the colitis-associated colorectal tumorigenesis from three equilibrium levels: (1) Pathogenic and beneficial bacteria; (2) Short-chain fatty acids and LPS produced by intestinal flora; and (3) Inflammatory cancer transformation signaling and intestinal barrier function. This study provided a new approach and experimental basis for the application of berberine in the treatment of CAC in clinical practice.
Collapse
Affiliation(s)
- Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China; Department of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Jiayin Chang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Xuehui Hao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Jiang Liu
- Department of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xiying Tan
- Department of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
24
|
Hu H, Xu K, Wang K, Zhang F, Bai X. Dissecting the Effect of Berberine on the Intestinal Microbiome in the Weaned Piglets by Metagenomic Sequencing. Front Microbiol 2022; 13:862882. [PMID: 35464928 PMCID: PMC9021597 DOI: 10.3389/fmicb.2022.862882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the microbial structure and function in the rectum of weaned piglets with berberine supplementation. Twelve healthy 21-day-old Duorc × (Landrace × Large White) weaned piglets (similar body weight) were evenly divided into control and berberine groups and were fed a basal diet supplemented with 0 and 0.1% berberine, respectively. After 21 days, metagenomic sequencing analysis was performed to detect microbial composition and function in the rectum of weaned piglets. Results showed that there were 10,597,721,931-14,059,392,900 base pairs (bp) and 10,186,558,171-15,859,563,342 bp of clean data in the control and berberine groups, respectively. The Q20s of the control and berberine groups were 97.15 to 97.7% and 96.26 to 97.68%, respectively. The microorganisms in the berberine group had lower (p < 0.05) Chao1, alternating conditional expectation, Shannon, and Simpson indices at the species levels than those in the control group. Analysis of similarity showed that there were significant differences (p < 0.01) between the control and berberine groups at the genus and species levels of the gut microorganisms. Dietary berberine significantly increased (p < 0.05) the abundance of Subdoligranulum variabile, but decreased (p < 0.05) the abundance of Prevotella copri compared with the control group. Carbohydrate-active enzymes analysis revealed that the levels of polysaccharide lyases and carbohydrate esterases were lower (p < 0.05) in the berberine group than that in the control group. Linear discriminant analysis effect size analysis showed that berberine supplementation could induce various significant Kyoto Encyclopedia of Genes and Genomes pathways, including carbohydrate metabolism, environmental information processing, and microbial metabolism in diverse environments. In conclusion, our findings suggest that berberine could improve the composition, abundance, structure, and function of gut microbiome in the weaned piglets, potentially providing a suitable approach for the application of berberine in human and animal health.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Kexing Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
25
|
Cai Y, Li S, Zhang X, Cao X, Liu D, Zhu Y, Ye S, Xu Z, Liao Q, Hong Y, Xie Z. Integrated microbiome-metabolomics analysis reveals the potential therapeutic mechanism of Zuo-Jin-Wan in ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153914. [PMID: 35104755 DOI: 10.1016/j.phymed.2021.153914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dysregulation in gut microbiota and host cometabolome contributes to the complicated pathology of ulcerative colitis (UC), while Zuo-Jin-Wan (ZJW), a traditional Chinese medicine has shown therapeutic effects against UC with its underlying mechanism remains elusive. PURPOSE This study utilized an integrated analysis combining gut microbiome and host cometabolism to disclose the potential therapeutic mechanism of ZJW on dextran sulfate sodium (DSS)-induced UC in rats. METHODS We first evaluated the therapeutic effects of ZJW treatment in DSS-induced rat model. 16S rRNA sequencing, 1H NMR spectroscopy-based metabolomics and Spearman correlation analysis were conducted to explore the potential therapeutic mechanism during the treatment. RESULTS Our results showed that UC symptoms in ZJW rats were significantly attenuated. Marked decline in microbial diversity in ZJW group was accompanied by its correspondent function adjustment. Specific enrichment of genus Bacteroides, Sutterella, Akkermansia and Roseburia along with the major varying amino acid metabolism and lipid metabolism were observed meantime. Metabolic data further corroborated that ZJW-related metabolic changes were basically gathered in amino acid metabolism, carbohydrate/energy metabolism and lipid metabolism. Of note, some biochemical parameters were deeply implicated with the discriminative microbial genera and metabolites involved in tricarboxylic acid (TCA) cycle and amino acid metabolism, indicating the microbiome-metabolome association in gut microbiota-metabolite-phenotype axis during UC treatment of ZJW. CONCLUSION For the first time, integrated microbiome-metabolome analysis depicted that ZJW could alleviate DSS-induced UC in rats via a crosstalk between gut microbiota and host cometabolites.
Collapse
Affiliation(s)
- Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Siju Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaojun Zhang
- Department of Pharmacy, Maternal and Child Health Hospital of Yingde City, Qingyuan, 513000, China
| | - Xueqin Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Yanglu Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Simin Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Zhang B, Liu K, Yang H, Jin Z, Ding Q, Zhao L. Gut Microbiota: The Potential Key Target of TCM's Therapeutic Effect of Treating Different Diseases Using the Same Method-UC and T2DM as Examples. Front Cell Infect Microbiol 2022; 12:855075. [PMID: 35433500 PMCID: PMC9005880 DOI: 10.3389/fcimb.2022.855075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Traditional Chinese herbal medicine often exerts the therapeutic effect of "treating different diseases with the same method" in clinical practice; in other words, it is a kind of herbal medicine that can often treat two or even multiple diseases; however, the biological mechanism underlying its multi-path and multi-target pharmacological effects remains unclear. Growing evidence has demonstrated that gut microbiota dysbiosis plays a vital role in the occurrence and development of several diseases, and that the root cause of herbal medicine plays a therapeutic role in different diseases, a phenomenon potentially related to the improvement of the gut microbiota. We used local intestinal diseases, such as ulcerative colitis, and systemic diseases, such as type 2 diabetes, as examples; comprehensively searched databases, such as PubMed, Web of Science, and China National Knowledge Infrastructure; and summarized the related studies. The results indicate that multiple individual Chinese herbal medicines, such as Rhizoma coptidis (Huang Lian), Curcuma longa L (Jiang Huang), and Radix Scutellariae (Huang Qin), and Chinese medicinal compounds, such as Gegen Qinlian Decoction, Banxia Xiexin Decoction, and Shenling Baizhu Powder, potentially treat these two diseases by enriching the diversity of the gut microbiota, increasing beneficial bacteria and butyrate-producing bacteria, reducing pathogenic bacteria, improving the intestinal mucosal barrier, and inhibiting intestinal and systemic inflammation. In conclusion, this study found that a variety of traditional Chinese herbal medicines can simultaneously treat ulcerative colitis and type 2 diabetes, and the gut microbiota may be a significant target for herbal medicine as it exerts its therapeutic effect of "treating different diseases with the same method".
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Zhao X, Cui D, Yuan W, Chen C, Liu Q. Berberine represses Wnt/β-catenin pathway activation via modulating the microRNA-103a-3p/Bromodomain-containing protein 4 axis, thereby refraining pyroptosis and reducing the intestinal mucosal barrier defect induced via colitis. Bioengineered 2022; 13:7392-7409. [PMID: 35259053 PMCID: PMC8973728 DOI: 10.1080/21655979.2022.2047405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intestinal barrier dysfunction is inflammatory bowel disease’s hallmark. Berberine (BBR) has manifested its anti-inflammatory properties in colitis. For exploring the molecular mechanism of BBR’s impacts on colitis, application of a dextran sodium sulfate-induced mouse colitis in vivo model was with recording the body weight, stool consistency, stool occult blood and general physical symptoms of all groups of mice every day. Behind assessment of intestinal permeability, detection of colon damage’s degree and apoptosis, and inflammatory factors for assessment of pyroptosis was conducted. Application of interleukin-6-stimulated Caco-2 cells was for construction of an in vitro model. Then detection of cell advancement with inflammation and measurement of the barrier’s integrity were put into effect. Verification of microRNA (miR)-103a-3p and Bromodomain-containing protein 4 (BRD4)’s targeting link was conducted. Experiments have clarified BBR, elevated miR-103a-3p or repressive BRD4 was available to alleviate colitis-stimulated pyroptosis and intestinal mucosal barrier defects. BBR elevated miR-103a-3p to target BRD4; Refraining miR-103a-3p or enhancive BRD4 turned around BBR’s therapeutic action on colitis injury. BBR depressed Wnt/β-catenin pathway activation via controlling the miR-103a-3p/BRD4 axis. All in all, BBR represses Wnt/β-catenin pathway activation via modulating the miR-103a-3p/BRD4 axis, thereby mitigating colitis-stimulated pyroptosis and the intestinal mucosal barrier defect. The research suggests BBR is supposed to take on potential in colitis cure.
Collapse
Affiliation(s)
- Xun Zhao
- The Graduate School, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - DeJun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - WenQiang Yuan
- The Graduate School, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Chen Chen
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Qi Liu
- The Graduate School, Guizhou Medical University, Guiyang City, Guizhou Province, China
| |
Collapse
|
28
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
29
|
Berberine inhibits dendritic cells differentiation in DSS-induced colitis by promoting Bacteroides fragilis. Int Immunopharmacol 2021; 101:108329. [PMID: 34749293 DOI: 10.1016/j.intimp.2021.108329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUNDS Berberine (BBR), a compound long used in traditional Chinese medicine, has been reported to have therapeutic effects in treating ulcerative colitis (UC), attributed to its anti-inflammatory properties and restorative potential of tight junctions (TJs). However, the mechanism by which BBR affects intestinal bacteria and immunity is still unclear. METHODS This study investigated the effects of BBR on intestinal bacteria and the inflammatory response in dextran sulfate sodium (DSS)-induced colitis mice. Immunohistochemistry (IHC) and electron microscopy were used to detect intestinal TJs. Microflora analysis was used to screen for bacteria regulated by BBR. RESULTS The results showed that BBR had increased colonic epithelium zonula occludens proteins-1 (ZO-1) and occludin expression and reduced T-helper 17/T regulatory ratio in DSS-induced mice. Mechanically, BBR eliminated DSS-induced intestinal flora disturbances in mice, particularly increased Bacteroides fragilis (B. fragilis) in vivo and in vitro. B. fragilis decreased the interleukin-6 induced by dendritic cells through some heat-resistant component rather than nucleic acids or proteins. CONCLUSIONS Overall, these data suggest that BBR had a moderating effect on DSS-induced colitis. This compound may regulate intestinal immune cell differentiation by affecting the growth of B. fragilis, providing new insights into the potential application of BBR in UC.
Collapse
|
30
|
Yang L, Luo H, Tan D, Zhang S, Zhong Z, Wang S, Vong CT, Wang Y. A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153709. [PMID: 34560518 DOI: 10.1016/j.phymed.2021.153709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic idiopathic disease that is characterized by inflammation of the gastrointestinal tract. Proper management of IBD requires both early diagnosis and novel therapies and management programs. Many reports have suggested that Chinese medicine has unique properties favorable to the treatment of IBD. However, there are no systematic analyses on this topic. PURPOSE This review summarizes recent studies that assessed the effects and mechanisms of Chinese medicine in the treatment of IBD in order to fully understand the advantages of Chinese medicine in the management of IBD. METHODS A literature search was conducted using peer-reviewed and clinical databases, including PubMed, Web of Science, ClinicalTrials.gov, MEDLINE, EMBASE, Springer LINK, Wan-fang database, the Chinese Biomedicine Database, and the China National Knowledge Infrastructure (CNKI). Keywords used were inflammatory bowel disease (including Ulcerative colitis or Crohn's disease) and Chinese medicine. All selected articles were from 1997 to 2021, and each were assessed critically for our exclusion criteria. Studies describing the pathogenesis of IBD, the effects and mechanisms of Chinese medicine in the treatment of IBD, in particular their roles in immune regulation, intestinal flora regulation, and improvement of intestinal barrier function, were included. CONCLUSION This review highlights recent progress in the use of Chinese medicine in the treatment of IBD. It also provides a reference for further evaluation and exploration of the potential of classical multi-herbal Chinese medicine in the treatment of IBD.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
31
|
Tang X, Yang M, Gu Y, Jiang L, Du Y, Liu J. Orally Deliverable Dual-Targeted Pellets for the Synergistic Treatment of Ulcerative Colitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4105-4123. [PMID: 34616144 PMCID: PMC8489837 DOI: 10.2147/dddt.s322702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
Purpose The effective treatment of ulcerative colitis (UC) poses substantial challenges, and the aetiopathogenesis of UC is closely related to infectious, immunological and environmental factors. Currently, there is a considerable need for the development of orally bioavailable dosage forms that enable the effective delivery of therapeutic drugs to local diseased lesions in the gastrointestinal tract. Methods Berberine (BBR) and Atractylodes macrocephala Koidz (AM) volatile oil, derived from the Chinese herbs Coptis chinensis Franch and Atractylodes macrocephala Koidz, have anti-inflammatory and immunomodulatory activities. In this study, we prepared colon-targeted pellets loaded with BBR and stomach-targeted pellets loaded with AM volatile oil for the synergistic treatment of UC. The Box-Behnken design and β-cyclodextrin inclusion technique were used to optimize the enteric coating formula and prepare volatile oil inclusion compounds. Results The two types of pellets were spherical and had satisfactory physical properties. The pharmacokinetic results showed that the AUC and MRT values of the dual-targeted (DPs) pellets were higher than those of the control pellets. In addition, in vivo animal imaging confirmed that the DPs could effectively deliver BBR to the colon. Moreover, compared with sulfasalazine and monotherapy, DPs exerted a more significant anti-inflammatory effect by inhibiting the expression of inflammatory factors including IL-1β, IL-4, IL-6, TNF-α and MPO both in serum and tissues and enhancing immunity by decreasing the production of IgA and IgG. Conclusion The DPs play a synergistic anti-UC effect by exerting systemic and local anti-inflammatory and provide an effective oral targeted preparation for the treatment of UC.
Collapse
Affiliation(s)
- Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Meng Yang
- Department of Pharmacy, Shanghai Ninth People Hospital, Shanghai Jiao Tong University, Shanghai, 200011, People's Republic of China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Yue Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
32
|
Han Z, Tan X, Sun J, Wang T, Yan G, Wang C, Ma K. Systems pharmacology and transcriptomics reveal the mechanisms of Sanhuang decoction enema in the treatment of ulcerative colitis with additional Candida albicans infection. Chin Med 2021; 16:75. [PMID: 34376226 PMCID: PMC8353752 DOI: 10.1186/s13020-021-00487-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/02/2021] [Indexed: 01/16/2023] Open
Abstract
Background Ulcerative colitis (UC) is an important inflammatory phenotype in bowel disease (IBD), which is caused by multiple potential factors, including fungal dysbiosis. Candida albicans (C. albicans) was confirmed to be an important factor promoting the occurrence and development of UC. Sanhuang decoction (SHD) has been used for UC therapy in China for thousand of years, although its core active constituents and pharmacological mechanism remain undefined. Methods In this work, a murine model of UC with C. albicans colonization was established with dextran sodium sulfate (DSS) and C. albicans intragastric administration. The major bioactive constituents and potential mechanism of SHD against UC with fungal dysbiosis were comprehensively examined by combining systems pharmacology and in vivo transcriptomics. Results SHD attenuated C. albicans burden, reduced DAI, increased mucosal integrity and relived systemic inflammation in UC mice. Systems pharmacology analysis identified 9 core bioactive ingredients and 45 hub targets of SHD against UC. Transcriptomics analysis confirmed 370 differentially expressed genes (DEGs) after SHD treatment, which were mainly enriched in inflammatory and immune response related signaling pathways. Toll-like receptor and PI3K-Akt signaling pathway were screened out as the candidate targets involved in the action of SHD on fungal dysbiosis-associated UC, which were consistent with the findings in systems pharmacology. The expression of TLR4, IL-1β, NF-κB, PI3K and Akt proteins were stimulated by C. albicans, and partially reversed by SHD in UC mice. Conclusion These findings suggested SHD could be a candidate for the treatment of fungal dysbiosis-associated UC via TLR4-NF-κB and PI3K-Akt signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00487-2.
Collapse
Affiliation(s)
- Zhijun Han
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaofen Tan
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Sun
- Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Tianming Wang
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guiming Yan
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine, College of Life Science, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of New Manufacturing Technology for Chinese Medicinal Decoction Pieces, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
33
|
Jing W, Dong S, Luo X, Liu J, Wei B, Du W, Yang L, Luo H, Wang Y, Wang S, Lu H. Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites. Pharmacol Res 2021; 164:105358. [PMID: 33285228 DOI: 10.1016/j.phrs.2020.105358] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) are kind of recurrent inflammatory issues that occur in the gastrointestinal tract, and currently clinical treatment is still unideal due to the complex pathogenesis of IBD. Basically, gut barrier dysfunction is triggered by gut microbiota dysbiosis that is closely associated with the development of IBD, we thus investigated the therapeutic capacity of berberine (BBR) to improve the dysregulated gut microbiota, against IBD in rats, using a combinational strategy of targeted metabolomics and 16 s rDNA amplicon sequencing technology. Expectedly, our data revealed that BBR administration could greatly improve the pathological phenotype, gut barrier disruption, and the colon inflammation in rats with dextran sulfate sodium (DSS)-induced colitis. In addition, 16S rDNA-based microbiota analysis demonstrated that BBR could alleviate gut dysbiosis in rats. Furthermore, our targeted metabolomics analysis illustrated that the levels of microbial tryptophan catabolites in the gastrointestinal tract were significantly changed during the development of the colitis in rats, and BBR treatment can significantly restore such changes of the tryptophan catabolites accordingly. At last, our in vitro mechanism exploration was implemented with a Caco-2 cell monolayer model, which verified that the modulation of the dysregulated gut microbiota to change microbial metabolites coordinated the improvement effect of BBR on gut barrier disruption in the colitis, and we also confirmed that the activation of AhR induced by microbial metabolites is indispensable to the improvement of gut barrier disruption by BBR. Collectively, BBR has the capacity to treat DSS-induced colitis in rats through the regulation of gut microbiota associated tryptophan metabolite to activate AhR, which can greatly improve the disrupted gut barrier function. Importantly, our finding elucidated a novel mechanism of BBR to improve gut barrier function, which holds the expected capacity to promote the BBR derived drug discovery and development against the colitis in clinic setting.
Collapse
Affiliation(s)
- Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Sijing Dong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Xialin Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Du
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, China
| | - Lin Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Xiong X, Cheng Z, Wu F, Hu M, Liu Z, Dong R, Chen G. Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells. Biomed Pharmacother 2020; 134:111129. [PMID: 33348308 DOI: 10.1016/j.biopha.2020.111129] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhimin Liu
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal & Anal Hospital of Sun Yat-sen University), Guangzhou 510655, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
35
|
Shu JX, Zhong CS, Shi ZJ, Zeng B, Xu LH, Ye JZ, Wang YF, Yang F, Zhong MY, Ouyang DY, Zha QB, He XH. Berberine augments hypertrophy of colonic patches in mice with intraperitoneal bacterial infection. Int Immunopharmacol 2020; 90:107242. [PMID: 33307514 DOI: 10.1016/j.intimp.2020.107242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Colonic patches, the counterparts of Peyer's patches in the small intestine, are dynamically regulated lymphoid tissues in the colon that have an important role in defensing against microbial infections. Berberine is an isoquinoline alkaloid extracted from medicinal herbs including Rhizoma coptidis and has long been used for the treatment of infectious gastroenteritis, but its impact on the colonic lymphoid tissues (such as colonic patches) is unknown. In this study, we aimed to investigate whether berberine had any influences on the colonic patches in mice with bacterial infection. The results showed that oral berberine administration in bacterial infected mice substantially enhanced the hypertrophy of colonic patches, which usually possessed the features of two large B-cell follicles with a separate T-cell area. Moreover, the colonic patches displayed follicular dendritic cell networks within the B-cell follicles, indicative of mature colonic patches containing germinal centers. Concomitant with enlarged colonic patches, the cultured colon of infected mice treated with berberine secreted significantly higher levels of interleukin-1β (IL-1β), IL-6, TNF-α, and CCL-2, while NLRP3 inhibitor MMC950 or knockout of NLRP3 gene abrogated berberine-induced hypertrophy of colonic patches, suggesting the involvement of the NLRP3 signaling pathway in this process. Functionally, oral administration of berberine ameliorated liver inflammation and improved formed feces in the colon. Altogether, these results indicated that berberine was able to augment the hypertrophy of colonic patches in mice with bacterial infection probably through enhancing local inflammatory responses in the colon.
Collapse
Affiliation(s)
- Jun-Xiang Shu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chun-Su Zhong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Bo Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Zhou Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yao-Feng Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fan Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mei-Yan Zhong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Liao ZQ, Ji QF, Zhou BJ. Strategies for inflammatory bowel disease drug research by targeting gut microbiota. Shijie Huaren Xiaohua Zazhi 2020; 28:1112-1120. [DOI: 10.11569/wcjd.v28.i22.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is complex, which may be associated with genetic factors, environmental factors, intestinal mucosal barrier function, immune response, and gut microbiota. At present, there is no cure for IBD, and therefore there is an urgent need to develop therapeutic drugs. Gut microbiota is considered an important factor in the pathogenesis of IBD and is thus an important target for IBD drug research, with the function of regulating the vital activities of host, modulating the immune response, and protecting against intestinal flora disorders. This paper briefly discusses the strategies for IBD drug research by targeting gut microbiota. Fecal transplantation and human microbiota-associated model are effective ways to elucidate the mechanism of IBD therapeutic drugs. Drugs that can enrich probiotics or inhibit harmful bacteria have great potential for the treatment of IBD. Exploring the causal relationship between the changes in gut microbiota and IBD therapeutic drugs through multiple molecular techniques is the focus of IBD drug research in the future.
Collapse
Affiliation(s)
- Zi-Qiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| | - Qui-Feng Ji
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| | - Ben-Jie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| |
Collapse
|
37
|
Chen JC. Research progress on regulation of intestinal mucosal barrier of patients with ulcerative colitis with traditional Chinese medicine. Shijie Huaren Xiaohua Zazhi 2020; 28:725-729. [DOI: 10.11569/wcjd.v28.i15.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. Intestinal mucosal barrier structure damage and functional imbalance are important mechanisms for its occurrence and development. Modern research has confirmed that many traditional Chinese medicines have the functions of regulating inflammatory cells, promoting the secretion of immunologically active substances, and maintaining the intestinal microbial ecology. They are of great significance for the maintenance and repair of the intestinal mucosal barrier. This article elaborates the regulatory effect and mechanisms of single compositions of Chinese materia medica and compound prescriptions on the mucosal barrier of patients with UC.
Collapse
Affiliation(s)
- Ji-Chao Chen
- Department of Gastroenterology, Affiliated First Hospital of Zhejiang Chinese Medical University, Hangzhou 310051, Zhejiang Province, China
| |
Collapse
|
38
|
Wei Y, Jiang N, Liu T, Liu C, Xiao W, Liang L, Li T, Yu Y. The comparison of extraction methods of ganjiang decoction based on fingerprint, quantitative analysis and pharmacodynamics. Chin Med 2020; 15:81. [PMID: 32774446 PMCID: PMC7409467 DOI: 10.1186/s13020-020-00355-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of the colon and rectum with unknown etiology, and its symptoms include bloody diarrhea, abdominal pain, and hematochezia. Traditional Chinese medicine compound has a good therapeutic, multi-target effect on UC. Ganjiang decoction (GD), which is a traditional classic prescription in China, contains Zingiberis Rhizoma, Angelicae Sinensis Radix, Coptidis Rhizoma, Phellodendri Chinensis Cortex, Sanguisorbae Radix, Granati Pericarpium, and Asini Corii Colla and could be used to treat symptoms of UC. This study aimed to conduct a preliminary study before GD colon-targeted preparation, to explore the relationship between extraction method and efficacy of GD. Methods High-performance liquid chromatography (HPLC) was used for the fingerprinting of five preparation methods of GD. HPLC and gas chromatography were used to quantitatively analyze the important chemical components of GD and compare their differences. Mice with UC induced by dextran sulphate sodium salt received the extracts from the five preparation methods of GD via gavage. Disease activity index (DAI) score, colonic length, relative weight of spleen, pathological analysis results, inflammatory factors, therapeutic effect of the five preparation methods of GD, and their relationship with extraction process were compared. Results Cluster analysis revealed that the content of the components extracted by traditional extraction methods was significantly different from the other four methods. The third and fifth preparation methods extracted Coptidis Rhizoma and Phellodendri Chinensis Cortex with 50% ethanol to obtain more alkaloids. In the fourth and fifth methods, more volatile oils were detected by adding Zingiberis Rhizoma and Angelicae Sinensis Radix fine powder. According to DAI score, colonic length, relative weight of spleen, pathological analysis results, and inflammatory factors, the third method showed a good therapeutic effect, while the fifth method had the best therapeutic effect. Conclusions The results showed that the difference of the five extracts of GD in the efficacy of DSS-induced UC in mice was closely related to the extraction method. Our study improved the extraction process of GD and provided a foundation for the process of enteric-soluble preparations and a new idea for traditional Chinese medicine compound preparation. ![]()
Collapse
Affiliation(s)
- Yanyan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Ning Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Tuo Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Wen Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Likeng Liang
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Tongming Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| |
Collapse
|
39
|
Ge Y, Pan M, Zhang C, Wang C, Ma K, Yan G, Wang T, Wu D, Shao J. Paeonol alleviates dextran sodium sulfate induced colitis involving Candida albicans-associated dysbiosis. Med Mycol 2020; 59:335-344. [PMID: 32598443 DOI: 10.1093/mmy/myaa053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/21/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD), which consists of ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disorder of the gastrointestinal tract. Occurrence and development of UC have been associated with multiple potential causative factors, which include fungal dysbiosis. Growing evidence reveals that Candida albicans-associated dysbiosis is correlated with clinical deterioration in UC. Paeonol (PAE) is a commonly used traditional medicine with multiple reported properties including effective alleviation of UC. In this study, a murine UC model was established by colonizing mice with additional C. albicans via gavage prior to dextran sodium sulfate (DSS) administration. Effects of PAE treatment were also assessed at initiation and in preestablished C. albicans-associated colitis. The results showed that C. albicans supplementation could aggravate disease activity index (DAI), compromise mucosal integrity, exacerbate fecal and tissue fungal burdens, increase serum β-glucan and anti-Saccharomyces cerevisiae antibody (ASCA) levels, promote serum and colonic tissue pro-inflammatory cytokine secretion (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8) and decrease the anti-inflammatory cytokine IL-10 level. It also stimulated Dectin-1, TLR2 and TLR4 as well as expression of their downstream effector NF-κB in colonic tissue. After PAE treatment, the adverse impacts of C. albicans on colitis were relieved, via decreased receptor-associated local and systemic inflammation. Our study suggests that PAE should be a candidate for treatment of fungal dysbiosis-associated UC and may act through the Dectin-1/NF-κB pathway in collaboration with TLR2 and TLR4. LAY SUMMARY Candida albicans is believed to be an important stimulator in ulcerative colitice (UC) development. Suppressing the growth of intestinal C. albicans can be contributory to the amelioration of UC. Paeonol (PAE) is a commonly used traditional medicine with multiple biological functions. In this study, we observed that PAE could alleviate symptoms in mice UC model accompanying with burden reduction of C. albicans. Therefore, we suppose that PAE can be a candidate in the treatment of C. albicans-associated UC.
Collapse
Affiliation(s)
- Yuzhu Ge
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Min Pan
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Chuanfeng Zhang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Changzhong Wang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Kelong Ma
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Guiming Yan
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- Laboratory of Infection and Tumor, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
40
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|