1
|
Boueroy P, Brizuela J, Roodsant TJ, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Phetburom N, Chareonsudjai S, Boonmars T, Schultsz C, Kerdsin A. Genomic analysis and virulence of human Streptococcus suis serotype 14. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05029-w. [PMID: 39731619 DOI: 10.1007/s10096-024-05029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14. METHODS Genomes of 11 S. suis serotype 14 were sequenced by short- and long-read sequencing platforms. The genomes were analyzed for genetic relationship, virulence-associated genes, and antimicrobial-resistant genes. Antimicrobial susceptibility was conducted and the virulence was tested based on cell assay. RESULTS All isolates belonged to clonal complex (CC) 1, with nine sequence type (ST) 105 isolates and each isolate of ST1 and ST237. They were susceptible to penicillin, whereas tetracycline and macrolide were resistance due to tetO and ermB. Genomic analysis revealed that the serotype 14-ST105 isolates were closely related to zoonotic serotype 14-ST105 isolates from Vietnam and the serotype 1-ST105 Thai strain. The serotype 14-ST1 isolate was closely related to pig-diseased serotype 1-ST1 isolates from UK and USA, whereas the serotype 14-ST237 isolate was related to serotype 1-ST237 strains recovered from healthy pig from Thailand. Of 150 virulence-associated genes, 13 were absent from the serotype 14 isolates, including atl1, atlAss, hhly3, nisK, nisR, pnuC, salK, salR, sp1, srtG, virB4, virD4, and zmp. The virulence of strain 32481, a representative S. suis serotype 14-ST105 isolate showed reduced adhesion and invasion of two epithelial cell lines (A549 and HeLa) when compared to the serotype 2-ST1 strain P1/7, whereas apoptosis was similar. CONCLUSION This study highlighted the pathogenic potential of virulent serotype 14-ST105 strains and the need for increased monitoring of S. suis serotypes other than for serotype 2.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Jaime Brizuela
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thomas J Roodsant
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Constance Schultsz
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
2
|
Yuan S, Shen Y, Quan Y, Gao S, Zuo J, Jin W, Li R, Yi L, Wang Y, Wang Y. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol 2024; 24:480. [PMID: 39548389 PMCID: PMC11568608 DOI: 10.1186/s12866-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
3
|
Zhang TH, Yang YK, Feng YM, Luo ZJ, Wang MW, Qi PY, Zeng D, Liu HW, Liao YM, Meng J, Zhou X, Liu LW, Yang S. Engineering the novel azobenzene-based molecular photoswitches for suppressing bacterial infection through dynamic regulation of biofilm formation. PEST MANAGEMENT SCIENCE 2024. [PMID: 39373165 DOI: 10.1002/ps.8453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Bacterial biofilm is a strong fortress for bacteria to resist harsh external environments, which can enhance their tolerance and exacerbate the drug/pesticide resistance risk. Currently, photopharmacology provides an advanced approach via precise spatiotemporal control for regulating biological activities by light-controlling the molecular configurations, thereby having enormous potential in the development of drug/pesticides. RESULTS To further expand the photopharmacology application for discovering new antibiofilm agents, we prepared a series of light-controlled azo-active molecules and explored their photo isomerization, fatigue resistance, and anti-biofilm performance. Furthermore, their mechanisms of inhibiting biofilm formation were systematically investigated. Overall, designed azo-derivative A11 featured excellent anti-Xoo activity with an half-maximal effective concentration (EC50) value of 5.45 μg mL-1, and the EC50 value could be further elevated to 2.19 μg mL-1 after ultraviolet irradiation (converted as cis-configuration). The photo-switching behavior showed that A11 had outstanding anti-fatigue properties. An in-depth analysis of the action mechanism showed that A11 could effectively inhibit biofilm formation and the expression of relevant virulence factors. This performance could be dynamically regulated via loading with private light-switch property. CONCLUSION In this work, designed light-controlled azo molecules provide a new model for resisting bacterial infection via dynamic regulation of bacterial biofilm formation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tai-Hong Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi-Ke Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yu-Mei Feng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Jun Luo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ming-Wei Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pu-Ying Qi
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Dan Zeng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Cao CY, Hou ZJ, Ding MZ, Gao GR, Qiao B, Wei SY, Cheng JS. Integrated Biofilm Modification and Transcriptional Analysis for Improving Fengycin Production in Bacillus amyloliquefaciens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10266-8. [PMID: 38652228 DOI: 10.1007/s12602-024-10266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Although fengycin exhibits broad-spectrum antifungal properties, its application is hindered due to its low biosynthesis level and the co-existence of iturin A and surfactin in Bacillus amyloliquefaciens HM618, a probiotic strain. In this study, transcriptome analysis and gene editing were used to explore the potential mechanisms regulating fengycin production in B. amyloliquefaciens. The fengycin level of B. amyloliquefacien HM-3 (∆itu-ΔsrfAA) was 88.41 mg/L after simultaneously inhibiting the biosyntheses of iturin A and surfactin. The knockout of gene eps associated with biofilm formation significantly increased the fengycin level of the strain HM618, whereas the fengycin level decreased 32.05% after knocking out sinI, a regulator of biofilm formation. Transcriptome analysis revealed that the differentially expressed genes, involved in pathways of amino acid and fatty acid syntheses, were significantly down-regulated in the recombinant strains, which is likely associated with a decrease of fengycin production. The knockout of gene comQXPA and subsequent transcriptome analysis revealed that the ComQXPA quorum sensing system played a positive regulatory role in fengycin production. Through targeted genetic modifications and fermentation optimization, the fengycin production of the engineered strain HM-12 (∆itu-ΔsrfAA-ΔyvbJ) in a 5-L fermenter reached 1.172 g/L, a 12.26-fold increase compared to the fengycin level in the strain HM-3 (∆itu-ΔsrfAA) in the Erlenmeyer flask. Taken together, these results reveal the underlying metabolic mechanisms associated with fengycin synthesis and provide a potential strategy for improving fengycin production in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
6
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Keonam K, Nam NH, Saksangawong C, Sringam P, Saipan P, Kongpechr S, Sukon P. Prevalence of Streptococcus suis serotype 2 isolated from pigs: A systematic review and meta-analysis. Vet World 2024; 17:233-244. [PMID: 38595647 PMCID: PMC11000466 DOI: 10.14202/vetworld.2024.233-244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Among Streptococcus suis serotypes, S. suis serotype 2 is the most significant serotype that causes serious diseases in pigs and humans worldwide. The present study aimed to estimate the global prevalence of S. suis serotype 2 isolated from pigs, determine its trend, and explore the factors associated with this serotype. Materials and Methods We retrieved relevant published studies from PubMed, Scopus, and the Web of Science. The retrieved citations were screened for possible inclusion. Relevant data were then extracted from the included studies. The random-effects model was used for all meta-analyses. A subgroup meta-analysis was used to assess the heterogeneity of the prevalence for four characteristics (continents, sampling organs, reporting unit, and pig's health status). A cumulative meta-analysis was performed to determine the cumulative prevalence over time. Meta-regression analysis was used to determine the trend of pooled prevalence of S. suis serotype 2 over time. Results Of 600 articles retrieved, 36 studies comprising a total sample size of 6939 isolates or samples from 16 countries of four continents were included for meta-analysis. The pooled prevalence of S. suis serotype 2 isolated from pigs was 13.6% (95% confidence interval [CI], 10.7%-17.1%), with high heterogeneity among the included studies (Cochran's Q, 431.6; p < 0.001; I2 = 91.9%; Table-1). No statistical significance was observed among subgroups of the four characteristics examined. However, the pooled prevalence of S. suis serotype 2 was as high as 16.0% (95% CI, 12.5%-20.3%; n = 16) in diseased pigs compared with 9.9% (95% CI, 5.6%-17.0%; n = 15) in healthy pigs. The pooled prevalence of S. suis serotype 2 isolated from pigs did not significantly decrease over time [regression coefficient = -0.020 (95% CI, 0.046-0.006, p = 0.139)]. The pooled prevalence of S. suis serotype 2 isolated from pigs fluctuated slightly between 13.2% and 17.8% from 2007 to 2023, although the pooled prevalence gradually decreased from 30.6% in 1987 to over 20% in 2003. Conclusion The global prevalence of S. suis serotype 2 isolated from pigs was estimated to be 13.6% (approximately 10% in healthy pigs and around 16% in diseased pigs). S. suis serotype 2 isolated from pigs did not change significantly over time. These results indicate that S. suis serotype 2 remains a problem for the pig industry and poses a threat to human health.
Collapse
Affiliation(s)
- Khao Keonam
- Veterinary Science Program, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nguyen Hoai Nam
- Department of Animal Surgery and Theriogenology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trauqui, Gialam, Hanoi, Vietnam
| | - Chuleeporn Saksangawong
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Patchanee Sringam
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Piyawat Saipan
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Saijai Kongpechr
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peerapol Sukon
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Program on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
8
|
Peng M, Xu Y, Dou B, Yang F, He Q, Liu Z, Gao T, Liu W, Yang K, Guo R, Li C, Tian Y, Zhou D, Bei W, Yuan F. The adcA and lmb Genes Play an Important Role in Drug Resistance and Full Virulence of Streptococcus suis. Microbiol Spectr 2023; 11:e0433722. [PMID: 37212676 PMCID: PMC10269787 DOI: 10.1128/spectrum.04337-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/25/2023] [Indexed: 05/23/2023] Open
Abstract
Streptococcus suis is an recognized zoonotic pathogen of swine and severely threatens human health. Zinc is the second most abundant transition metal in biological systems. Here, we investigated the contribution of zinc to the drug resistance and pathogenesis of S. suis. We knocked out the genes of AdcACB and Lmb, two Zn-binding lipoproteins. Compared to the wild-type strain, we found that the survival rate of this double-mutant strain (ΔadcAΔlmb) was reduced in Zinc-limited medium, but not in Zinc-supplemented medium. Additionally, phenotypic experiments showed that the ΔadcAΔlmb strain displayed impaired adhesion to and invasion of cells, biofilm formation, and tolerance of cell envelope-targeting antibiotics. In a murine infection model, deletion of the adcA and lmb genes in S. suis resulted in a significant decrease in strain virulence, including survival rate, tissue bacterial load, inflammatory cytokine levels, and histopathological damage. These findings show that AdcA and Lmb are important for biofilm formation, drug resistance, and virulence in S. suis. IMPORTANCE Transition metals are important micronutrients for bacterial growth. Zn is necessary for the catalytic activity and structural integrity of various metalloproteins involved in bacterial pathogenic processes. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. Thus, pathogenic bacteria must acquire Zn during infection in order to successfully survive and multiply. The host uses nutritional immunity to limit the uptake of Zn by the invading bacteria. The bacterium uses a set of high-affinity Zn uptake systems to overcome this host metal restriction. Here, we identified two Zn uptake transporters in S. suis, AdcA and Lmb, by bioinformatics analysis and found that an adcA and lmb double-mutant strain could not grow in Zn-deficient medium and was more sensitive to cell envelope-targeting antibiotics. It is worth noting that the Zn uptake system is essential for biofilm formation, drug resistance, and virulence in S. suis. The Zn uptake system is expected to be a target for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Mingzheng Peng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fengming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiyun He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Guangxi Yangxiang Co. Ltd., Guangxi, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
9
|
Dong CL, Che RX, Wu T, Qu QW, Chen M, Zheng SD, Cai XH, Wang G, Li YH. New Characterization of Multi-Drug Resistance of Streptococcus suis and Biofilm Formation from Swine in Heilongjiang Province of China. Antibiotics (Basel) 2023; 12:antibiotics12010132. [PMID: 36671333 PMCID: PMC9854593 DOI: 10.3390/antibiotics12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the antimicrobial resistance profiles and genotypes of Streptococcus suis in Heilongjiang Province, China. A total of 29 S. suis were isolated from 332 samples collected from 6 pig farms. The results showed that serotypes 2, 4 and 9 were prevalent, and all the clinical isolates were resistant to at least two antibacterial drugs. The most resisted drugs were macrolides, and the least resisted drugs were fluoroquinolones. Resistant genes ermB and aph (3')-IIIa were highly distributed among the isolates, with the detection rates of 79.31% and 75.86%. The formation of biofilm could be observed in all the isolated S. suis, among which D-1, LL-1 and LL-3 strains formed stronger biofilm structure than other strains. The results indicate that S. suis in Heilongjiang Province presents a multi-drug resistance to commonly used antimicrobial drugs, which was caused by the same target gene, the dissemination of drug resistance genes, and bacterial biofilm.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150038, China
| | - Rui-Xiang Che
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163318, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Qian-Wei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Mo Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Si-Di Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150008, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150008, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271002, China
- Correspondence: (G.W.); (Y.-H.L.)
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150038, China
- Correspondence: (G.W.); (Y.-H.L.)
| |
Collapse
|
10
|
Li J, Shen Y, Zuo J, Gao S, Wang H, Wang Y, Yi L, Hou X, Wang Y. Inhibitory Effect of Monoterpenoid Glycosides Extracts from Peony Seed Meal on Streptococcus suis LuxS/AI-2 Quorum Sensing System and Biofilm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16024. [PMID: 36498098 PMCID: PMC9740070 DOI: 10.3390/ijerph192316024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Streptococcus suis LuxS/AI-2 quorum sensing system regulates biofilm formation, resulting in increased pathogenicity and drug resistance, and diminished efficacy of antibiotic treatment. The remaining peony seed cake after oil extraction is rich in monoterpenoid glycosides, which can inhibit the formation of bacterial biofilm. In this study, we investigated the effect of seven major monocomponents (suffruticosol A, suffruticosol B, suffruticosol C, paeonifloin, albiflorin, trans-ε-viniferin, gnetin H) of peony seed meal on minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of S. suis. The results showed that the MICs of the seven single components were all greater than 200 μg/mL, with no significant bacteriostatic and bactericidal advantages. Crystal violet staining and scanning electron microscope observation showed that the seven single components had a certain inhibitory effect on the biofilm formation ability of S. suis at sub-MIC concentration. Among them, the ability of paeoniflorin to inhibit biofilm was significantly higher than that of the other six single components. AI-2 signaling molecules were detected by bioreporter strain Vibrio harvey BB170. The detection results of AI-2 signal molecules found that at 1/2 MIC concentration, paeoniflorin significantly inhibited the production of S. suis AI-2 signal, and the inhibitory effect was better than that of the other six single components. In addition, molecular docking analysis revealed that paeoniflorin had a significant binding activity with LuxS protein compared with the other six single components. The present study provides evidence that paeoniflorin plays a key role in the regulation of the inhibition of S. suis LuxS/AI-2 system and biofilm formation in peony seed meal.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471000, China
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang 471000, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| |
Collapse
|
11
|
Balaji S, Shanmugam VK. Comparative study of effective antibiofilm activity of beneficial microbes-mediated zirconia nanoparticles. Bioprocess Biosyst Eng 2022; 45:1771-1780. [PMID: 36260183 DOI: 10.1007/s00449-022-02776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
In the present study, beneficial microbes-mediated zirconia nanoparticles were prepared using endophytic bacteria isolated from the seed of Terminalia chebula which were evaluated on inhibition of bacterial adherence and promotion to exhibit antibiofilm properties. The structure and distribution of the zirconia nanoparticles were examined through SEM (Scanning Electron Microscopy), EDS (Energy-Dispersive X-Ray spectroscopy), and XRD (X-ray diffraction analysis), which reveal the distribution of the particles. The morphology of biogenic zirconia nanoparticles was monoclinic and cubic. The formation of zirconia particle was confirmed using UV spectrum and the functional groups were intensified in FTIR (Fourier-transform infrared spectroscopy). The antibiofilm activity of the synthesized nanoparticles was tested in oral pathogens that cause biofilm by membrane integrity and leads to periodontal associated disease. The results showed that the particles had a significant effect on biofilm removal caused by oral pathogens. For determined concentration, the cytotoxicity of the endophytic bacterial facilitated zirconia nanoparticle (Zr NPs) was examined in HGF (Human gingival fibroblast cell line).
Collapse
Affiliation(s)
- Sowmya Balaji
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar Shanmugam
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
Hu S, Lv Y, Xu H, Zheng B, Xiao Y. Biofilm formation and antibiotic sensitivity in Elizabethkingia anophelis. Front Cell Infect Microbiol 2022; 12:953780. [PMID: 35967866 PMCID: PMC9366890 DOI: 10.3389/fcimb.2022.953780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia anophelis has recently gained global attention and is emerging as a cause of life-threatening nosocomial infections. The present study aimed to investigate the association between antimicrobial resistance and the ability to form biofilm among E. anophelis isolated from hospitalized patients in China. Over 10 years, a total of 197 non-duplicate E. anophelis strains were collected. Antibiotic susceptibility was determined by the standard agar dilution method as a reference assay according to the Clinical and Laboratory Standards Institute. The biofilm formation ability was assessed using a culture microtiter plate method, which was determined using a crystal violet assay. Culture plate results were cross-checked by scanning electron microscopy imaging analysis. Among the 197 isolates, all were multidrug-resistant, and 20 were extensively drug-resistant. Clinical E. anophelis showed high resistance to current antibiotics, and 99% of the isolates were resistant to at least seven antibiotics. The resistance rate for aztreonam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, cefepime, and tetracycline was high as 100%, 99%, 99%, 99%, 99%, 95%, and 90%, respectively. However, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (96%), and rifampin (94%). The biofilm formation results revealed that all strains could form biofilm. Among them, the proportions of strong, medium, and weak biofilm-forming strains were 41%, 42%, and 17%, respectively. Furthermore, the strains forming strong or moderate biofilm presented a statistically significant higher resistance than the weak formers (p < 0.05), especially for piperacillin, piperacillin-tazobactam, cefepime, amikacin, and ciprofloxacin. Although E. anophelis was notoriously resistant to large antibiotics, minocycline, doxycycline, and rifampin showed potent activity against this pathogen. The data in the present report revealed a positive association between biofilm formation and antibiotic resistance, which will provide a foundation for improved therapeutic strategies against E. anophelis infections in the future.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|
13
|
Sub-Inhibitory Concentrations of Amoxicillin and Tylosin Affect the Biofilm Formation and Virulence of Streptococcus suis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148359. [PMID: 35886209 PMCID: PMC9317536 DOI: 10.3390/ijerph19148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Streptococcus suis (S. suis) can form a protective biofilm during infection and lead to prolonged disease. Oral antibiotics are often used for treatment in clinical practice, but sub-inhibitory concentration levels often exist due to low oral absorption rate, resulting in disease deterioration. The purpose of this study was to investigate the effects of Amoxicillin and Tylosin on the biofilm formation and virulence of S. suis HA9801 at sub-inhibitory concentration. We first determined that the test groups (1/4MIC Amoxicillin and Tylosin) could significantly increase the amount of biofilm formation without affecting bacterial growth. The LD50 value of the test groups was significantly higher than that of the control group in the mouse infection model. In the mouse infection model, the LD50 value of the experimental group was significantly increased, but the tissue bacterial load was significantly decreased. Further RT-PCR analysis showed that the expression levels of virulence-related genes in the experimental group were significantly reduced. Our study suggests that both Amoxicillin and Tylosin at sub-inhibitory concentrations could enhance the biofilm formation ability of S. suis HA9801 and reduce its virulence to form persistent infection.
Collapse
|
14
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
15
|
Xu N, Zhao Q, Zhang Z, Zhang Q, Wang Y, Qin G, Ke M, Qiu D, Peijnenburg WJGM, Lu T, Qian H. Phyllosphere Microorganisms: Sources, Drivers, and Their Interactions with Plant Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4860-4870. [PMID: 35435673 DOI: 10.1021/acs.jafc.2c01113] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The leaves of plants are colonized by various microorganisms. In comparison to the rhizosphere, less is known about the characteristics and ecological functions of phyllosphere microorganisms. Phyllosphere microorganisms mainly originate from soil, air, and seeds. The composition of phyllosphere microorganisms is mainly affected by ecological and abiotic factors. Phyllosphere microorganisms execute multiple ecological functions by influencing leaf functions and longevity, seed mass, fruit development, and homeostasis of host growth. A plant can respond to phyllosphere microorganisms by secondary metabolite secretion and its immune system. Meanwhile, phyllosphere microorganisms play an important role in ecological stability and environmental safety assessment. However, as a result of the instability of the phyllosphere environment and the poor cultivability of phyllosphere microorganisms in the current research, there are still many limitations, such as the lack of insight into the mechanisms of plant-microorganism interactions, the roles of phyllosphere microorganisms in plant growth processes, the responses of phyllosphere microorganisms to plant metabolites, etc. This review summarizes the latest progress made in the research of the phyllosphere in recent years. This is beneficial for deepening our understanding of phyllosphere microorganisms and promoting the research of plant-atmosphere interactions, plant pathogens, and plant biological control.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, Xinjiang 830011, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Post Office Box 1, 3720 BA Bilthoven, Netherlands
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| |
Collapse
|
16
|
Zhou Y, Yu F, Chen M, Zhang Y, Qu Q, Wei Y, Xie C, Wu T, Liu Y, Zhang Z, Chen X, Dong C, Che R, Li Y. Tylosin Inhibits Streptococcus suis Biofilm Formation by Interacting With the O-acetylserine (thiol)-lyase B CysM. Front Vet Sci 2022; 8:829899. [PMID: 35155655 PMCID: PMC8832016 DOI: 10.3389/fvets.2021.829899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022] Open
Abstract
Streptococcus suis (S. suis) can decrease its virulence or modify local conditions through biofilm formation, which promotes infection persistence in vivo. Biofilm formation is an important cause of chronic drug-resistant S. suis infection. The aim of this study was to evaluate whether tylosin effectively inhibits S. suis biofilm formation by interacting with O-acetylserine (thiol)-lyase B (CysM), a key enzymatic regulator of cysteine synthesis. Biofilm formation of the mutant (ΔcysM) strain was significantly lower compared to the wild-type ATCC 700794 strain. Tylosin inhibited cysM gene expression, decreased extracellular matrix contents, and reduced cysteine, homocysteine, and S-adenosylmethionine levels, indicating its potential value as an effective inhibitor of S. suis biofilm formation. Furthermore, using biolayer interferometry technology and fourier-transform infrared spectroscopy, we found that tylosin and CysM could be combined directly. Overall, these results provide evidence that tylosin inhibits S. suis biofilm formation by interacting with CysM.
Collapse
Affiliation(s)
- Yonghui Zhou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mo Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanru Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunmei Xie
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanyan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruixiang Che
- College of Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Ruixiang Che
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Yanhua Li
| |
Collapse
|
17
|
Streptococcus vaginalis sp. nov., a novel bacterial species isolated from vaginal swabs of a pregnant woman with diabetes. Arch Microbiol 2021; 203:5475-5482. [PMID: 34417650 DOI: 10.1007/s00203-021-02532-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022]
Abstract
Sequences targeted at the V3 and V4 16S rRNA hypervariable regions of a streptococcal strain (P1L01T) isolated from vaginal swabs of a pregnant woman with diabetes were 100% similar to those of Streptococcus anginosus subsp. whileyi. However, phylogenetic analysis based on 16S rRNA full-gene sequencing (1562 bp) revealed highest sequence similarity to Streptococcus periodonticum (98.7%), followed by Streptococcus anginosus subsp. whileyi (98.7%), and Streptococcus anginosus subsp. anginosus (98.4%). Phylogenies of housekeeping genes rpoB and groEL were compared to improve classification, and the results showed a clear separation between strain P1L01T and closely related Streptococcus type strains. The complete genome of strain P1L01T consisted of 2,108,769 bp with a G + C content of 38.5 mol%. Average nucleotide identity values, based on genome sequencing, between strain P1L01T and Streptococcus periodonticum KCOM 2412T, Streptococcus anginosus subsp. whileyi CCUG 39159T, and Streptococcus anginosus subsp. anginosus NCTC 10713T were 95.5%, 94.3%, and 95.3%, respectively. The highest in silico DNA-DNA hybridization value with respect to the closest species was 66.2%, i.e., below the species cutoff of 70% hybridization. The main cellular fatty acids of strain P1L01T were 16:0, 18:1ω7c, and 14:0. On the basis of phylogenetic, genotypic and phenotypic data, we propose to classify this isolate as representative of a novel species of the genus Streptococcus, Streptococcus vaginalis sp. nov., in reference to its isolation from vaginal swabs, with strain P1L01T (= NBRC 114754T = BCRC 81289T) as the type strain.
Collapse
|
18
|
Zhu Y, Zhu F, Bo L, Fang Y, Shan X. A rare case of meningitis and septicemia caused by Streptococcus suis in a woman without a history of live pig contact or eating raw pork. Braz J Microbiol 2021; 52:2007-2012. [PMID: 34559387 PMCID: PMC8460845 DOI: 10.1007/s42770-021-00619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen that primarily inhabits the upper respiratory tract of pigs. Therefore, pigs that carry these pathogens are the major source of infection. Most patients are infected through contact with live pigs or unprocessed pork products and eating uncooked pork. S. Suis mainly causes sepsis and meningitis. The disease has an insidious onset and rapid progress. The patient becomes critically ill and the mortality is high. In this case report, we described a rare case of S. suis isolated from a middle-aged woman in Jinhua City, Zhejiang Province, China, who did not have any contact with live pigs and had not eaten uncooked pork. S. Suis was isolated from both the patient’s blood and cerebrospinal fluid samples.
Collapse
Affiliation(s)
- Yijun Zhu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), No 365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Fang Zhu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), No 365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China.
| | - Lihong Bo
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), No 365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Yinfei Fang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), No 365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Municipal Central Hospital), No 365 Renmin East Road, Jinhua, 321000, Zhejiang Province, China
| |
Collapse
|
19
|
Dechêne-Tempier M, Marois-Créhan C, Libante V, Jouy E, Leblond-Bourget N, Payot S. Update on the Mechanisms of Antibiotic Resistance and the Mobile Resistome in the Emerging Zoonotic Pathogen Streptococcus suis. Microorganisms 2021; 9:microorganisms9081765. [PMID: 34442843 PMCID: PMC8401462 DOI: 10.3390/microorganisms9081765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | - Virginie Libante
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Eric Jouy
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
- Correspondence:
| |
Collapse
|
20
|
Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Appl Microbiol Biotechnol 2021; 105:3495-3505. [PMID: 33893838 DOI: 10.1007/s00253-021-11291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/13/2023]
Abstract
Antibiotics play a key role in the prevention and treatment of bacterial diseases for human and animals. The widespread use of antibiotics results in bacterial exposure to the concentrations that are lower than the MIC (that is, sub-inhibitory concentration (sub-MIC)) in the environment, humans, and livestock, which can lead to antibiotic resistance. In this review, we focus on the impact of sub-MIC antibiotics in bacterial virulence. This paper summarized the known relationships between sub-MIC antibiotics in the environment and bacterial virulence. Together, considering the impact of sub-MIC antibiotics and their alternative products in the virulence of bacteria, it is helpful to the rational use of antibiotics and the development of antibiotic alternative products to provide new insights.Key points• Sub-MIC level antibiotics exist in the environment, humans, and livestock.• The review includes mechanisms of sub-MIC antibiotics in bacterial virulence.• New antibacterial strategies and agents are being a new way to weaken virulence. Graphical Abstract.
Collapse
|
21
|
Huang W, Chen Y, Li Q, Jiang H, Lv Q, Zheng Y, Han X, Kong D, Liu P, Jiang Y. LytR plays a role in normal septum formation and contributes to full virulence in Streptococcus suis. Vet Microbiol 2021; 254:109003. [PMID: 33561639 DOI: 10.1016/j.vetmic.2021.109003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Streptococcus suis (S. suis) is a major zoonotic pathogen and is also responsible for variety of diseases in swine. LytR-CpsA-Psr (LCP) family proteins affect the biofilm formation and virulence of some Gram-positive bacteria, but we know nothing about their roles in S. suis. In this study, we constructed the LytR mutant and its revertant strains by natural transformation and verified them by PCR and western blot. We explored the effects of LytR on the cell morphology of S. suis. Transmission electron microscopic analysis showed that the mutant strain displayed aberrant septum placement with no obvious differences in capsular thickness. Crystal violet staining and laser-scanning confocal microscopy both revealed that LytR contributes to the biofilm formation of S. suis. The LytR mutant strain had reduced survival in whole human blood and was more sensitive to killing by polymorphonuclear leukocytes (PMNs). Furthermore, in a mouse infection model, the LytR mutant strain also exhibited significantly attenuated virulence and was more easily cleared in the blood. These results indicate that the LytR protein is involved in septum placement, biofilm formation and required for full virulence of S. suis during infection.
Collapse
Affiliation(s)
- Wenhua Huang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Chen
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Qian Li
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
22
|
Xu Q, Chen H, Sun W, Zhu D, Zhang Y, Chen JL, Chen Y. Genome-wide analysis of the synonymous codon usage pattern of Streptococcus suis. Microb Pathog 2021; 150:104732. [PMID: 33429052 DOI: 10.1016/j.micpath.2021.104732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus suis (S. suis) is a gram-positive coccus that causes disease in humans and animals. The codon usage pattern of bacteria reveals a range of evolutionary changes that assist them to enhance tolerance to environments. To better understand the genetic features during the evolution of S. suis, we performed codon usage analysis. Nine pathogenic strains of different serotypes and different geographical distribution were analyzed to better understand the differences in their evolutionary process. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A/T-ending codons are dominant in S. suis. Neutrality analysis, correspondence analysis and ENC-plot results revealed that natural selection is the predominant element prompting codon usage. Cluster analysis based on RSCU was roughly consistent with the dendrogram rooted genomic BLAST analysis. Comparison of synonymous codon usage pattern between S. suis and susceptible hosts (H. sapiens and S. scrofa) revealed that the codon usage of S. suis is separated from the synonymous codon usage of susceptible hosts. The CAI values implied that S. suis includes a series of predicted highly expressed coding sequences contained in metabolism and transcriptional regulation, revealing the necessity of this pathogen to deal with various environmental conditions. The study of codon usage in S. suis may provide evidence involving the molecular evolution of bacteria and a better understanding of evolutionary relationships between S. suis and its corresponding hosts.
Collapse
Affiliation(s)
- Quanming Xu
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dewen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ye Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|