1
|
Cao C, Yue S, Lu A, Liang C. Host-Gut Microbiota Metabolic Interactions and Their Role in Precision Diagnosis and Treatment of Gastrointestinal Cancers. Pharmacol Res 2024; 207:107321. [PMID: 39038631 DOI: 10.1016/j.phrs.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
2
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Lou J, Cui S, Li J, Jin G, Fan Y, Huang N. Causal relationship between the gut microbiome and basal cell carcinoma, melanoma skin cancer, ease of skin tanning: evidence from three two-sample mendelian randomisation studies. Front Immunol 2024; 15:1279680. [PMID: 38304424 PMCID: PMC10830803 DOI: 10.3389/fimmu.2024.1279680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives The present study used publicly available genome-wide association study (GWAS) summary data to perform three two-sample Mendelian randomization (MR) studies, aiming to examine the causal links between gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Methods SNPs associated with exposures to basal cell carcinoma, melanoma skin cancer and ease of skin tanning from the genome-wide association study data of UK Biobank and MRC-IEU (MRC Integrative Epidemiology Unit), and the meta-analysis data from Biobank and MRC-IEU were used as instrumental variables (IVs). The casual estimates were assessed with a two-sample Mendelian randomisation test using the inverse-variance-weighted (IVW) method, Wald ratio, MR-Egger method, maximum likelihood, weighted median, simple mode, and weighted mode. Results After the application of MR analysis, diffirent effects of multiple groups of gut microbiota was observed for BCC, melanoma skin cancer and ease of skin tanning. The relationships between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning were supported by a suite of sensitivity analyses, with no statistical evidence of instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the relationship between between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Conclusion Our study initially identified potential causal roles between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning, and highlighted the role of gut microbiome in the progression of basal cell carcinoma, melanoma skin cancer, ease of skin tanning.
Collapse
|
4
|
Huttanus HM, Triola EKH, Velasquez-Guzman JC, Shin SM, Granja-Travez RS, Singh A, Dale T, Jha RK. Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations. Front Bioeng Biotechnol 2023; 11:1202388. [PMID: 37545889 PMCID: PMC10400447 DOI: 10.3389/fbioe.2023.1202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/25/2023] [Indexed: 08/08/2023] Open
Abstract
Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.
Collapse
Affiliation(s)
- Herbert M. Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Ellin-Kristina H. Triola
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Jeanette C. Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Rommel S. Granja-Travez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Anmoldeep Singh
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| |
Collapse
|
5
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
6
|
Kim JH, An JH, Lee JH, Park SM, Lim GH, Oh YI, Seo KW, Youn HY. Changes in Lactate-related Fecal Microbiome in Hyperlactatemia Diabetic Dogs. In Vivo 2023; 37:696-701. [PMID: 36881052 PMCID: PMC10026652 DOI: 10.21873/invivo.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM The correlation between the intestinal microbiome and endocrine disorders has recently been drawing attention as an important key for determining their pathology and clinical assessment. In this study, we evaluated the microbiome of dogs with insulin-dependent diabetes mellitus (IDDM) with respect to blood lactate. MATERIALS AND METHODS Fecal samples were obtained from 17 subjects and real-time quantitative polymerase chain reaction determinations were performed to quantify the gene expression levels of lactate-producing and dysbiosis index-related bacteria. RESULTS Expression levels of the lactate-producing bacteria Lactobacillus spp., Enterococcus spp., and Bifidobacterium spp., were confirmed in patients with high concentrations of lactate in the blood. The abundance of Enterococcus and Bifidobacterium was higher in diabetic dogs compared to that of non-diabetic dogs. When blood lactate concentrations were high, the abundance of Bifidobacterium also increased. CONCLUSION Blood lactate levels influence the gut microbiome in dogs with IDDM. This study will help understand the gut microbiota in the context of diabetes in human and veterinary medicine.
Collapse
Affiliation(s)
- Ji-Hyeon Kim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea;
| |
Collapse
|
7
|
Oh KK, Gupta H, Min BH, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. The identification of metabolites from gut microbiota in NAFLD via network pharmacology. Sci Rep 2023; 13:724. [PMID: 36639568 PMCID: PMC9839744 DOI: 10.1038/s41598-023-27885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The metabolites of gut microbiota show favorable therapeutic effects on nonalcoholic fatty liver disease (NAFLD), but the active metabolites and mechanisms against NAFLD have not been documented. The aim of the study was to investigate the active metabolites and mechanisms of gut microbiota against NAFLD by network pharmacology. We obtained a total of 208 metabolites from the gutMgene database and retrieved 1256 targets from similarity ensemble approach (SEA) and 947 targets from the SwissTargetPrediction (STP) database. In the SEA and STP databases, we identified 668 overlapping targets and obtained 237 targets for NAFLD. Thirty-eight targets were identified out of those 237 and 223 targets retrieved from the gutMgene database, and were considered the final NAFLD targets of metabolites from the microbiome. The results of molecular docking tests suggest that, of the 38 targets, mitogen-activated protein kinase 8-compound K and glycogen synthase kinase-3 beta-myricetin complexes might inhibit the Wnt signaling pathway. The microbiota-signaling pathways-targets-metabolites network analysis reveals that Firmicutes, Fusobacteria, the Toll-like receptor signaling pathway, mitogen-activated protein kinase 1, and phenylacetylglutamine are notable components of NAFLD and therefore to understanding its processes and possible therapeutic approaches. The key components and potential mechanisms of metabolites from gut microbiota against NAFLD were explored utilizing network pharmacology analyses. This study provides scientific evidence to support the therapeutic efficacy of metabolites for NAFLD and suggests holistic insights on which to base further research.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Haripriya Gupta
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Byeong Hyun Min
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Raja Ganesan
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Satya Priya Sharma
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Sung Min Won
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Jin Ju Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Su Been Lee
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min Gi Cha
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Goo Hyun Kwon
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min Kyo Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji Ye Hyun
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Jung A Eom
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hee Jin Park
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Sang Jun Yoon
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Mi Ran Choi
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Dong Joon Kim
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ki Tae Suk
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
8
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|
9
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Qi W, Liu J, Yu T, Huang S, Song R, Qiao Z. Ae1/Sbe1 maize-derived high amylose improves gut barrier function and ameliorates type II diabetes in high-fat diet-fed mice by increasing Akkermansia. Front Nutr 2022; 9:999020. [PMID: 36245499 PMCID: PMC9556726 DOI: 10.3389/fnut.2022.999020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) has its origins in chronic inflammation due to immune dysregulation. Improving chronic inflammation can significantly reduce the probability of T2DM and the rate of disease progression. Resistance to starch 2 (RSII) high-amylose maize starch (HAMS) has been widely implicated in the improvement and regulation of T2DM. However, its exact molecular mechanisms have not been fully discovered. Here, we used CRISPR/Cas9 technology to knock out two starch-branching enzyme genes, Ae1 and Sbe1, in maize to obtain mutants containing higher levels of HAMS. In experiments in which HAMS was fed to mice on a high-fat diet (HFD), we confirmed the function of HAMS in ameliorating hyperglycemia. Mechanistically, we found that HAMS improves the gut barrier function by increasing the Akkermansia abundance in the gut. This increase led to the alleviation of chronic inflammation in mice on a HFD, resulting in improved insulin sensitivity and a decrease in blood glucose.
Collapse
Affiliation(s)
- Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingchao Liu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tante Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shengchan Huang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
11
|
Menuhin-Gruman I, Arbel M, Amitay N, Sionov K, Naki D, Katzir I, Edgar O, Bergman S, Tuller T. Evolutionary Stability Optimizer (ESO): A Novel Approach to Identify and Avoid Mutational Hotspots in DNA Sequences While Maintaining High Expression Levels. ACS Synth Biol 2022; 11:1142-1151. [PMID: 34928133 PMCID: PMC8938948 DOI: 10.1021/acssynbio.1c00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Modern
synthetic biology procedures rely on the ability to generate
stable genetic constructs that keep their functionality over long
periods of time. However, maintenance of these constructs requires
energy from the cell and thus reduces the host’s fitness. Natural
selection results in loss-of-functionality mutations that negate the
expression of the construct in the population. Current approaches
for the prevention of this phenomenon focus on either small-scale,
manual design of evolutionary stable constructs or the detection of
mutational sites with unstable tendencies. We designed the Evolutionary
Stability Optimizer (ESO), a software tool that enables the large-scale
automatic design of evolutionarily stable constructs with respect
to both mutational and epigenetic hotspots and allows users to define
custom hotspots to avoid. Furthermore, our tool takes the expression
of the input constructs into account by considering the guanine-cytosine
(GC) content and codon usage of the host organism, balancing the trade-off
between stability and gene expression, allowing to increase evolutionary
stability while maintaining the high expression. In this study, we
present the many features of the ESO and show that it accurately predicts
the evolutionary stability of endogenous genes. The ESO was created
as an easy-to-use, flexible platform based on the notion that directed
genetic stability research will continue to evolve and revolutionize
current applications of synthetic biology. The ESO is available at
the following link: https://www.cs.tau.ac.il/~tamirtul/ESO/.
Collapse
Affiliation(s)
- Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Matan Arbel
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Niv Amitay
- School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Karin Sionov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Omer Edgar
- School of Medicine, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 6997801
| |
Collapse
|
12
|
Huang R. Gut Microbiota: A Key Regulator in the Effects of Environmental Hazards on Modulates Insulin Resistance. Front Cell Infect Microbiol 2022; 11:800432. [PMID: 35111696 PMCID: PMC8801599 DOI: 10.3389/fcimb.2021.800432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is a hallmark of Alzheimer’s disease (AD), type II diabetes (T2D), and Parkinson’s disease (PD). Emerging evidence indicates that these disorders are typically characterized by alterations in the gut microbiota composition, diversity, and their metabolites. Currently, it is understood that environmental hazards including ionizing radiation, toxic heavy metals, pesticides, particle matter, and polycyclic aromatic hydrocarbons are capable of interacting with gut microbiota and have a non-beneficial health effect. Based on the current study, we propose the hypothesis of “gut microenvironment baseline drift”. According to this “baseline drift” theory, gut microbiota is a temporarily combined cluster of species sharing the same environmental stresses for a short period, which would change quickly under the influence of different environmental factors. This indicates that the microbial species in the gut do not have a long-term relationship; any split, division, or recombination may occur in different environments. Nonetheless, the “baseline drift” theory considers the critical role of the response of the whole gut microbiome. Undoubtedly, this hypothesis implies that the gut microbiota response is not merely a “cross junction” switch; in contrast, the human health or disease is a result of a rich palette of gut-microbiota-driven multiple-pathway responses. In summary, environmental factors, including hazardous and normal factors, are critical to the biological impact of the gut microbiota responses and the dual effect of the gut microbiota on the regulation of biological functions. Novel appreciation of the role of gut microbiota and environmental hazards in the insulin resistance would shed new light on insulin resistance and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
|
13
|
Wallenborn JT, Vonaesch P. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac010. [PMID: 35419206 PMCID: PMC8996373 DOI: 10.1093/gastro/goac010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities. We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and global scale, and how interventions could utilize this information to promote life-course health and reduce global health disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Campus UNIL-Sorge, Lausanne, Switzerland
- Corresponding author. Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland. Tel: +41-21-692-5600;
| |
Collapse
|
14
|
Chen J, Hall S, Vitetta L. Altered gut microbial metabolites could mediate the effects of risk factors in Covid-19. Rev Med Virol 2021; 31:1-13. [PMID: 34546607 PMCID: PMC7995004 DOI: 10.1002/rmv.2211] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (Covid-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is now pandemic. While most Covid-19 patients will experience mild symptoms, a small proportion will develop severe disease, which could be fatal. Clinically, Covid-19 patients manifest fever with dry cough, fatigue and dyspnoea, and in severe cases develop into acute respiratory distress syndrome (ARDS), sepsis and multi-organ failure. These severe patients are characterized by hyperinflammation with highly increased pro-inflammatory cytokines including IL-6, IL-17 and TNF-alpha as well as C-reactive protein, which are accompanied by decreased lymphocyte counts. Clinical evidence supports that gut microbiota dysregulation is common in Covid-19 and plays a key role in the pathogenesis of Covid-19. In this narrative review, we summarize the roles of intestinal dysbiosis in Covid-19 pathogenesis and posit that the associated mechanisms are being mediated by gut bacterial metabolites. Based on this premise, we propose possible clinical implications. Various risk factors could be causal for severe Covid-19, and these include advanced age, concomitant chronic disease, SARS-CoV-2 infection of enterocytes, use of antibiotics and psychological distress. Gut dysbiosis is associated with risk factors and severe Covid-19 due to decreased commensal microbial metabolites, which cause reduced anti-inflammatory mechanisms and chronic low-grade inflammation. The preconditioned immune dysregulation enables SARS-CoV-2 infection to progress to an uncontrolled hyperinflammatory response. Thus, a pre-existing gut microbiota that is diverse and abundant could be beneficial for the prevention of severe Covid-19, and supplementation with commensal microbial metabolites may facilitate and augment the treatment of severe Covid-19.
Collapse
Affiliation(s)
| | - Sean Hall
- Research DepartmentMedlab ClinicalSydneyAustralia
| | - Luis Vitetta
- Research DepartmentMedlab ClinicalSydneyAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| |
Collapse
|
15
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
16
|
Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J Immunol Res 2021; 2021:8030297. [PMID: 34337079 PMCID: PMC8324359 DOI: 10.1155/2021/8030297] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), increases gradually worldwide in the past decades. IBD is generally associated with the change of the immune system and gut microbiota, and the conventional treatments usually result in some side effects. Bifidobacterium longum, as colonizing bacteria in the intestine, has been demonstrated to be capable of relieving colitis in mice and can be employed as an alternative or auxiliary way for treating IBD. Here, the mechanisms of the Bifidobacterium longum in the treatment of IBD were summarized based on previous cell and animal studies and clinical trials testing bacterial therapies. This review will be served as a basis for future research on IBD treatment.
Collapse
|
17
|
Olivier S, Pochard C, Diounou H, Castillo V, Divoux J, Alcantara J, Leclerc J, Guilmeau S, Huet C, Charifi W, Varin TV, Daniel N, Foretz M, Neunlist M, Salomon BL, Ghosh P, Marette A, Rolli-Derkinderen M, Viollet B. Deletion of intestinal epithelial AMP-activated protein kinase alters distal colon permeability but not glucose homeostasis. Mol Metab 2021; 47:101183. [PMID: 33548500 PMCID: PMC7921883 DOI: 10.1016/j.molmet.2021.101183] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The intestinal epithelial barrier (IEB) restricts the passage of microbes and potentially harmful substances from the lumen through the paracellular space, and rupture of its integrity is associated with a variety of gastrointestinal disorders and extra-digestive diseases. Increased IEB permeability has been linked to disruption of metabolic homeostasis leading to obesity and type 2 diabetes. Interestingly, recent studies have uncovered compelling evidence that the AMP-activated protein kinase (AMPK) signaling pathway plays an important role in maintaining epithelial cell barrier function. However, our understanding of the function of intestinal AMPK in regulating IEB and glucose homeostasis remains sparse. Methods We generated mice lacking the two α1 and α2 AMPK catalytic subunits specifically in intestinal epithelial cells (IEC AMPK KO) and determined the physiological consequences of intestinal-specific deletion of AMPK in response to high-fat diet (HFD)-induced obesity. We combined histological, functional, and integrative analyses to ascertain the effects of gut AMPK loss on intestinal permeability in vivo and ex vivo and on the development of obesity and metabolic dysfunction. We also determined the impact of intestinal AMPK deletion in an inducible mouse model (i-IEC AMPK KO) by measuring IEB function, glucose homeostasis, and the composition of gut microbiota via fecal 16S rRNA sequencing. Results While there were no differences in in vivo intestinal permeability in WT and IEC AMPK KO mice, ex vivo transcellular and paracellular permeability measured in Ussing chambers was significantly increased in the distal colon of IEC AMPK KO mice. This was associated with a reduction in pSer425 GIV phosphorylation, a marker of leaky gut barrier. However, the expression of tight junction proteins in intestinal epithelial cells and pro-inflammatory cytokines in the lamina propria were not different between genotypes. Although the HFD-fed AMPK KO mice displayed suppression of the stress polarity signaling pathway and a concomitant increase in colon permeability, loss of intestinal AMPK did not exacerbate body weight gain or adiposity. Deletion of AMPK was also not sufficient to alter glucose homeostasis or the acute glucose-lowering action of metformin in control diet (CD)- or HFD-fed mice. CD-fed i-IEC AMPK KO mice also presented higher permeability in the distal colon under homeostatic conditions but, surprisingly, this was not detected upon HFD feeding. Alteration in epithelial barrier function in the i-IEC AMPK KO mice was associated with a shift in the gut microbiota composition with higher levels of Clostridiales and Desulfovibrionales. Conclusions Altogether, our results revealed a significant role of intestinal AMPK in maintaining IEB integrity in the distal colon but not in regulating glucose homeostasis. Our data also highlight the complex interaction between gut microbiota and host AMPK. Deletion of intestinal AMPKα1 and α2 suppresses the stress-polarity signaling (SPS) pathway. Loss of the SPS pathway is associated with increased paracellular permeability in the distal colon. Intestinal AMPK is dispensable for the acute glucose-lowering action of metformin. Loss of intestinal AMPK alters the gut microbiota composition.
Collapse
Affiliation(s)
- Séverine Olivier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Camille Pochard
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hanna Diounou
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordane Divoux
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Joshua Alcantara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jocelyne Leclerc
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Sandra Guilmeau
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Camille Huet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Wafa Charifi
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Thibault V Varin
- Québec Heart and Lung Research Institute (IUCPQ) & Institute for Nutrition and Functional Foods (INAF), Laval University Québec, Québec, Canada
| | - Noëmie Daniel
- Québec Heart and Lung Research Institute (IUCPQ) & Institute for Nutrition and Functional Foods (INAF), Laval University Québec, Québec, Canada
| | - Marc Foretz
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Michel Neunlist
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Benoit L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - André Marette
- Québec Heart and Lung Research Institute (IUCPQ) & Institute for Nutrition and Functional Foods (INAF), Laval University Québec, Québec, Canada
| | - Malvyne Rolli-Derkinderen
- University of Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.
| | - Benoit Viollet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France.
| |
Collapse
|
18
|
Stavropoulou E, Kantartzi K, Tsigalou C, Konstantinidis T, Romanidou G, Voidarou C, Bezirtzoglou E. Focus on the Gut-Kidney Axis in Health and Disease. Front Med (Lausanne) 2021; 7:620102. [PMID: 33553216 PMCID: PMC7859267 DOI: 10.3389/fmed.2020.620102] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The recent new developments in technology with culture-independent techniques including genome sequencing methodologies shed light on the identification of microbiota bacterial species and their role in health and disease. Microbiome is actually reported as an important predictive tool for evaluating characteristic shifts in case of disease. Our present review states the development of different renal diseases and pathologies linked to the intestinal dysbiosis, which impacts on host homeostasis. The gastrointestinal-kidney dialogue provides intriguing features in the pathogenesis of several renal diseases. Without any doubt, investigation of this interconnection consists one of the most cutting-edge areas of research with potential implications on our health.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Konstantia Kantartzi
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | - Eugenia Bezirtzoglou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
19
|
Kang M, Choe D, Kim K, Cho BK, Cho S. Synthetic Biology Approaches in The Development of Engineered Therapeutic Microbes. Int J Mol Sci 2020; 21:ijms21228744. [PMID: 33228099 PMCID: PMC7699352 DOI: 10.3390/ijms21228744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Since the intimate relationship between microbes and human health has been uncovered, microbes have been in the spotlight as therapeutic targets for several diseases. Microbes contribute to a wide range of diseases, such as gastrointestinal disorders, diabetes and cancer. However, as host-microbiome interactions have not been fully elucidated, treatments such as probiotic administration and fecal transplantations that are used to modulate the microbial community often cause nonspecific results with serious safety concerns. As an alternative, synthetic biology can be used to rewire microbial networks such that the microbes can function as therapeutic agents. Genetic sensors can be transformed to detect biomarkers associated with disease occurrence and progression. Moreover, microbes can be reprogrammed to produce various therapeutic molecules from the host and bacterial proteins, such as cytokines, enzymes and signaling molecules, in response to a disturbed physiological state of the host. These therapeutic treatment systems are composed of several genetic parts, either identified in bacterial endogenous regulation systems or developed through synthetic design. Such genetic components are connected to form complex genetic logic circuits for sophisticated therapy. In this review, we discussed the synthetic biology strategies that can be used to construct engineered therapeutic microbes for improved microbiome-based treatment.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea
- Correspondence: (B.-K.C.); (S.C.)
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (M.K.); (D.C.); (K.K.)
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: (B.-K.C.); (S.C.)
| |
Collapse
|