1
|
Mwaheb MA, Hasanien YA, Zaki AG, Abdel-Razek AS, Al Halim LRA. Fusarium verticillioides pigment: production, response surface optimization, gamma irradiation and encapsulation studies. BMC Biotechnol 2024; 24:84. [PMID: 39472859 PMCID: PMC11523785 DOI: 10.1186/s12896-024-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Natural pigments are becoming more significant because of the rising cost of raw materials, pollution, and the complexity of synthetic pigments. Compared to synthetic pigments, natural pigments exhibit antimicrobial properties and is less allergic. Pigments from microbial sources could easily be obtained in an inexpensive culture media, produced in high yields, and microbes are capable of producing different colored pigments. Searching for new sources for natural pigments to replace synthetic ones in food applications has become an urgent necessity, but the instability of these compounds is sometimes considered one of the obstacles that reduce their application. Encapsulation provides an ideal solution for natural dye protection through a controlled release strategy. Thus, this study aims at isolation of several soil fungi and subsequent screening their pigment production ability. The chosen pigment-producing fungal strain underwent full identification. The produced pigment was extracted with ethyl acetate and estimated spectrophotometrically. As there is a necessity to obtain a high pigment yield for efficient industrial application, the best production medium was tested, optimum conditions for maximum dye production were also investigated through the response surface methodology, and gamma irradiation was also employed to enhance the fungal productivity. Encapsulation of the produced pigment into chitosan microsphere was tested. The pigment release under different pH conditions was also investigated. RESULTS A new strain, Fusarium verticillioides AUMC 15934 was chosen and identified for a violet pigment production process. Out of four different media studied, the tested strain grew well on potato dextrose broth medium. Optimum conditions are initial medium pH 8, 25 °C-incubation temperature, and for 15-day incubation period under shaking state. Moreover, a 400 Gy irradiation dose enhanced the pigment production. Chitosan microsphere loaded by the pigment was successfully prepared and characterized by infrared spectroscopy and scanning electron microscopy. CONCLUSION This irradiated Fusarium strain provides a more economically favorable source for production of a natural violet dye with an optimum productivity, enhanced yield, and improved properties (such as, enhanced stability, controlled release, and bioaccessibility) by encapsulation with chitosan for efficient application in food industry.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Alaa S Abdel-Razek
- Radiation Protection and Safety Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Laila R Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
2
|
Huang Y, Chen J, Xia H, Gao Z, Gu Q, Liu W, Tang G. FvMbp1-Swi6 complex regulates vegetative growth, stress tolerance, and virulence in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134576. [PMID: 38759405 DOI: 10.1016/j.jhazmat.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The mycotoxigenic fungus Fusarium verticillioides is a common pathogen of grain and medicine that contaminates the host with fumonisin B1 (FB1) mycotoxin, poses serious threats to human and animal health. Therefore, it is crucial to unravel the regulatory mechanisms of growth, and pathogenicity of F. verticillioides. Mbp1 is a component of the MluI cell cycle box binding factor complex and acts as an APSES-type transcription factor that regulates cell cycle progression. However, no information is available regarding its role in F. verticillioides. In this study, we demonstrate that FvMbp1 interacts with FvSwi6 that acts as the cell cycle transcription factor, to form the heteromeric transcription factor complexes in F. verticillioides. Our results show that ΔFvMbp1 and ΔFvSwi6 both cause a severe reduction of vegetative growth, conidiation, and increase tolerance to diverse environmental stresses. Moreover, ΔFvMbp1 and ΔFvSwi6 dramatically decrease the virulence of the pathogen on the stalk and ear of maize. Transcriptome profiling show that FvMbp1-Swi6 complex co-regulates the expression of genes associated with multiple stress responses. These results indicate the functional importance of the FvMbp1-Swi6 complex in the filamentous fungi F. verticillioides and reveal a potential target for the effective prevention and control of Fusarium diseases.
Collapse
Affiliation(s)
- Yufei Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinfeng Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Park J, Son H. Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms. THE PLANT PATHOLOGY JOURNAL 2024; 40:235-250. [PMID: 38835295 PMCID: PMC11162859 DOI: 10.5423/ppj.rw.01.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/06/2024]
Abstract
During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Ding Y, Ma N, Haseeb HA, Dai Z, Zhang J, Guo W. Genome-wide transcriptome analysis of toxigenic Fusarium verticillioides in response to variation of temperature and water activity on maize kernels. Int J Food Microbiol 2024; 410:110494. [PMID: 38006847 DOI: 10.1016/j.ijfoodmicro.2023.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Fusarium verticillioides is one of the important mycotoxigenic pathogens of maize since it causes severe yield losses and produces fumonisins (FBs) to threaten human and animal health. Previous studies showed that temperature and water activity (aw) are two pivotal environmental factors affecting F. verticillioides growth and FBs production during maize storage. However, the genome-wide transcriptome analysis of differentially expressed genes (DEGs) in F. verticillioides under the stress combinations of temperature and aw has not been studied in detail. In this study, DEGs of F. verticillioides and their related regulatory pathways were analyzed in response to the stress of temperature and aw combinations using RNA-Seq. The results showed that the optimal growth conditions for F. verticillioides were 0.98 aw and 25 °C, whereas the highest per-unit yield of the fumonisin B1 (FB1) was observed at 0.98 aw and 15 °C. The RNA-seq analysis showed that 9648 DEGs were affected by temperature regardless of aw levels, whereas only 218 DEGs were affected by aw regardless of temperature variations. Gene Ontology (GO) analysis revealed that a decrease in temperature at both aw levels led to a significant upregulation of genes associated with 24 biological processes, while three biological processes were downregulated. Furthermore, when aw was decreased at both temperatures, seven biological processes were significantly upregulated and four were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the genes, whose expression was upregulated when the temperature decreased, were predominantly associated with the proteasome pathway, whereas the genes, whose expression was downregulated when the aw decreased, were mainly linked to amino acid metabolism. For the FB1, except for the FUM15 gene, the other 15 biosynthetic-related genes were highly expressed at 0.98 aw and 15 °C. In addition, the expression pattern analysis of other biosynthetic genes involved in secondary metabolite production and regulation of fumonisins production was conducted to explore how this fungus responds to the stress combinations of temperature and aw. Overall, this study primarily examines the impact of temperature and aw on the growth of F. verticillioides and its production of FB1 using transcriptome data. The findings presented here have the potential to contribute to the development of novel strategies for managing fungal diseases and offer valuable insights for preventing fumonisin contamination in food and feed storage.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Nini Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hafiz Abdul Haseeb
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Directorate General of Pest Warning and Quality Control of Pesticides, Punjab, Lahore, Pakistan
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan 570228, PR China
| | - Jun Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
5
|
Li Y, Li Y, Lu H, Sun T, Gao J, Zhang J, Shen Q, Yu Z. The bZIP transcription factor ATF1 regulates blue light and oxidative stress responses in Trichoderma guizhouense. MLIFE 2023; 2:365-377. [PMID: 38818272 PMCID: PMC10989065 DOI: 10.1002/mlf2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 06/01/2024]
Abstract
In several filamentous fungi, incident light and environmental stress signaling share the mitogen-activated protein kinase (MAPK) HOG (SAK) pathway. It has been revealed that short-term illumination with blue light triggers the activation of the HOG pathway in Trichoderma spp. In this study, we demonstrate the crucial role of the basic leucine zipper transcription factor ATF1 in blue light responses and signaling downstream of the MAPK HOG1 in Trichoderma guizhouense. The lack of ATF1 severely impaired photoconidiation and delayed vegetative growth and conidial germination. Upon blue light or H2O2 stimuli, HOG1 interacted with ATF1 in the nucleus. Genome-wide transcriptome analyses revealed that 61.8% (509 out of 824) and 85.2% (702 out of 824) of blue light-regulated genes depended on ATF1 and HOG1, respectively, of which 58.4% (481 out of 824) were regulated by both of them. Our results also show that blue light promoted conidial germination and HOG1 and ATF1 played opposite roles in controlling conidial germination in the dark. Additionally, the lack of ATF1 led to reduced oxidative stress resistance, probably because of the downregulation of catalase-encoding genes. Overall, our results demonstrate that ATF1 is the downstream component of HOG1 and is responsible for blue light responses, conidial germination, vegetative growth, and oxidative stress resistance in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Yanshen Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Huanhong Lu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Tingting Sun
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Jia Gao
- Department of MicrobiologyKarlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied BiosciencesKarlsruheGermany
| | - Jian Zhang
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Qirong Shen
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Zhenzhong Yu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| |
Collapse
|
6
|
Xie L, Yang Q, Wu Y, Xiao J, Qu H, Jiang Y, Li T. Fumonisin B1 Biosynthesis Is Associated with Oxidative Stress and Plays an Important Role in Fusarium proliferatum Infection on Banana Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5372-5381. [PMID: 36947157 DOI: 10.1021/acs.jafc.3c00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fungal response to oxidative stress during infection on postharvest fruit is largely unknown. Here, we found that hydrogen peroxide (H2O2) treatment inhibited the growth of Fusarium proliferatum causing crown rot of banana fruit, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation. H2O2 exposure increased endogenous reactive oxygen species (ROS) and fumonisin B1 (FB1) production in F. proliferatum, possibly by modulating FUM or ROS-related gene expression. Importantly, H2O2 treatment inhibited F. proliferatum growth in vivo but induced FB1 accumulation in banana peel. Finally, we constructed the FpFUM21 deletion mutant (ΔFpfum21) of F. proliferatum that was attenuated in FB1 biosynthesis and less tolerant to oxidative stress. Moreover, the ΔFpfum21 strain was less virulent compared to the wild type (WT) due to the inability to induce FB1 production in the banana host. These results suggested that FB1 biosynthesis is associated with oxidative stress in F. proliferatum and contributes to fungal infection on banana fruit.
Collapse
Affiliation(s)
- Lihong Xie
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuxiao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfei Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense 32004, Spain
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
7
|
Bodnár V, Király A, Orosz E, Miskei M, Emri T, Karányi Z, Leiter É, de Vries RP, Pócsi I. Species-specific effects of the introduction of Aspergillus nidulans gfdB in osmophilic aspergilli. Appl Microbiol Biotechnol 2023; 107:2423-2436. [PMID: 36811707 PMCID: PMC10033484 DOI: 10.1007/s00253-023-12384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Industrial fungi need a strong environmental stress tolerance to ensure acceptable efficiency and yields. Previous studies shed light on the important role that Aspergillus nidulans gfdB, putatively encoding a NAD+-dependent glycerol-3-phosphate dehydrogenase, plays in the oxidative and cell wall integrity stress tolerance of this filamentous fungus model organism. The insertion of A. nidulans gfdB into the genome of Aspergillus glaucus strengthened the environmental stress tolerance of this xerophilic/osmophilic fungus, which may facilitate the involvement of this fungus in various industrial and environmental biotechnological processes. On the other hand, the transfer of A. nidulans gfdB to Aspergillus wentii, another promising industrial xerophilic/osmophilic fungus, resulted only in minor and sporadic improvement in environmental stress tolerance and meanwhile partially reversed osmophily. Because A. glaucus and A. wentii are phylogenetically closely related species and both fungi lack a gfdB ortholog, these results warn us that any disturbance of the stress response system of the aspergilli may elicit rather complex and even unforeseeable, species-specific physiological changes. This should be taken into consideration in any future targeted industrial strain development projects aiming at the fortification of the general stress tolerance of these fungi. KEY POINTS: • A. wentii c' gfdB strains showed minor and sporadic stress tolerance phenotypes. • The osmophily of A. wentii significantly decreased in the c' gfdB strains. • Insertion of gfdB caused species-specific phenotypes in A. wentii and A. glaucus.
Collapse
Affiliation(s)
- Veronika Bodnár
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Debrecen, Hungary
| | - Anita Király
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Orosz
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Márton Miskei
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Zsolt Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary.
| |
Collapse
|
8
|
Wu JJ, Wu PC, Yago JI, Chung KR. The Regulatory Hub of Siderophore Biosynthesis in the Phytopathogenic Fungus Alternaria alternata. J Fungi (Basel) 2023; 9:jof9040427. [PMID: 37108881 PMCID: PMC10146468 DOI: 10.3390/jof9040427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
A GATA zinc finger-containing repressor (AaSreA) suppresses siderophore biosynthesis in the phytopathogenic fungus Alternaria alternata under iron-replete conditions. In this study, targeted gene deletion revealed two bZIP-containing transcription factors (AaHapX and AaAtf1) and three CCAAT-binding proteins (AaHapB, AaHapC, and AaHapE) that positively regulate gene expression in siderophore production. This is a novel phenotype regarding Atf1 and siderophore biosynthesis. Quantitative RT-PCR analyses revealed that only AaHapX and AaSreA were regulated by iron. AaSreA and AaHapX form a transcriptional feedback negative loop to regulate iron acquisition in response to the availability of environmental iron. Under iron-limited conditions, AaAtf1 enhanced the expression of AaNps6, thus playing a positive role in siderophore production. However, under nutrient-rich conditions, AaAtf1 plays a negative role in resistance to sugar-induced osmotic stress, and AaHapX plays a negative role in resistance to salt-induced osmotic stress. Virulence assays performed on detached citrus leaves revealed that AaHapX and AaAtf1 play no role in fungal pathogenicity. However, fungal strains carrying the AaHapB, AaHapC, or AaHapE deletion failed to incite necrotic lesions, likely due to severe growth deficiency. Our results revealed that siderophore biosynthesis and iron homeostasis are regulated by a well-organized network in A. alternata.
Collapse
|
9
|
Kocsis B, Lee MK, Antal K, Yu JH, Pócsi I, Leiter É, Emri T. Genome-Wide Gene Expression Analyses of the AtfA/AtfB-Mediated Menadione Stress Response in Aspergillus nidulans. Cells 2023; 12:463. [PMID: 36766807 PMCID: PMC9913763 DOI: 10.3390/cells12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The bZIP transcription factors (TFs) govern regulation of development, secondary metabolism, and various stress responses in filamentous fungi. In this work, we carried out genome-wide expression studies employing Illumina RNAseq to understand the roles of the two bZIP transcription factors AtfA and AtfB in Aspergillus nidulans. Comparative analyses of transcriptomes of control, ΔatfA, ΔatfB, and ΔatfAΔatfB mutant strains were performed. Dependence of a gene on AtfA (AtfB) was decided by its differential downregulation both between the reference and ΔatfA (ΔatfB) strains and between the ΔatfB (ΔatfA) and the ΔatfAΔatfB strains in vegetatively grown cells (mycelia) and asexual spores (conidia) of menadione sodium bisulfite (MSB)-treated or untreated cultures. As AtfA is the primary bZIP TF governing stress-response in A. nidulans, the number of differentially expressed genes for ΔatfA was significantly higher than for ΔatfB in both mycelial and conidial samples, and most of the AtfB-dependent genes showed AtfA dependence, too. Moreover, the low number of genes depending on AtfB but not on AtfA can be a consequence of ΔatfA leading to downregulation of atfB expression. Conidial samples showed much higher abundance of atfA and atfB mRNAs and more AtfA- and AtfB-affected genes than mycelial samples. In the presence of MSB, the number of AtfB- (but not of AtfA-) affected genes decreased markedly, which was accompanied with decreased mRNA levels of atfB in MSB-treated mycelial (reference strain) and conidial (ΔatfA mutant) samples. In mycelia, the overlap between the AtfA-dependent genes in MSB-treated and in untreated samples was low, demonstrating that distinct genes can be under AtfA control under different conditions. Carbohydrate metabolism genes were enriched in the set of AtfA-dependent genes. Among them, AtfA-dependence of glycolytic genes in conidial samples was the most notable. Levels of transcripts of certain secondary metabolitic gene clusters, such as the Emericellamide cluster, also showed AtfA-dependent regulation. Genes encoding catalase and histidine-containing phosphotransfer proteins showed AtfA-dependence under all experimental conditions. There were 23 AtfB-dependent genes that did not depend on AtfA under any of our experimental conditions. These included a putative α-glucosidase (agdB), a putative α-amylase, calA, which is involved in early conidial germination, and an alternative oxidase. In summary, in A. nidulans there is a complex interaction between the two bZIP transcription factors, where AtfA plays the primary regulatory role.
Collapse
Affiliation(s)
- Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Mi-Kyung Lee
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Károly Antal
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Jeollabuk-do, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Zoology, Eszterházy Károly Catholic University, Leányka Str. 6-8., 3300 Eger, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
10
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Wang X, Zha W, Yao B, Yang L, Wang S. Genetic Interaction of Global Regulators AflatfA and AflatfB Mediating Development, Stress Response and Aflatoxins B1 Production in Aspergillus flavus. Toxins (Basel) 2022; 14:857. [PMID: 36548754 PMCID: PMC9785671 DOI: 10.3390/toxins14120857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aspergillus flavus produces carcinogenic and mutagenic aflatoxins, which cause economic losses and risk of food safety by contaminating grains, food and feed. In this study, we characterized two bZIP transcription factors, AflatfA and AflatfB, and their genetic interaction. Compared to the wild type (WT), AflatfA deletion and AflatfA and AflatfB double deletion both caused retarded vegetative growth of mycelia. Relative to WT, the AflatfA deletion strain (ΔAflatfA) and AflatfA and AflatfB double deletion strain (ΔAflatfAΔAflatfB) produced more sclerotia, whereas the AflatfB deletion strain (ΔAflatfB) produced less sclerotia. After 4 °C preservation and incubation at 50 °C, conidia viability dramatically decreased in the ΔAflatfA and ΔAflatfAΔAflatfB but ΔAflatfB mutants, whereas conidia viability of the ΔAflatfAΔAflatfB strain was higher after storage at 4 °C than in AflatfA mutant. Conidia of ΔAflatfA, ΔAflatfB and ΔAflatfAΔAflatfB strains significantly increased in sensitivity to H2O2 in comparison with WT. Compared to WT, the mycelium of ΔAflatfA and ΔAflatfB strains were more sensitive to H2O2; conversely, the ΔAflatfAΔAflatfB strain showed less sensitivity to H2O2. ΔAflatfA and ΔAflatfAΔAflatfB strains displayed less sensitivity to the osmotic reagents NaCl, KCl and Sorbitol, in comparison with WT and ΔAflatfB strains. When on YES medium and hosts corn and peanut, ΔAflatfA and ΔAflatfAΔAflatfB strains produced less aflatoxin B1 (AFB1) than ΔAflatfB, and the AFB1 yield of ΔAflatfB was higher than that of WT. When WT and mutants were inoculated on corn and peanut, the ΔAflatfA and ΔAflatfAΔAflatfB but not ΔAflatfB mutants produced less conidia than did WT. Taken together, this study reveals that AflatfA controls more cellular processes, and the function of AflatfA is stronger than that of AflatfB when of the same process is regulated, except the response to H2O2, which might result from the effect of AflatfA on the transcriptional level of AflatfB.
Collapse
Affiliation(s)
| | | | | | | | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Ferrara M, Perrone G, Gallo A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Yang Y, Huang P, Ma Y, Jiang R, Jiang C, Wang G. Insights into intracellular signaling network in Fusarium species. Int J Biol Macromol 2022; 222:1007-1014. [PMID: 36179869 DOI: 10.1016/j.ijbiomac.2022.09.211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Fusarium is a large genus of filamentous fungi including numerous important plant pathogens. In addition to causing huge economic losses of crops, some Fusarium species produce a wide range of mycotoxins in cereal crops that affect human and animal health. The intracellular signaling in Fusarium plays an important role in growth, sexual and asexual developments, pathogenesis, and mycotoxin biosynthesis. In this review, we highlight the recent advances and provide insight into signal sensing and transduction in Fusarium species. G protein-coupled receptors and other conserved membrane receptors mediate recognition of environmental cues and activate complex intracellular signaling. Once activated, the cAMP-PKA and three well-conserved MAP kinase pathways activate downstream transcriptional regulatory networks. The functions of individual signaling pathways have been well characterized in a variety of Fusarium species, showing the conserved components with diverged functions. Furthermore, these signaling pathways crosstalk and coordinately regulate various fungal development and infection-related morphogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yutong Ma
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Ruoxuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Kocsis B, Lee MK, Yu JH, Nagy T, Daróczi L, Batta G, Pócsi I, Leiter É. Functional analysis of the bZIP-type transcription factors AtfA and AtfB in Aspergillus nidulans. Front Microbiol 2022; 13:1003709. [PMID: 36204617 PMCID: PMC9530789 DOI: 10.3389/fmicb.2022.1003709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) with the basic leucin zipper domain are key elements of the stress response pathways in filamentous fungi. In this study, we functionally characterized the two bZIP type TFs AtfA and AtfB by deletion (Δ) and overexpression (OE) of their encoding genes in all combination: ΔatfA, ΔatfB, ΔatfAΔatfB, ΔatfAatfBOE, ΔatfBatfAOE, atfAOE, atfBOE and atfAOEatfBOE in Aspergillus nidulans. Based on our previous studies, ΔatfA increased the sensitivity of the fungus to oxidative stress mediated by menadione sodium bisulfite (MSB) and tert-butylhydroperoxide (tBOOH), while ΔatfB was not sensitive to any oxidative stress generating agents, namely MSB, tBOOH and diamide at all. Contrarily, the ΔatfB mutant was sensitive to NaCl, but tolerant to sorbitol. Overexpression of atfB was able to compensate the MSB sensitivity of the ΔatfA mutant. Heavy metal stress elicited by CdCl2 reduced diameter of the atfBOE and atfAOEatfBOE mutant colonies to about 50% of control colony, while the cell wall stress generating agent CongoRed increased the tolerance of the ΔatfA mutant. When we tested the heat stress sensitivity of the asexual spores (conidiospores) of the mutants, we found that conidiospores of ΔatfAatfBOE and ΔatfBatfAOE showed nearly 100% tolerance to heat stress. Asexual development was negatively affected by ΔatfA, while atfAOE and atfAOE coupled with ΔatfB increased the number of conidiospores of the fungus approximately 150% compared to the control. Overexpression of atfB led to a 25% reduction in the number of conidiospores, but increased levels of abaA mRNA and size of conidiospores. Sexual fruiting body (cleistothecium) formation was diminished in the ΔatfA and the ΔatfAΔatfB mutants, while relatively elevated in the ΔatfB and the ΔatfBatfAOE mutants. Production of the mycotoxin sterigmatocystin (ST) was decreased to undetectable levels in the ΔatfA mutant, yet ST production was restored in the ΔatfAΔatfB mutant, suggesting that ΔatfB can suppress ST production defect caused by ΔatfA. Levels of ST were also significantly decreased in the ΔatfAatfBOE, ΔatfBatfAOE and atfAOEatfBOE mutants.
Collapse
Affiliation(s)
- Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Mi-Kyung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI, United States
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Lajos Daróczi
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| |
Collapse
|
15
|
Luo X, Zhan X, Ruan R, Xi Y, Shen C, Wang H, Wang M. Genome-wide identification of the Penicillium digitatum bZIP gene family and the roles of one key member, PdatfA. Res Microbiol 2022; 173:103970. [PMID: 35868518 DOI: 10.1016/j.resmic.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Penicillium digitatum is the most common cause of postharvest decay in citrus fruits around the world. Previous studies revealed that the bZIP gene family plays crucial roles in development, stress adaptation, and pathogenicity in fungi. However, little is known about the bZIP genes in P. digitatum. In this study, we systematically identified the bZIP family in 23 Penicillium species and analyzed their evolutionary relationships. We found that gene loss and gene duplication shaped the evolution of the Penicillium bZIP family. P. digitatum experienced 3 bZIP gene loss events, but with no gene duplication. We subsequently characterized the biological functions of one important member, PdatfA in P. digitatum by constructing the deletion mutant. Results showed that ΔPdatfA exhibited a moderate growth defect, reduced pigmentation, and slightly increased resistance to fungicides iprodione and fludioxonil. However, ΔPdatfA displayed similar rot symptoms to that of the wild type. The ΔPdatfA mycelia were not affected in response to oxidative stress while its conidia showed enhanced resistance due to the upregulation of catalases. Our results provide new insights into the evolution and functions of the bZIP gene family in Penicillium.
Collapse
Affiliation(s)
- Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruoxin Ruan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yue Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
16
|
Wen D, Yu L, Xiong D, Tian C. Genome-Wide Identification of bZIP Transcription Factor Genes and Functional Analyses of Two Members in Cytospora chrysosperma. J Fungi (Basel) 2021; 8:jof8010034. [PMID: 35049973 PMCID: PMC8778692 DOI: 10.3390/jof8010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family, one of the largest and the most diverse TF families, is widely distributed across the eukaryotes. It has been described that the bZIP TFs play diverse roles in development, nutrient utilization, and various stress responses in fungi. However, little is known of the bZIP members in Cytospora chrysosperma, a notorious plant pathogenic fungus, which causes canker disease on over 80 woody plant species. In this study, 26 bZIP genes were systematically identified in the genome of C. chrysosperma, and two of them (named CcbZIP05 and CcbZIP23) significantly down-regulated in CcPmk1 deletion mutant (a pathogenicity-related mitogen-activated protein kinase) were selected for further analysis. Deletion of CcbZIP05 or CcbZIP23 displayed a dramatic reduction in fungal growth but showed increased hypha branching and resistance to cell wall inhibitors and abiotic stresses. The CcbZIP05 deletion mutants but not CcbZIP23 deletion mutants were more sensitive to the hydrogen peroxide compared to the wild-type and complemented strains. Additionally, the CcbZIP23 deletion mutants produced few pycnidia but more pigment. Remarkably, both CcbZIP05 and CcbZIP23 deletion mutants were significantly reduced in fungal virulence. Further analysis showed that CcbZIP05 and CcbZIP23 could regulate the expression of putative effector genes and chitin synthesis-related genes. Taken together, our results suggest that CcbZIP05 and CcbZIP23 play important roles in fungal growth, abiotic stresses response, and pathogenicity, which will provide comprehensive information on the CcbZIP genes and lay the foundation for further research on the bZIP members in C. chrysosperma.
Collapse
Affiliation(s)
- Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
| | - Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.X.); (C.T.)
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.X.); (C.T.)
| |
Collapse
|
17
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
18
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Leiter É, Emri T, Pákozdi K, Hornok L, Pócsi I. The impact of bZIP Atf1ortholog global regulators in fungi. Appl Microbiol Biotechnol 2021; 105:5769-5783. [PMID: 34302199 PMCID: PMC8390427 DOI: 10.1007/s00253-021-11431-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Regulation of signal transduction pathways is crucial for the maintenance of cellular homeostasis and organismal development in fungi. Transcription factors are key elements of this regulatory network. The basic-region leucine zipper (bZIP) domain of the bZIP-type transcription factors is responsible for DNA binding while their leucine zipper structural motifs are suitable for dimerization with each other facilitiating the formation of homodimeric or heterodimeric bZIP proteins. This review highlights recent knowledge on the function of fungal orthologs of the Schizosaccharomyces pombe Atf1, Aspergillus nidulans AtfA, and Fusarium verticillioides FvAtfA, bZIP-type transcription factors with a special focus on pathogenic species. We demonstrate that fungal Atf1-AtfA-FvAtfA orthologs play an important role in vegetative growth, sexual and asexual development, stress response, secondary metabolite production, and virulence both in human pathogens, including Aspergillus fumigatus, Mucor circinelloides, Penicillium marneffei, and Cryptococcus neoformans and plant pathogens, like Fusarium ssp., Magnaporthe oryzae, Claviceps purpurea, Botrytis cinerea, and Verticillium dahliae. KEY POINTS: • Atf1 orthologs play crucial role in the growth and development of fungi. • Atf1 orthologs orchestrate environmental stress response of fungi. • Secondary metabolite production and virulence are coordinated by Atf1 orthologs.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary.
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| | - Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| |
Collapse
|
20
|
Emri T, Gila B, Antal K, Fekete F, Moon H, Yu JH, Pócsi I. AtfA-Independent Adaptation to the Toxic Heavy Metal Cadmium in Aspergillus nidulans. Microorganisms 2021; 9:microorganisms9071433. [PMID: 34361869 PMCID: PMC8307709 DOI: 10.3390/microorganisms9071433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Cadmium is an exceptionally toxic industrial and environmental pollutant classified as a human carcinogen. In order to provide insight into how we can keep our environment safe from cadmium contamination and prevent the accumulation of it in the food chain, we aim to elucidate how Aspergillus nidulans, one of the most abundant fungi in soil, survives and handles cadmium stress. As AtfA is the main transcription factor governing stress responses in A. nidulans, we examined genome-wide expression responses of wild-type and the atfA null mutant exposed to CdCl2. Both strains showed up-regulation of the crpA Cu2+/Cd2+ pump gene and AN7729 predicted to encode a putative bis(glutathionato)-cadmium transporter, and transcriptional changes associated with elevated intracellular Cys availability leading to the efficient adaptation to Cd2+. Although the deletion of atfA did not alter the cadmium tolerance of the fungus, the cadmium stress response of the mutant differed from that of a reference strain. Promoter and transcriptional analyses of the “Phospho-relay response regulator” genes suggest that the AtfA-dependent regulation of these genes can be relevant in this phenomenon. We concluded that the regulatory network of A. nidulans has a high flexibility allowing the fungus to adapt efficiently to stress both in the presence and absence of this important transcription factor.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
- Correspondence:
| | - Barnabás Gila
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly University, 3300 Eger, Hungary;
| | - Fanni Fekete
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
| | - Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.M.); (J.-H.Y.)
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (H.M.); (J.-H.Y.)
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, 4032 Debrecen, Hungary; (B.G.); (F.F.); (I.P.)
| |
Collapse
|
21
|
Lima DMCG, Costa TPC, Emri T, Pócsi I, Pupin B, Rangel DEN. Fungal tolerance to Congo red, a cell wall integrity stress, as a promising indicator of ecological niche. Fungal Biol 2021; 125:646-657. [PMID: 34281658 DOI: 10.1016/j.funbio.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Differential sensitivities to the cell wall stress caused by Congo red (CR) have been observed in many fungal species. In this study, the tolerances and sensitivities to CR was studied with an assorted collection of fungal species from three phylogenetic classes: Sordariomycetes, Dothideomycetes, and Eurotiomycetes, three orders, and eight families. These grouped into different ecological niches, such as insect pathogens, plant pathogens, saprotrophs, and mycoparasitics. The saprotroph Aspergillus niger and the mycoparasite Trichoderma atroviride stood out as the most resistant species to cell wall stress caused by CR, followed by the plant pathogenic fungi, a mycoparasite, and other saprotrophs. The insect pathogens had low tolerance to CR. The insect pathogens Metarhizium acridum and Cordyceps fumosorosea were the most sensitive to CR. In conclusion, Congo red tolerance may reflect ecological niche, accordingly, the tolerances of the fungal species to Congo red were closely aligned with their ecology.
Collapse
Affiliation(s)
| | | | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisa Especiais - INPE, São José dos Campos, SP, Brazil
| | | |
Collapse
|
22
|
Szabó Z, Pákozdi K, Murvai K, Kecskeméti Á, Oláh V, Logrieco AF, Madar A, Dienes B, Csernoch L, Emri T, Hornok L, Pócsi I, Leiter É. FvmnSOD is involved in oxidative stress defence, mitochondrial stability and apoptosis prevention in Fusarium verticillioides. J Basic Microbiol 2020; 60:994-1003. [PMID: 33226136 DOI: 10.1002/jobm.202000560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023]
Abstract
Superoxide dismutases are key enzymes in elimination of the superoxide anion radical (O2 •- ) generated intracellularly or by exogenous oxidative stress eliciting agents, like menadione. In this study, we investigated the physiological role of the manganese superoxide dismutase-encoding gene in Fusarium verticillioides via the construction of a gene deletion mutant, ΔFvmnSOD and comparing its phenotype with that of the wild-type parental strain and a ΔFvmnSOD' C strain, complemented with the functional manganese superoxide dismutase gene. Deletion of FvmnSOD had no effect on the relative intracellular superoxide ratio but increased the sensitivity of the fungus to menadione sodium bisulphite on Czapek-Dox stress agar plates. The lack of FvmnSOD caused changes in mitochondrial morphology and physiology: The volumetric ratio of these cell organelles in the second hyphal segment, as well as the total, the KCN-sensitive cytochrome c-dependent and the KCN+SHAM (salicylhidroxamic acid)-resistant residual respiration rates, were higher in the mutant as compared to the wild-type and the complemented strains. Nevertheless, changes in the respiration rates were attributable to the higher volumetric ratio of mitochondria found in the gene deletion mutant. Changes in the mitochondrial functions also brought about higher sensitivity to apoptotic cell death elicited by the Penicillium chrysogenum antifungal protein. The gene deletion mutant developed significantly thinner hyphae in comparison to the wild-type strain. Deletion of FvmnSOD had no effect on fumonisin B1 and B2 production of the fungus grown in Myro medium as a static culture.
Collapse
Affiliation(s)
- Zsuzsa Szabó
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Biological Sciences, Szent István University, Gödöllő, Hungary
| | - Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Katalin Murvai
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ádám Kecskeméti
- Department of Inorganic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktor Oláh
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Council of Research (CNR-ISPA), Bari, Italy
| | - Anett Madar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|