1
|
Valcheva V, Mileva M, Dogonadze M, Dobreva A, Mokrousov I. Antimycobacterial Activity of Essential Oils from Bulgarian Rosa Species Against Phylogenomically Different Mycobacterium tuberculosis Strains. Pharmaceutics 2024; 16:1393. [PMID: 39598517 PMCID: PMC11597806 DOI: 10.3390/pharmaceutics16111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, we aimed to assess the activity of the essential oils from four Bulgarian oil-bearing roses Rosa damascena Mill., R. alba L., R. centifolia L., and R. gallica L., on the reference strain Mycobacterium tuberculosis H37Rv and clinical M. tuberculosis strains of the Beijing and Latin-American Mediterraneum genotypes. The chemical composition of the essential oils was determined by gas chromatography (GC-FID/MS). Minimal inhibitory concentrations (MIC) were determined using the resazurin method. R. alba oil showed the highest inhibitory activity when tested on all strains of different phylogenetic origins with MIC in the range of 0.16-0.31 mg/mL, while R. gallica oil was the least active (MIC 0.62-1.25 mg/mL). The obtained results show heterogeneity of rose oil action on different mycobacterial strains and we hypothesize that the combined level of geraniol and nerol is a key factor that underlies the antimycobacterial action of the rose oils. Strain Beijing 396 was relatively more susceptible to the rose oils probably due to multiple and likely deleterious mutations in its efflux pump genes. Two clinical MDR strains have likely developed during their previous adaptation to anti-TB drugs certain drug tolerance mechanisms that also permitted them to demonstrate intrinsic tolerance to the essential oils. Further research should investigate a possible synergistic action of the new-generation anti-TB drugs and the most promising rose oil extracts on the large panel of different strains.
Collapse
Affiliation(s)
- Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Marine Dogonadze
- Laboratory of Microbiology, Biochemistry and Immunogenetics, St. Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospect, 191036 St. Petersburg, Russia;
| | - Ana Dobreva
- Institute for Roses and Aromatic Plants, Agricultural Academy, 49 Osvobojdenie Blvd., 6100 Kazanlak, Bulgaria;
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 14 Mira Str., 197101 St. Petersburg, Russia
- Henan International Joint Laboratory of Children’s Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450012, China
| |
Collapse
|
2
|
Shafeeq H, Lone BA, Ganjoo A, Ayoub N, Kumari H, Gairola S, Gupta P, Babu V, Ahmed Z. Biotransformation of Geraniol to Geranic Acid Using Fungus Mucor irregularis IIIMF4011. ACS OMEGA 2024; 9:41314-41320. [PMID: 39398130 PMCID: PMC11465272 DOI: 10.1021/acsomega.4c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Geraniol is an important component in essential oils of aromatic plants such as lemongrass, rosa grass, and many others. It can be converted to different high-value products by using microbes/enzymes. The present study aims at the isolation and screening of microbes showing efficient production of geranic acid (a high-value product) from geraniol (a low-value monoterpene). Mucor irregularis IIIMF4011, isolated from the soil sample of Cymbopogon citratus (Lemongrass), showed biotransformation of geraniol to geranic acid. After optimization of reaction parameters, 97-100% conversion of geraniol to geranic acid was obtained after 72 h of incubation at 28 °C. Furthermore, the biotransformation reaction was also carried out in a 3 L fermentor (working volume 1.5 L), and 98.89% conversion was observed. Therefore, an efficient process of geranic acid production using M. irregularis IIIMF4011 was developed.
Collapse
Affiliation(s)
- Haseena Shafeeq
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bashir Ahmad Lone
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ananta Ganjoo
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nargis Ayoub
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hema Kumari
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumeet Gairola
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prasoon Gupta
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Babu
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zabeer Ahmed
- CSIR—Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
4
|
Karlova R, Busscher J, Schempp FM, Buchhaupt M, van Dijk ADJ, Beekwilder J. Detoxification of monoterpenes by a family of plant glycosyltransferases. PHYTOCHEMISTRY 2022; 203:113371. [PMID: 36037906 DOI: 10.1016/j.phytochem.2022.113371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Plant monoterpenes are challenging compounds, since they often act as solvents, and thus have both phytotoxic and antimicrobial properties. In this study an approach is developed to identify and characterize enzymes that can detoxify monoterpenoids, and thus would protect both plants and microbial production systems from these compounds. Plants respond to the presence of monoterpenes by expressing glycosyltransferases (UGTs), which conjugate the monoterpenoids into glycosides. By identifying these enzymes in a transcriptomics approach using Mentha × piperita, a family of UGTs was identified which is active on cyclic monoterpenoids such as menthol, and on acyclic monoterpenoids such as geranic acid. Other members of this family, from tomato, were also shown to be active on these monoterpenoids. In vitro and in vivo activity of different UGTs were tested with different substrates. We found that some glycosyltransferases significantly affect the toxicity of selected monoterpenoids in Escherichia coli, suggesting that glycosyltransferases can protect cells from monoterpenoid toxicity.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Droevendaalsesteeg 1, 6708 PB Wageningen University, the Netherlands
| | - Jeroen Busscher
- Laboratory of Plant Physiology, Droevendaalsesteeg 1, 6708 PB Wageningen University, the Netherlands
| | - Florence M Schempp
- DECHEMA Research Institute, Microbial Biotechnology, Frankfurt am Main, Germany
| | - Markus Buchhaupt
- DECHEMA Research Institute, Microbial Biotechnology, Frankfurt am Main, Germany
| | - Aalt D J van Dijk
- Laboratory of Bioinformatics, Wageningen University, Wageningen, the Netherlands
| | - Jules Beekwilder
- Laboratory of Plant Physiology, Droevendaalsesteeg 1, 6708 PB Wageningen University, the Netherlands; Wageningen Plant Research, PO Box 16, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
6
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
7
|
Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonasas Versatile Aromatics Cell Factory. Biotechnol J 2020; 15:e1900569. [DOI: 10.1002/biot.201900569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Tobias Schwanemann
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Maike Otto
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Benedikt Wynands
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| |
Collapse
|