1
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - M Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Alaina F Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Tiffany V Pulido
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Jessica N Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Johnny Yi
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jeffrey L Cornella
- Department of Medical and Surgical Gynecology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - David G Lott
- Division of Laryngology, Department of Otolaryngology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Lindsay B Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Taylor G Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE) at Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Vasudevan A, Ghosal D, Ram Sahu S, Kumar Jha N, Vijayaraghavan P, Kumar S, Kaur S. Injectable Hydrogels for Liver: Potential for Clinical Translation. Chem Asian J 2024:e202401106. [PMID: 39552124 DOI: 10.1002/asia.202401106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Injectable hydrogels are a sub-type of hydrogels which can be delivered into the host in a minimally invasive manner. They can act as carriers to encapsulate and deliver cells, drugs or active biomolecules across several disease conditions. Polymers, either synthetic or natural, or even a combination of the two, can be used to create injectable hydrogels. Clinically approved injectable hydrogels are being used as dressings for burn wounds, bone and cartilage reconstruction. Injectable hydrogels have recently gained tremendous attention for their delivery into the liver in pre-clinical models. However, their efficacy in clinical studies remains yet to be established. In this article, we describe principles for the design of these injectable hydrogels, delivery strategies and their potential applications in facilitating liver regeneration and ameliorating injury. We also discuss the several constraints related to translation of these hydrogels into clinical settings for liver diseases and deliberate some potential solutions to combat these challenges.
Collapse
Affiliation(s)
- Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Sita Ram Sahu
- School of Interdisciplinary Research, Indian Institute of Technology, New Delhi, 110016, India
| | - Narsing Kumar Jha
- Department of Applied Mechanics, Indian Institute of Technology, New Delhi, 110016, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| |
Collapse
|
3
|
Huang J, Xu T, Quan G, Li Y, Yang X, Xie W. Current progress on the microbial therapies for acute liver failure. Front Microbiol 2024; 15:1452663. [PMID: 39479215 PMCID: PMC11521890 DOI: 10.3389/fmicb.2024.1452663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Acute liver failure (ALF), associated with a clinical fatality rate exceeding 80%, is characterized by severe liver damage resulting from various factors in the absence of pre-existing liver disease. The role of microbiota in the progression of diverse liver diseases, including ALF, has been increasingly recognized, with the interactions between the microbiota and the host significantly influencing both disease onset and progression. Despite growing interest in the microbiological aspects of ALF, comprehensive reviews remain limited. This review critically examines the mechanisms and efficacy of microbiota-based treatments for ALF, focusing on their role in prevention, treatment, and prognosis over the past decade.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyu Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiao Quan
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuange Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Yang
- Department of Physiology, Guangzhou Health Science College, Guangzhou, China
| | - Wenrui Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
He Q, Lu S, Wang J, Xu C, Qu W, Nawaz S, Ataya FS, Wu Y, Li K. Lactobacillus salivarius and Berberine Alleviated Yak Calves' Diarrhea via Accommodating Oxidation Resistance, Inflammatory Factors, and Intestinal Microbiota. Animals (Basel) 2024; 14:2419. [PMID: 39199953 PMCID: PMC11350718 DOI: 10.3390/ani14162419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Yaks are important food animals in China; however, bacterial diarrheal diseases frequently occur on the plateau, with limited effective therapies. The objective of this research was to evaluate the effectiveness of Lactobacillus salivarius (LS) and berberine in alleviating diarrhea in yak calves. For this purpose, eighteen healthy yak calves were divided into control (JC), infected (JM), and treatment (JT) groups. Yaks in the JT group were treated with 2 × 1010 CFU/calf L. salivarius and 20 mg/kg berberine, and yaks in the JM and JT groups were induced with multi-drug-resistant Escherichia coli. The results showed that the weight growth rate in the JM group was significantly lower than that in the JC and JT groups. The diarrhea score in the JM group was significantly higher than that in both the JC and JT groups. Additionally, the contents of T-AOC, SOD, GSH-Px, and IL-10 were significantly lower in the JM group than those in the JC and JT groups, while MDA, TNF-α, IL-1β, and IL-6 were significantly higher in the JM group. Microbiota sequencing identified two phyla and twenty-seven genera as significant among the yak groups. Notably, probiotic genera such as Faecalibaculum and Parvibacter were observed, alongside harmful genera, including Marvinbryantia and Lachnospiraceae UCG-001. Our findings indicate that treatment with L. salivarius and berberine significantly reduced diarrhea incidence, improved growth performance, and positively modulated intestinal microbiota, which could provide novel insights for developing new therapies for ruminant diarrhea.
Collapse
Affiliation(s)
- Qing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
6
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
7
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
8
|
Long J, Gu J, Yang J, Chen P, Dai Y, Lin Y, Wu M, Wu Y. Exploring the Association between Gut Microbiota and Inflammatory Skin Diseases: A Two-Sample Mendelian Randomization Analysis. Microorganisms 2023; 11:2586. [PMID: 37894244 PMCID: PMC10609507 DOI: 10.3390/microorganisms11102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging research underscores the substantial link between gut flora and various inflammatory skin diseases. We hypothesize that there exists a complex gut-skin axis, possibly affecting the progression of conditions such as eczema, acne, psoriasis, and rosacea. However, the precise nature of the causal connection between gut flora and skin diseases remains unestablished. In this study, we started by compiling summary data from genome-wide association studies (GWAS) featuring 211 unique gut microbiota and four types of skin conditions. We scrutinized these data across different taxonomic strata. Subsequently, we leveraged Mendelian randomization (MR) to ascertain if there is a causal link between gut microbiota and these skin conditions. We also performed a bidirectional MR analysis to identify the causality's direction. By utilizing Mendelian randomization, we identified 26 causal connections between the gut microbiome and four recognized inflammatory skin conditions, including 9 positive and 17 negative causal directions. Additional sensitivity analyses of these results revealed no evidence of pleiotropy or heterogeneity. Our MR analysis suggests a causal connection between gut microbiota and skin diseases, potentially providing groundbreaking perspectives for future mechanistic and clinical studies on microbiota-affected skin conditions.
Collapse
Affiliation(s)
- Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Jinglan Gu
- National Clinical Research Center for Child Health, Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Ming Wu
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Chen L, Lin S, Sun N. Food gel-based systems for efficient delivery of bioactive ingredients: design to application. Crit Rev Food Sci Nutr 2023; 64:13193-13211. [PMID: 37753779 DOI: 10.1080/10408398.2023.2262578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Food gels derived from natural biopolymers are valuable materials with significant scientific merit in the food industry because of their biocompatibility, safety, and environmental friendliness compared to synthetic gels. These gels serve as crucial delivery systems for bioactive ingredients. This review focuses on the selection, formulation, characterization, and behavior in gastrointestinal of hydrogels, oleogels, and bigels as delivery systems for bioactive ingredients. These three gel delivery systems exhibit certain differences in composition and can achieve the delivery of different bioactive ingredients. Hydrogels are suitable for delivering hydrophilic ingredients. Oleogels are an excellent choice for delivering lipophilic ingredients. Bigels contain both aqueous and oil phases, whose gelation makes their structure more stable, demonstrating the advantages of the above two types of gels. Besides, the formation and properties of the gel system are confirmed using different characterization methods. Furthermore, the changing behavior (e.g., swelling, disintegration, collapse, erosion) of the gel structure in the gastrointestinal is also analyzed, providing an opportunity to formulate soft substances that offer better protection or controlled release of bioactive components. This can further improve the transmissibility and utilization of bioactive substances, which is of great significance.
Collapse
Affiliation(s)
- Lei Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
10
|
Zhao L, Li B, Zhou L, Song C, Kang T, Xu Y, Liu Y, Han Y, Zhao W, Jia H, Zhang B, Guo J. PM 2.5 exposure promotes asthma in aged Brown-Norway rats: Implication of multiomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115393. [PMID: 37611479 DOI: 10.1016/j.ecoenv.2023.115393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Children are disproportionately represented among those who suffer asthma, which is a kind of chronic airway inflammation. Asthma symptoms might worsen when exposed to the air pollutant particulate matter 2.5 (PM2.5). However, it is becoming more prevalent among older adults, with more asthma-related deaths occurring in this pollution than in any other age group, and symptoms caused by asthma can reduce the quality of life of the elderly, whose asthma is underdiagnosed due to physiological factors. Therefore, in an effort to discover a therapy for older asthma during exposure to air pollution, we sought to ascertain the effects of pre-exposure (PA) and persistent exposure (PAP) to PM2.5 in aged asthma rats. In this study, we exposed aged rats to PM2.5 at different times (PA and PAP) and established an ovalbumin-mediated allergic asthma model. The basic process of elderly asthma caused by PM2.5 exposure was investigated by lung function detection, enzyme-linked immunosorbent assay (ELISA), histopathology, cytology, cytokine microarray, untargeted metabolomics, and gut microbiota analysis. Our findings demonstrated that in the PA and PAP groups, exposure to PM2.5 reduced lung function and exacerbated lung tissue damage, with varying degrees of effect on immunoglobulin levels, the findings of a cytological analysis, cytokines, and chemokines. The PA and PAP rats had higher amounts of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, 2-methylNaphthalene, 1-methylNaphthalene and flourene. Moreover, exposure to PM2.5 at different times showed different effects on plasma metabolism and gut microbiota. Bioinformatics analysis showed a strong correlation between PAHs, cytokines, and gut microbiota, and PAHs may cause metabolic disorders through the gut microbiota. These findings point to a possible mechanism for the development of asthma in older people exposure to PM2.5 that may be related to past interactions between PAHs, cytokines, gut microbiota, and plasma metabolites.
Collapse
Affiliation(s)
- Lianlian Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China; Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Laboratories, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Chenchen Song
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Taisheng Kang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Wenjie Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Hongliang Jia
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
11
|
Chen Q, Jia T, Wu X, Chen X, Wang J, Ba Y. Polygalae Radix Oligosaccharide Esters May Relieve Depressive-like Behavior in Rats with Chronic Unpredictable Mild Stress via Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:13877. [PMID: 37762181 PMCID: PMC10530649 DOI: 10.3390/ijms241813877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Polygalae radix (PR) is a well-known traditional Chinese medicine that is used to treat depression, and polygalae radix oligosaccharide esters (PROEs) are the main active ingredient. Although gut microbiota are now believed to play key role in depression, the effects of PROEs on depression via modulation of gut microbiota remain unknown. In this article, we investigate the effect of PROEs on the gut microbiota of a depression rat and the possible mechanism responsible. The depression rat model was induced by solitary rearing combined with chronic unpredictable mild stress (CUMS). The depression-like behavior, the influence on the hypothalamic-pituitary-adrenal (HPA) axis, the contents of monoamine neurotransmitter in the hippocampus, and the quantity of short-chain fatty acids (SCFAs) in the feces were each assessed, and the serum levels of lipopolysaccharide (LPS) and interleukin-6 (IL-6) were measured by ELISA. Additionally, ultrastructural changes of the duodenal and colonic epithelium were observed under transmission electron microscope, and the gut microbiota were profiled by using 16S rRNA sequencing. The results show that PROEs alleviated the depression-like behavior of the depression model rats, increased the level of monoamine neurotransmitters in the brain, and reduced the hyperfunction of the HPA axis. Furthermore, PROEs regulated the imbalance of the gut microbiota in the rats, relieving intestinal mucosal damage by increasing the relative abundance of gut microbiota with intestinal barrier protective functions, and adjusting the level of SCFAs in the feces, as well as the serum levels of LPS and IL-6. Thus, we find that PROEs had an antidepressant effect through the restructuring of gut microbiota that restored the function of the intestinal barrier, reduced the release of intestinal endotoxin, and constrained the inflammatory response.
Collapse
Affiliation(s)
- Qijun Chen
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
- School of Pharmaceutical Sciences, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Tanrong Jia
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Xiaoqing Chen
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Jiajia Wang
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Yinying Ba
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| |
Collapse
|
12
|
Teichenné J, Catalán Ú, Mariné-Casadó R, Domenech-Coca C, Mas-Capdevila A, Alcaide-Hidalgo JM, Chomiciute G, Rodríguez-García A, Hernández A, Gutierrez V, Puiggròs F, Del Bas JM, Caimari A. Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal. Eur J Nutr 2023; 62:2649-2659. [PMID: 37249602 DOI: 10.1007/s00394-023-03183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Bacillus coagulans GBI-30, 6086 (BC30) was previously shown to improve nutrient digestibility and amino acid absorption from milk protein in vitro. However, the effect of supplementation with this probiotic on lactose digestibility has not yet been evaluated in vivo. METHODS Wistar female rats were exposed to an acute high-lactose diet (LD; 35% lactose) meal challenge after 7 days of administration of BC30 (LD-BC; n = 10) or vehicle (LD-C; n = 10). Rats treated with vehicle and exposed to control diet (CD; 35% corn starch) meal were used as controls (CD-C; n = 10). Carbohydrate oxidation (CH_OX) and lipid oxidation (L_OX) were monitored by indirect calorimetry before and after lactose challenge. After the challenge, rats were treated daily with vehicle or probiotic for an additional week and were fed with CD or LD ad libitum to determine the effects of BC30 administration in a lactose-induced diarrhoea and malnutrition model. RESULTS LD-C rats showed lower CH_OX levels than CD rats, while LD-BC rats showed similar CH_OX levels compared to CD rats during the lactose challenge, suggesting a better digestion of lactose in the rats supplemented with BC30. BC30 completely reversed the increase in the small intestine length of LD-C animals. LD-BC rats displayed increased intestinal mRNA Muc2 expression. No significant changes were observed due to BC30 administration in other parameters, such as serum calprotectin, intestinal MPO activity, intestinal A1AT and SGLT1 levels or intestinal mRNA levels of Claudin2 and Occludin. CONCLUSION Treatment with BC30 improved the digestibility of lactose in an acute lactose challenge and ameliorated some of the parameters associated with lactose-induced malnutrition.
Collapse
Affiliation(s)
- Joan Teichenné
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Úrsula Catalán
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Anna Mas-Capdevila
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Juan María Alcaide-Hidalgo
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | | | - Ana Hernández
- Delafruit SLU, 43470, La Selva del Camp, Catalonia, Spain
| | | | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Avinguda Universitat 1, 43204, Reus, Catalonia, Spain
| |
Collapse
|
13
|
Yuan C, Fan J, Jiang L, Ye W, Chen Z, Wu W, Huang Q, Qian L. Integrated Analysis of Gut Microbiome and Liver Metabolome to Evaluate the Effects of Fecal Microbiota Transplantation on Lipopolysaccharide/D-galactosamine-Induced Acute Liver Injury in Mice. Nutrients 2023; 15:nu15051149. [PMID: 36904149 PMCID: PMC10005546 DOI: 10.3390/nu15051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute liver failure (ALF) refers to the occurrence of massive hepatocyte necrosis in a short time, with multiple complications, including inflammatory response, hepatic encephalopathy, and multiple organ failure. Additionally, effective therapies for ALF are lacking. There exists a relationship between the human intestinal microbiota and liver, so intestinal microbiota modulation may be a strategy for therapy of hepatic diseases. In previous studies, fecal microbiota transplantation (FMT) from fit donors has been used to modulate intestinal microbiota widely. Here, we established a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-gal) induced ALF to explore the preventive and therapeutic effects of FMT, and its mechanism of action. We found that FMT decreased hepatic aminotransferase activity and serum total bilirubin levels, and decreased hepatic pro-inflammatory cytokines in LPS/D-gal challenged mice (p < 0.05). Moreover, FMT gavage ameliorated LPS/D-gal induced liver apoptosis and markedly reduced cleaved caspase-3 levels, and improved histopathological features of the liver. FMT gavage also restored LPS/D-gal-evoked gut microbiota dysbiosis by modifying the colonic microbial composition, improving the abundance of unclassified_o_Bacteroidales (p < 0.001), norank_f_Muribaculaceae (p < 0.001), and Prevotellaceae_UCG-001 (p < 0.001), while reducing that of Lactobacillus (p < 0.05) and unclassified_f_Lachnospiraceae (p < 0.05). Metabolomics analysis revealed that FMT significantly altered LPS/D-gal induced disordered liver metabolites. Pearson's correlation revealed strong correlations between microbiota composition and liver metabolites. Our findings suggest that FMT ameliorate ALF by modulating gut microbiota and liver metabolism, and can used as a potential preventive and therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982171
| |
Collapse
|
14
|
Zhang Z, Wang X, Li F. An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota. Front Microbiol 2023; 14:1072151. [PMID: 36778853 PMCID: PMC9909292 DOI: 10.3389/fmicb.2023.1072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alginate oligosaccharides (AOS) can be obtained by acidolysis and enzymatic hydrolysis. The products obtained by different methods have different structures and physiological functions. AOS have received increasing interest because of their many health-promoting properties. AOS have been reported to exert protective roles for intestinal homeostasis by modulating gut microbiota, which is closely associated with intestinal inflammation, gut barrier strength, bacterial infection, tissue injury, and biological activities. However, the roles of AOS in intestinal inflammation network remain not well understood. A review of published reports may help us to establish the linkage that AOS may improve intestinal inflammation network by affecting T helper type 1 (Th1) Th2, Th9, Th17, Th22 and regulatory T (Treg) cells, and their secreted cytokines [the hub genes of protein-protein interaction networks include interleukin-1 beta (IL-1β), IL-2, IL-4, IL-6, IL-10 and tumor necrosis factor alpha (TNF-α)] via the regulation of probiotics. The potential functional roles of molecular mechanisms are explored in this study. However, the exact mechanism for the direct interaction between AOS and probiotics or pathogenic bacteria is not yet fully understood. AOS receptors may be located on the plasma membrane of gut microbiota and will be a key solution to address such an important issue. The present paper provides a better understanding of the protecting functions of AOS on intestinal inflammation and immunity.
Collapse
Affiliation(s)
- Zhikai Zhang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | | | | |
Collapse
|
15
|
Osteopontin Exacerbates High-Fat Diet-Induced Metabolic Disorders in a Microbiome-Dependent Manner. mBio 2022; 13:e0253122. [PMID: 36300928 PMCID: PMC9765578 DOI: 10.1128/mbio.02531-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiome is involved in metabolic disorders. Osteopontin (OPN), as a key cytokine, contributes to various inflammation-related diseases. The underlying role of OPN in the microbiome remains poorly understood. Here, we investigated whether OPN could modulate metabolic disorders by affecting gut microbiota. In our present study, we found that the expression of OPN was elevated in individuals with obesity compared to that observed in healthy controls. There was a positive correlation between plasma OPN levels and body mass index (BMI) in humans. Moreover, OPN significantly exacerbated lipid accumulation and metabolic disorders in high-fat diet (HFD)-fed mice. Importantly, OPN significantly aggravated HFD-induced gut dysbiosis with a key signature profile. Fecal microbiota transplantation also supported the role of OPN in HFD-induced metabolic disorders in a microbiota-dependent manner. Moreover, the microbiome shift of OPN-deficient mice would be compensated to resemble those of wild-type mice by feeding with either OPN-containing milk or recombinant OPN protein in vivo. Furthermore, metagenomic analysis showed that OPN induced a higher abundance of Dorea and a lower abundance of Lactobacillus, which were positively and negatively correlated with body weight, respectively. Indeed, the abundance of Dorea was significantly decreased after Lactobacillus administration, suggesting that OPN may regulate the intestinal abundance of Dorea by reducing the colonization of Lactobacillus. We further confirmed that OPN decreased the adhesion of Lactobacillus to intestinal epithelial cells through the Notch signaling pathway. This study suggested that OPN could exacerbate HFD-induced metabolic dysfunctions through the OPN-induced alteration of the gut microbiome. Therefore, OPN could be a potential therapeutic target for metabolic syndrome. IMPORTANCE Gut microbiota are involved in metabolic disorders. However, microbiome-based therapeutic interventions are not always effective, which might be due to interference of the host factors. Here, we identified a strong positive correlation between OPN levels and BMI in humans. Next, we confirmed that OPN could aggravate high-fat diet-induced metabolic disorders in mice. Importantly, we found that fecal microbiota transplantation from OPN-deficient mice significantly alleviated metabolic disorders in WT mice. OPN directly induces the remodeling of the gut microbiota both in vitro and in vivo. These findings indicate that OPN could contribute to metabolic disorders by inducing an alteration of gut microbiota. OPN regulated the relative abundance of Lactobacillus by decreasing the adhesion of Lactobacillus to intestinal epithelial cells through the Notch signaling pathway. These data identify OPN as a potential pharmaceutical target for weight control and for the treatment of metabolic disorders.
Collapse
|
16
|
Zhu L, Liao R, Huang J, Xiao C, Yang Y, Wang H, He D, Yan H, Yang C. Lactobacillus salivarius SNK-6 Regulates Liver Lipid Metabolism Partly via the miR-130a-5p/MBOAT2 Pathway in a NAFLD Model of Laying Hens. Cells 2022; 11:cells11244133. [PMID: 36552896 PMCID: PMC9776975 DOI: 10.3390/cells11244133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus spp., as probiotics, have shown efficacy in alleviating nonalcoholic fatty liver disease (NAFLD). Here, we screened a new probiotic strain, Lactobacillus salivarius SNK-6 (L. salivarius SNK-6), which was isolated from the ileum of healthy Xinyang black-feather laying hens in China. We investigated the beneficial activity of L. salivarius SNK-6 in a NAFLD model in laying hens and found that L. salivarius SNK-6 inhibited liver fat deposition and decreased serum triglyceride levels and activity of aspartate transaminase and alanine transaminase. MBOAT2 (membrane-bound O-acyltransferase domain containing 2) was directly targeted by miR-130a-5p, which was downregulated in the liver of NAFLD laying hens but reversed after L. salivarius SNK-6 treatment. Downregulation of MBOAT2, L. salivarius SNK-6 supplementation in vivo, and L. salivarius SNK-6 cell culture treatment in vitro suppressed the mRNA expression of genes involved in the PPAR/SREBP pathway. In addition, 250 metabolites were identified in the supernatants of L. salivarius SNK-6 culture media, and most of them participated in metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. Targeted metabolomic analysis revealed that acetate, butyrate, and propionate were the most abundant short-chain fatty acids, while cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, and tauroursodeoxycholic acid were the four most-enriched bile acids among L. salivarius SNK-6 metabolites. This may have contributed to the reparative effect of L. salivarius SNK-6 in the NAFLD chicken model. Our study suggested that L. salivarius SNK-6 alleviated liver damage partly via the miR-130a-5p/MBOAT2 signaling pathway.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jiwen Huang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Changfeng Xiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
| | - Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huaxiang Yan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (H.Y.); (C.Y.); Tel.: +86-216-220-5472 (H.Y. & C.Y.)
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Poultry Research Center for Engineering and Technology, Shanghai 201106, China
- Correspondence: (H.Y.); (C.Y.); Tel.: +86-216-220-5472 (H.Y. & C.Y.)
| |
Collapse
|
17
|
Luo Y, De Souza C, Ramachandran M, Wang S, Yi H, Ma Z, Zhang L, Lin K. Precise oral delivery systems for probiotics: A review. J Control Release 2022; 352:371-384. [PMID: 36309096 DOI: 10.1016/j.jconrel.2022.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Probiotics have several health benefits to the host. However, low pH in the stomach, various digestive enzymes and bile salts in the intestine threaten their viability and function. Thus, probiotics need to be protected during gastric transit to address challenges associated with low viability and impaired function. At present, probiotic delivery systems with different trigger mechanisms have been constructed to successfully introduce numerous high-viability probiotics to the intestine. On this basis, the application of non-targeted/targeted probiotic delivery systems in different gut microenvironment and the adjuvant therapeutic effect of probiotic delivery systems on other disease were discussed in detail. It is important to also note that most of the current studies in this area focused on non-targeted probiotic delivery systems. Moreover, changes in intestinal microenvironment under disease state and discontinuous distribution of disease site limit their development. Thus, emphasis were made on the optimization of non-targeted probiotic delivery systems and the necessity of designing more precisely targeted ones.
Collapse
Affiliation(s)
- Ya Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Shaolei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
18
|
Nutritional Support in Acute Liver Failure. Diseases 2022; 10:diseases10040108. [PMID: 36412602 PMCID: PMC9680263 DOI: 10.3390/diseases10040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Acute liver failure (ALF) presents with an acute abnormality of liver blood tests in an individual without underlying chronic liver disease. The clinical course leads to the development of coagulopathy and hepatic encephalopathy. The role of nutrition in its prevention and treatment remains uncertain. We aimed to review literature data on the concept of ALF and the role of nutrition in its treatment and prevention, considering the impact of gut microbiota dysbiosis and eubiosis. We conducted a review of the literature on the main medical databases using the following keywords and acronyms and their associations: liver failure, nutrition, branched-chain amino acids, gut microbiota, dysbiosis, and probiotics. Upon their arrival at the emergency department, an early, accurate nutritional assessment is crucial for individuals with ALF. Branched-chain amino acids (BCAAs), stable euglycemia maintenance, and moderate caloric support are crucial for this subset of patients. An excessive protein load must be avoided because it worsens hepatic encephalopathy. Preclinical evidence supports future probiotics use for ALF treatment/prevention. Nutritional support and treatment for ALF are crucial steps against patient morbidity and mortality. BCAAs and euglycemia remain the mainstay of nutritional treatment of ALF. Gut dysbiosis re-modulation has an emerging and natural-history changing impact on ALF.
Collapse
|
19
|
Zeng L, Deng Y, Yang K, Chen J, He Q, Chen H. Safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases: A systematic review and meta-analysis. Front Immunol 2022; 13:944387. [PMID: 36248877 PMCID: PMC9562921 DOI: 10.3389/fimmu.2022.944387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases. Methods Relevant literature was retrieved from the PubMed database, Embase database, Cochrane Library database, etc. The search period is from the establishment of the database to January 2022. The outcomes include clinical symptoms, improvement in biochemistry, improvement in intestinal microbiota, improvement in the immune system, and adverse events. Literature screening and data extraction were independently carried out by two researchers according to the inclusion and exclusion criteria, and RevMan 5.3 software was used for statistics and analysis. Results Overall, a total of 14 randomized controlled trials (RCTs) involving six types of autoimmune diseases were included. The results showed the following. 1) Type 1 diabetes mellitus (T1DM): compared with the autologous fecal microbiota transplantation (FMT) group (control group), the fasting plasma C peptide in the allogenic FMT group at 12 months was lower. 2) Systemic sclerosis: at week 4, compared with one of two placebo controls, three patients in the experimental group reported a major improvement in fecal incontinence. 3) Ulcerative colitis, pediatric ulcerative colitis, and Crohn's disease: FMT may increase clinical remission, clinical response, and endoscopic remission for patients with ulcerative colitis and increase clinical remission for patients with Crohn's disease. 4) Psoriatic arthritis: there was no difference in the ratio of ACR20 between the two groups. Conclusion Based on current evidence, the application of FMT in the treatment of autoimmune diseases is effective and relatively safe, and it is expected to be used as a method to induce remission of active autoimmune diseases. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235055, identifier CRD42021235055.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Junpeng Chen
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
20
|
chi-miR-99b-3p Regulates the Proliferation of Goat Skeletal Muscle Satellite Cells In Vitro by Targeting Caspase-3 and NCOR1. Animals (Basel) 2022; 12:ani12182368. [PMID: 36139227 PMCID: PMC9495177 DOI: 10.3390/ani12182368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
We previously found that chi-miR-99b-3p was highly expressed in the skeletal muscle of 7-month-old (rapid growth period) goats and speculated that it may be associated with muscle development. To further investigate the role of chi-miR-99b-3p in goats, we found that chi-miR-99b-3p acted as a myogenic miRNA in the regulation of skeletal muscle development. Dual-luciferase reporter assays, qRT-PCR, and Western blot results confirmed that Caspase-3 and nuclear receptor corepressor 1 were direct targets for chi-miR-99b-3p as their expression was inhibited by this miR. Cell proliferation and qRT-PCR assays showed that chi-miR-99b-3p promoted proliferation through relevant targets and intrinsic apoptosis-related genes in goat skeletal muscle satellite cells (SMSCs), whereas inhibition of chi-miR-99b-3p had the opposite effect. Furthermore, integrative transcriptomic analysis revealed that overexpression of chi-miR-99b-3p induced various differentially expressed (DE) genes mainly associated with the cell cycle, relaxin signaling pathway, DNA replication, and protein digestion and absorption. Notably, most of the cell-cycle-related genes were downregulated in SMSCs after miR-99b-3p upregulation, including the pro-apoptosis-related gene BCL2. In addition, 47 DE miRNAs (16 upregulated and 31 downregulated) were determined by Small RNA-sequencing in SMSCs after chi-miR-99b-3p overexpression. Based on the KEGG enrichment analysis, we found that these DE miRNAs were involved in the biological pathways associated with the DE genes. Our study demonstrated that chi-miR-99b-3p was an effective facilitator of goat SMSCs and provided new insights into the mechanisms by which miRNAs regulate skeletal muscle growth in goats.
Collapse
|
21
|
Gut Microbiota Regulation of AHR Signaling in Liver Disease. Biomolecules 2022; 12:biom12091244. [PMID: 36139083 PMCID: PMC9496174 DOI: 10.3390/biom12091244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Liver health plays a vital role in human health and disease. Emerging evidence has shown the importance of the aryl hydrocarbon receptor (AHR) in liver diseases such as alcoholic liver disease, fatty liver disease, and liver failure. As a ligand-activated transcription factor, AHR can be activated by endogenous ligands of microbial metabolites such as tryptophan (Trp), kynurenine (Kyn) or indole derivatives locally or distantly. However, the therapeutic effects of the gut microbiota-regulated AHR pathway remain to be clarified. In this review, we summarize recent progress and examine the role of AHR signaling as a target for gut microbiota intervention in liver diseases. The focus on AHR signaling will identify a promising target in the gut microbiota for better understanding and therapeutic opportunities in liver diseases.
Collapse
|
22
|
Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, Chen Y, Shi D, Kulyar MFEA, Khan JA, Liu H. Short Chain Fatty Acids (SCFAs) Are the Potential Immunomodulatory Metabolites in Controlling Staphylococcus aureus-Mediated Mastitis. Nutrients 2022; 14:nu14183687. [PMID: 36145063 PMCID: PMC9503071 DOI: 10.3390/nu14183687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
23
|
Bajaj JS, Ng SC, Schnabl B. Promises of microbiome-based therapies. J Hepatol 2022; 76:1379-1391. [PMID: 35589257 PMCID: PMC9588437 DOI: 10.1016/j.jhep.2021.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
Humans harbour large quantities of microbes, including bacteria, fungi, viruses and archaea, in the gut. Patients with liver disease exhibit changes in the intestinal microbiota and gut barrier dysfunction. Preclinical models demonstrate the importance of the gut microbiota in the pathogenesis of various liver diseases. In this review, we discuss how manipulation of the gut microbiota can be used as a novel treatment approach for liver disease. We summarise current data on untargeted approaches, including probiotics and faecal microbiota transplantation, and precision microbiome-centered therapies, including engineered bacteria, postbiotics and phages, for the treatment of liver diseases.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Department of Medicine, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA.
| | - Siew C Ng
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, Institute of Digestive Disease, The Chinese University of Hong Kong; Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
24
|
Zhang Z, Liu J, Li M, Yang B, Liu W, Chu Z, Cui B, Chen X. Lactobacillus rhamnosus Encapsulated in Alginate/Chitosan Microgels Manipulates the Gut Microbiome to Ameliorate Salt-Induced Hepatorenal Injury. Front Nutr 2022; 9:872808. [PMID: 35495927 PMCID: PMC9047548 DOI: 10.3389/fnut.2022.872808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
As the essential regulator of intestinal bacterial diversity, probiotics are a potential treatment for chronic high-salt diet (HSD)–induced metabolic dysfunction. Probiotic cells entrapped in microgels have been confirmed as being more effective than free cells in protecting bacteria against unfavorable conditions, that is, enhancing their stress resistance. This study explored the physiological mechanism by which probiotic microgels relieve HSD–induced hepatorenal injury. Herein, Lactobacillus rhamnosus was encapsulated in alginate-chitosan microgels which the percentage of alginate/chitosan was applied 1.5:0.5 (w/w) in this system, and the encapsulation significantly improved the probiotic viability in simulated gastrointestinal conditions. Mice were fed an HSD with L. rhamnosus (SDL) or L. rhamnosus microgels (SDEL). After 8 weeks of administration, dietary sodium was confirmed as inducing the hepatic and renal damages in mice, based on indicators, including serum biomarker levels, histopathological features of tissues, and pro-inflammatory cytokine contents in blood levels. However, the serum levels of urea nitrogen, creatinine, uric acid, glutamic-pyruvic transaminase, glutamic-oxalacetic transaminase, and alkaline phosphatase in the SDL and SDEL-fed mice were significantly lowered compared to the HSD-fed mice, especially in the SDEL group. HSD increased the abundances of Anaeroplasma, Enterorhabdus, Parvibacter, and Bacteroides, while the microgels increased the abundances of Lactobacillus, Bifidobacterium, Mucispirillum, and Faecalibaculum. Significant variations of fecal metabolome were validated for SDEL-treated mice, containing those linked to entero-hepatic circulation (e.g., cholic acid), carbohydrate metabolism (i.e., L-lactic acid), and increased antioxidants including citric acid. Furthermore, the probiotic microgels ameliorated intestinal damage by improving barrier and absorption functions. These results augmented existing knowledge on probiotic application for salt toxicity.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Zheng Zhang
| | - Jiajian Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Binbin Yang
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, China
| | - Zhuangzhuang Chu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Bo Cui
| | - Xiao Chen
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Xiao Chen
| |
Collapse
|
25
|
Research progress on the role of probiotics in acute liver failure. J Transl Int Med 2022; 10:83-85. [PMID: 35959453 PMCID: PMC9328031 DOI: 10.2478/jtim-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Jia YJ, Li TY, Han P, Chen Y, Pan LJ, Jia CS. Effects of different courses of moxibustion treatment on intestinal flora and inflammation of a rat model of knee osteoarthritis. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:173-181. [PMID: 35101368 DOI: 10.1016/j.joim.2022.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study was done to determine the effects of different courses of moxibustion on a rat knee osteoarthritis (KOA) model, and explore the dose-effect relationship of moxibustion on KOA from the perspectives of intestinal flora and inflammatory factors. METHODS Wistar rats were randomly divided into five groups: normal, model, moxibustion for 2 weeks, moxibustion for 4 weeks and moxibustion for 6 weeks groups (n = 5 each group). A KOA rat model was induced by monosodium iodoacetate, and moxibustion intervention was performed at the acupoints "Dubi" (ST35) and "Zusanli" (ST36), once every other day. Pathologic changes in the cartilage of rat knee joints were assessed after intervention, and fecal samples were subjected to 16S rRNA high-throughput sequencing for microbial diversity analysis. RESULTS Damage to the knee articular cartilage was obvious in the model group, which also had increased levels of pro-inflammatory factors, decreased levels of anti-inflammatory factors, and intestinal flora disorders with decreased diversity. The degree of cartilage damage in the 4 and 6 weeks of moxibustion groups was significantly improved compared with the model group. The 4 and 6 weeks of moxibustion groups also demonstrated reduced levels of interleukin-1β and tumor necrosis factor-α and increased levels of interleukin-10 (P < 0.05). Both the abundance and diversity of the intestinal flora were increased, approaching those of the normal group. Abundances of probiotics Eubacterium coprostanoligenes group and Ruminococcaceae UCG-014 increased, while that of the pathogenic bacteria Lachnospiraceae NK4A136 group decreased (P < 0.05). Although the abundance of Lachnospiraceae NK4A136 group decreased in the 2 weeks of moxibustion group compared with the model group (P < 0.05), there was no statistically significant difference in serum inflammatory factors, flora species diversity or degree of pathological damage compared with the model group. CONCLUSION Moxibustion treatment led to significant improvements in the intestinal flora and inflammatory factors of rats with KOA. Moxibustion treatment of 4 and 6 weeks led to better outcomes than the 2-week course. Moxibustion for 4 and 6 weeks can regulate intestinal flora dysfunction with increased probiotics and reduced pathogenic bacteria, reduce pro-inflammatory factors and increase anti-inflammatory factors. No significant differences were seen between the effects of moxibustion for 4 weeks and 6 weeks.
Collapse
Affiliation(s)
- Ye-Juan Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Tian-Yu Li
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Peng Han
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Chen
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Jia Pan
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Chun-Sheng Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China.
| |
Collapse
|
27
|
Zou XY, Zhang M, Tu WJ, Zhang Q, Jin ML, Fang RD, Jiang S. Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens. Animal 2022; 16:100474. [PMID: 35220172 DOI: 10.1016/j.animal.2022.100474] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Bacillus subtilis is one of the most popular commercial probiotics used in farm animal production. However, its potential mechanisms are not very clear. The aim of this study was to investigate the effects of dietary Bacillus subtilis on intestinal histomorphology, innate immunity, microbiota composition, transcriptomics, and related metabolomics. Twenty-four 48-week-old Lohman Pink-shell laying hens were randomly divided into two groups: a basic diet and the basic diet supplemented with Bacillus subtilis (0.5 g/kg) for a 9-week experiment. At the end of the experiment, tissues of the duodenum, ileum, and jejunum as well as cecal content of each bird were collected for microstructure, PCR, transcriptome, metabolome, and 16S rRNA analyses. The results showed that dietary Bacillus subtilis supplement had no effect on the intestinal microstructure. However, Bacillus subtilis increased mRNA expression of tight junction protein occludin (P < 0.05), while reduced mRNA expression of lipopolysaccharide-induced TNF factor (P < 0.01) in the duodenum. Moreover, transcriptomic results indicated that most of Bacillus subtilis supplement-induced differential genes were associated with inflammation and immunity, including cytochrome b-245 beta chain, transferrin, and purinergic receptor P2X 7, resulting in a decrease in Malondialdehyde level (P < 0.05) in the duodenum. In addition, at the genus level, Bacillus subtilis supplement enriched the potential beneficial bacteria, Candidatus_Soleaferrea (P = 0.02) but inhibited the harmful bacteria including Lachnospiraceae_FCS020_group, Ruminiclostridium, Lachnospiraceae_UCG-010, and Oxalobacter. Metabolomic results revealed that N-Acetylneuraminic acid and ADP were increased by fed Bacillus subtilis. These results suggest that dietary Bacillus subtilis could inhibit gut inflammation and improve antioxidative status and barrier integrity of the duodenum via regulating gut microbial composition in laying hens.
Collapse
Affiliation(s)
- X Y Zou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - M Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - W J Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Q Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - M L Jin
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - R D Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China
| | - S Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China.
| |
Collapse
|
28
|
Multiple Intestinal Bacteria Associated with the Better Protective Effect of Bifidobacterium pseudocatenulatum LI09 against Rat Liver Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8647483. [PMID: 35127946 PMCID: PMC8816544 DOI: 10.1155/2022/8647483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Bifidobacterium pseudocatenulatum LI09 could protect rats from D-galactosamine- (D-GalN-) induced liver injury. However, individual difference in the protective effects of LI09 on the liver injury remains poorly understood. The present study is aimed at determining the multiple intestinal bacteria associated with the better protective effect of LI09 against D-GalN-induced rat liver injury. Two rat cohorts, i.e., the nonsevere and severe cohorts, were divided based on their liver injury severity. Higher level of ALB and lower levels of ALT, AST, TBA, TB, IL-5, and MIP-3α were determined in the nonsevere cohort than the severe cohort. The alpha diversity indices (i.e., observed species, Shannon, and Pielou indices) did not yield significant differences between the intestinal microbiota of the nonsevere and severe cohorts. The intestinal microbiota composition was different between the two cohorts. Ten phylotypes assigned to Bacteroides, Clostridia_UCG-014, Clostridium Lachnospiraceae, Lachnospiraceae_NK4A136, and Parabacteroides were closely associated with the nonsevere cohort, among which, ASV8_Lachnospiraceae_NK4A136 was the most associated one. At the structure level, two groups of phylotypes with most correlations were determined in the intestinal microbiota networks of the two cohorts. Among them, ASV135_Lachnospiraceae_NK4A136 was the most powerful gatekeeper in the microbiota network of the nonsevere cohort. In conclusion, some intestinal bacteria, e.g., Lachnospiraceae_NK4A136, Parabacteroides, and Clostridium, were associated with the better protective effect of LI09 against D-GalN-induced rat liver injury. They were likely to enhance the effectiveness of LI09, and their clinical application deserves further investigation.
Collapse
|
29
|
Yin R, Liu S, Jiang X, Zhang X, Wei F, Hu J. The Qingchangligan Formula Alleviates Acute Liver Failure by Regulating Galactose Metabolism and Gut Microbiota. Front Cell Infect Microbiol 2022; 11:771483. [PMID: 35127552 PMCID: PMC8807683 DOI: 10.3389/fcimb.2021.771483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
The Qingchangligan formula (QCLGF) is a traditional Chinese medicine that has significant clinical potential for patients with acute liver failure (ALF). However, the experimental evidence of the effect of QCLGF on ALF and the associated mechanisms remain elusive. We aimed to evaluate the function of QCLGF in ALF and the underlying mechanism. ALF was induced in rats by intraperitoneal injection of D-GalN (1100 mg/kg). The Qingchangligan formula was administered to the rats (6.725 g/kg · d) for 5 days, and the model group and the control group were given the same amount of physiological saline. Then 16S rRNA gene sequencing, high performance gas chromatography-mass spectrometry (GC-MS), and RNA-seq analysis were performed on the samples. The levels of ALT and AST in the ALF rats were abnormal (5322.08 ± 566.27 U/L and 7655.95 ± 1238.08 U/L, respectively) compared with the normal control (98.98 ± 6.90 U/L and 99.63 ± 10.94 U/L, respectively). The levels of ALT and AST in the QCLGF rats (2997.67 ± 469.24 U/L and 4158.40 ± 596.07 U/L, respectively) were closer the normal control group. Liver HE staining showed that the degree of liver damage in the QCLGF rats was lighter than that in the ALF rats. The overall structure of the gut microbiota after ALF was significantly altered, including Proteobacteria, Blautia, Romboutsia, Parabacteroides, UCG-008, Parasutterella, Ruminococcus, norank_f:Lachnospiraceae, the Eubacterium_xylanophilum_group, Oscillibacter, and Eisenbergiella. QCLGF balanced the structure and abundance of intestinal flora. The levels of D(+)galactose, isopropyl beta-D-1-thiogalactopyranoside and D-mannitol were lighter in the plasma of the ALF rats than in the normal control rats, but there were significantly elevated levels of those metabolites in the QCLGF rats. The gene expression changed significantly in the ALF rats. QCLGF regulated the expression of THBS1 and the KEGG pathways of carbohydrate metabolism, lipid metabolism, signal transduction, the immune system, and infectious disease: bacterial. QCLGF may alleviating intestinal flora disorder, regulating galactose metabolism and downregulating the expression of THBS1 to alleviate D-GalN induced acute liver failure.
Collapse
Affiliation(s)
- Ruiying Yin
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuhui Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xuejiao Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feili Wei, ; Jianhua Hu,
| | - Jianhua Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feili Wei, ; Jianhua Hu,
| |
Collapse
|
30
|
Gao Y, Wang X, Xue C, Wei Z. Latest developments in food-grade delivery systems for probiotics: A systematic review. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34748451 DOI: 10.1080/10408398.2021.2001640] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tremendous progress in the inseparable relationships between probiotics and human health has enabled advances in probiotic functional foods. To ensure the vitality of sensitive probiotics against multiple harsh conditions, rising food-grade delivery systems for probiotics have been developed. This review gives a summary of recently reported delivery vehicles for probiotics, analyzes their respective merits and drawbacks and makes comparisons among them. Subsequently, the applications and future prospects are discussed. According to the types of encapsulating probiotics, food-grade delivery systems for probiotics can be classified into "silkworm cocoons" and "spider webs", which are put forward in this paper. The former, which surrounds the inner probiotics with the outer protective layers, includes particles, emulsions, beads, hybrid electrospun nanofibers and microcapsules. While hydrogels and bigels belong to the latter, which protects probiotics with the aid of network structures. The future prospects include preferable viability and stability of probiotics, co-delivery systems, targeted gut release of probiotics, delivery of multiple strains, more scientific experimental verification and more diversified food products, which will enlighten further studies on delivering probiotics for human health. Taken together, delivery vehicles for probiotics are-or will soon be-in the field of food science, with further applications under development.
Collapse
Affiliation(s)
- Yuxing Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
31
|
Gu X, Lu Q, Zhang C, Tang Z, Chu L. Clinical Application and Progress of Fecal Microbiota Transplantation in Liver Diseases: A Review. Semin Liver Dis 2021; 41:495-506. [PMID: 34261137 PMCID: PMC8492191 DOI: 10.1055/s-0041-1732319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human gut harbors a dense and highly diverse microbiota of approximately 1,000 bacterial species. The interaction between the host and gut bacteria strongly influences human health. Numerous evidence suggest that intestinal flora imbalance is closely associated with the development and treatment of liver diseases, including acute liver injury and chronic liver diseases (cirrhosis, autoimmune liver disease, and fatty liver). Therefore, regulating the gut microbiota is expected to be a new method for the adjuvant treatment of liver diseases. Fecal microbiota transplantation (FMT) is defined as the transplantation of gut microbiota from healthy donors to sick patients via the upper or lower gastrointestinal route to restore the normal intestinal balance. In this study, we briefly review the current research on the gut microbiota and its link to liver diseases and then summarize the evidence to elucidate the clinical application and development of FMT in liver disease treatment.
Collapse
Affiliation(s)
- Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Qin Lu
- Department of Prescription Science, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewei Tang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Address for correspondence Liuxi Chu, PhD Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast UniversityNanjing - 210096China
| | - Liuxi Chu
- Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Zhuge A, Li S, Yuan Y, Li B, Li L. The synergy of dietary supplements Lactobacillus salivarius LI01 and Bifidobacterium longum TC01 in alleviating liver failure in rats treated with D-galactosamine. Food Funct 2021; 12:10239-10252. [PMID: 34546256 DOI: 10.1039/d1fo01807h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactobacillus salivarius (L. salivarius) has been widely used in dietary supplements and clinical treatments. Previous studies demonstrated the protective effect of L. salivarius LI01 on liver injury induced by D-galactosamine (D-GaIN) in rats. Accumulating evidence indicates that Lactobacillus and Bifidobacterium are highly coordinated; so in this study, we focus on the synergistic effect of L. salivarius LI01 and B. longum TC01 on the alleviation of liver injury caused by D-GaIN in rats and aim to find out the underlying interaction between the two strains. We observed reduced hepatic damage in the D-GaIN-treated rats with probiotic pre-administration, characterized by lower levels of AST and ALT (p < 0.05) and decreased HAI (Histological Activity Index) scores. Moreover, cotreatment with LI01 and TC01 more effectively decreases proinflammatory cytokines TNF-α, MCP-1 and M-CSF (p < 0.05) so as to inhibit systemic inflammation. Gut barrier dysfunction was ameliorated with compound probiotic pretreatment, as evidenced by the ultrastructure integrity, decreased histological score and elevated TJP-1 expression. What's more, supplementation with LI01 and TC01 markedly alleviates gut dysbiosis in the G-DaIN-treated rats, with enrichment of short chain fatty acid (SCFA) producers Faecalibaculum and Eubacterium_xylanophilum_group, a decreased Firmicutes/Bacteroidetes (F/B) ratio and depletion of proinflammatory microbes, such as Peptococcaeae and Ruminococcaceae_UCG-005. This study highlights the synergistic effect of dietary supplements LI01 and TC01 on the protection against liver failure, which is probably via altering gut microbiota.
Collapse
Affiliation(s)
- Aoxiang Zhuge
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Bo Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
33
|
Burz SD, Monnoye M, Philippe C, Farin W, Ratziu V, Strozzi F, Paillarse JM, Chêne L, Blottière HM, Gérard P. Fecal Microbiota Transplant from Human to Mice Gives Insights into the Role of the Gut Microbiota in Non-Alcoholic Fatty Liver Disease (NAFLD). Microorganisms 2021; 9:microorganisms9010199. [PMID: 33477939 PMCID: PMC7833443 DOI: 10.3390/microorganisms9010199] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver diseases (NAFLD) are associated with changes in the composition and metabolic activities of the gut microbiota. However, the causal role played by the gut microbiota in individual susceptibility to NAFLD and particularly at its early stage is still unclear. In this context, we transplanted the microbiota from a patient with fatty liver (NAFL) and from a healthy individual to two groups of mice. We first showed that the microbiota composition in recipient mice resembled the microbiota composition of their respective human donor. Following administration of a high-fructose, high-fat diet, mice that received the human NAFL microbiota (NAFLR) gained more weight and had a higher liver triglycerides level and higher plasma LDL cholesterol than mice that received the human healthy microbiota (HR). Metabolomic analyses revealed that it was associated with lower and higher plasma levels of glycine and 3-Indolepropionic acid in NAFLR mice, respectively. Moreover, several bacterial genera and OTUs were identified as differently represented in the NAFLR and HR microbiota and therefore potentially responsible for the different phenotypes observed. Altogether, our results confirm that the gut bacteria play a role in obesity and steatosis development and that targeting the gut microbiota may be a preventive or therapeutic strategy in NAFLD management.
Collapse
Affiliation(s)
- Sebastian D. Burz
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (S.D.B.); (M.M.); (C.P.); (H.M.B.)
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Magali Monnoye
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (S.D.B.); (M.M.); (C.P.); (H.M.B.)
| | - Catherine Philippe
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (S.D.B.); (M.M.); (C.P.); (H.M.B.)
| | - William Farin
- Enterome, 75011 Paris, France; (W.F.); (F.S.); (J.-M.P.); (L.C.)
| | - Vlad Ratziu
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Hôpital Pitié-Salpêtrière, Sorbonne-Université, 75006 Paris, France;
| | | | | | - Laurent Chêne
- Enterome, 75011 Paris, France; (W.F.); (F.S.); (J.-M.P.); (L.C.)
| | - Hervé M. Blottière
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (S.D.B.); (M.M.); (C.P.); (H.M.B.)
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (S.D.B.); (M.M.); (C.P.); (H.M.B.)
- Correspondence: ; Tel.: +33-134652428
| |
Collapse
|