1
|
Cinca-Fernando P, Ascaso-Alegre C, Sevilla E, Martínez-Júlvez M, Mangas-Sánchez J, Ferreira P. Discovery, characterization, and synthetic potential of two novel bacterial aryl-alcohol oxidases. Appl Microbiol Biotechnol 2024; 108:498. [PMID: 39470785 DOI: 10.1007/s00253-024-13314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024]
Abstract
The search for novel synthetic tools to prepare industrial chemicals in a safer and greener manner is a continuing challenge in synthetic chemistry. In this manuscript, we report the discovery, characterization, and synthetic potential of two novel aryl-alcohol oxidases from bacteria which are able to oxidize a variety of aliphatic and aromatic alcohols with efficiencies up to 4970 min-1 mM-1. Both enzymes have shown a reasonable thermostability (thermal melting temperature values of 50.9 and 48.6 °C for ShAAO and SdAAO, respectively). Crystal structures revealed an unusual wide-open entrance to the active-site pockets compared to that previously described for traditional fungal aryl-alcohol oxidases, which could be associated with differences observed in substrate scope, catalytic efficiency, and other functional properties. Preparative-scale reactions and the ability to operate at high substrate loadings also demonstrate the potential of these enzymes in synthetic chemistry with total turnover numbers > 38000. Moreover, their availability as soluble and active recombinant proteins enabled their use as cell-free extracts which further highlights their potential for the large-scale production of carbonyl compounds. KEY POINTS: • Identification and characterization of two novel bacterial aryl-alcohol oxidases • Crystal structures reveal wide-open active-site pockets, impacting substrate scope • Total turnover numbers and cell-free extracts demonstrate the synthetic potential.
Collapse
Affiliation(s)
- Paula Cinca-Fernando
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Christian Ascaso-Alegre
- Department of Organic Chemistry, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Emma Sevilla
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan Mangas-Sánchez
- Department of Organic and Inorganic Chemistry, IUQOEM, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems (BIFI, GBsC-CSIC Joint Unit), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| |
Collapse
|
2
|
AbuQamar SF, El-Saadony MT, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mathew BT, Aljasmi AN, Alhammadi HS, Salem HM, Abd El-Mageed TA, Zaghloul RA, Mosa WFA, Ahmed AE, Elrys AS, Saad AM, Alsaeed FA, El-Tarabily KA. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. MARINE POLLUTION BULLETIN 2024; 206:116613. [PMID: 39053258 DOI: 10.1016/j.marpolbul.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Pesticide contamination has become a global concern. Pesticides can sorb onto suspended particles and deposit into the sedimentary layers of aquatic environments, resulting in ecosystem degradation, pollution, and diseases. Pesticides impact the behavior of aquatic environments by contaminating organic matter in water, which serves as the primary food source for aquatic food webs. Pesticide residues can increase ammonium, nitrite, nitrate, and sulfate in aquatic systems; thus, threatening ecological environment and human health. Several physical, chemical, and biological methodologies have been implemented to effectively remove pesticide traces from aquatic environments. The present review highlights the potential consequences of pesticide exposure on fish and humans, focusing on the (epi)genetic alterations affecting growth, behavior, and immune system. Mitigation strategies (e.g., bioremediation) to prevent/minimize the detrimental impacts of pesticides are also discussed. This review aims to shed light on the awareness in reducing the risk of water pollution for safe and sustainable pesticide management.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar S Alkafaas
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara S Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menoufia University, Shebin El Kom, Menofia, 32511, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Betty T Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Amal N Aljasmi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hajar S Alhammadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Fatimah A Alsaeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
3
|
Serrano A, Cinca-Fernando P, Carro J, Velázquez-Campoy A, Martínez-Júlvez M, Martínez ÁT, Ferreira P. Unveiling the kinetic versatility of aryl-alcohol oxidases with different electron acceptors. Front Bioeng Biotechnol 2024; 12:1440598. [PMID: 39161354 PMCID: PMC11330772 DOI: 10.3389/fbioe.2024.1440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from Pleurotus eryngii and Bjerkandera adusta for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from B. adusta in complex with a product analogue. Methods: Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes. Moreover, the resolution of the crystal structure of AAO from B. adusta allowed us to compare their overall folding and the structure of the active sites of both AAOs in relation to their activities. Results and Discussion: Although both enzymes show similar mechanistic properties, notable differences are highlighted in this study. In B. adusta, the AAO oxidase activity is limited by the reoxidation of the flavin, while in P. eryngii the slower step takes place during the reductive half-reaction, which determines the overall reaction rate. By contrast, dehydrogenase activity in both enzymes, irrespective of the alcohol participating in the reaction, is limited by the hydroquinone release from the active site. Despite these differences, both AAOs are more efficient as dehydrogenases, supporting the physiological role of this activity in lignocellulosic decay. This dual activity would allow these enzymes to adapt to different environments based on the available electron acceptors.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paula Cinca-Fernando
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Afreen S, Mishra S. Production of high-value oxidative enzymes by Cyathus bulleri on agricultural and agri-food wastes for application in the textile sector. World J Microbiol Biotechnol 2023; 39:329. [PMID: 37792159 DOI: 10.1007/s11274-023-03769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Ligninolytic and other oxidative enzymes have emerged as promising biocatalysts in several industries. Since their production at a low cost is necessary for any large-scale application, we demonstrate the use of rice bran (RB), an agricultural waste and agri-food wastes such as potato peelings (PP), banana peelings (BP), and green pea peelings (GPP) for their production. High activity of laccase (12 U/ml), manganese peroxidase (16.11 ± 1.43 U/ml), and aryl alcohol oxidase (1.25 U/ml) was obtained on the PP on the 12th day of growth and ~ 6 U/ml of lytic polysaccharide monooxygenase was obtained on the 14th day of growth demonstrating PP to be a good substrate for their production. RB served as the next best substrate for the production of these enzymes. While the GPP was effective for the production of laccase (9.2 U/ml), this and the BP were not good substrates for the production of other enzymes. Efficient (48-82%) decolorization of several azo-, triarylmethane- dyes, and real textile effluent, without the addition of any mediator, demonstrated the high oxidative ability of the crude culture filtrate produced on the PP (CF-PP), which was a significant improvement compared to the treatment given by the previously reported culture filtrate obtained on wheat bran (CF-WB). An extensive breakdown of Reactive Orange (RO) 16 was demonstrated using CF-PP resulting in the formation of a new product at m/z of 294.05 (6-acetamido-3,4-dioxo-3,4-dihydronapthalene-2-sulfonate), previously reported to be produced on ozonation/advanced oxidation of RO16. The predominant laccase and manganese peroxidase isoforms produced on the PP were also identified.
Collapse
Affiliation(s)
- Sumbul Afreen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India.
| |
Collapse
|
5
|
Ryzhmanova YV, Avdeeva LV, Saratovskikh EA, Shcherbakova VA, Golosov EV, Yarullin RN. Microorganisms for the oxidation of nitrated cellulose in its effluents (review). Biophys Rev 2023; 15:1379-1391. [PMID: 37974989 PMCID: PMC10643570 DOI: 10.1007/s12551-023-01159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
The processes of microbiological destruction of toxic and large-tonnage waste are the most attractive processes for protecting the environment. The review considers the results of studies of microbial decomposition of nitrate esters, including hardly decomposable nitrocellulose. The published data show that specific microorganisms are able to degrade nitrated cellulose compounds under both anaerobic and aerobic conditions. The most promising microorganisms in terms of the efficiency of the nitrocellulose degradation process are bacteria belonging to Desulfovibrio genera, fungi Fusarium solani and Sclerotium rolfsii, as well as their co-cultivation. Recently, the first information about the enzymes involved in the process of nitrocellulose degradation, possible mechanisms of reactions carried out by these enzymes, and the effect of electron donors and acceptors adding to the process have been obtained. Contamination of industrial wastewater with nitrocellulose leads to treatment necessity by using cost-effective, harmless methods. A combined aerobic-anaerobic system, including both bacteria and fungi, has shown hopeful results.
Collapse
Affiliation(s)
- Yana V. Ryzhmanova
- Institute of the Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center of Biological Research of Russian Academy of Sciences”, pr. Nauki 5, Pushchino, Moscow Region 142292 Russia
| | - Lidia V. Avdeeva
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432 Russia
| | - Elena A. Saratovskikh
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432 Russia
| | - Viktoria A. Shcherbakova
- Institute of the Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center of Biological Research of Russian Academy of Sciences”, pr. Nauki 5, Pushchino, Moscow Region 142292 Russia
| | - Evgeniy V. Golosov
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432 Russia
| | - Rashit N. Yarullin
- Kazan (Volga region) Federal University, Kremlin street 18, Kazan, 420008 Russia
| |
Collapse
|
6
|
Song X, Chen M, Zhao Y, Zhang M, Zhang L, Zhang D, Song C, Shang X, Tan Q. Multi-stage nuclear transcriptomic insights of morphogenesis and biparental role changes in Lentinula edodes. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12624-y. [PMID: 37439832 DOI: 10.1007/s00253-023-12624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/14/2023]
Abstract
Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: • Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. • Some genes show a biparental role-divergent expression at mycelial growth stage. • Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.
Collapse
Affiliation(s)
- Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Dang Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| |
Collapse
|
7
|
Wu B, Wang S, Ma Y, Yuan S, Hollmann F, Wang Y. Structure-Based Redesign of a Methanol Oxidase into an "Aryl Alcohol Oxidase" for Enzymatic Synthesis of Aromatic Flavor Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6406-6414. [PMID: 37040179 DOI: 10.1021/acs.jafc.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alcohol oxidases (AOxs) catalyze the aerobic oxidation of alcohols to the corresponding carbonyl products (aldehydes or ketones), producing only H2O2 as the byproduct. The majority of known AOxs, however, have a strong preference for small, primary alcohols, limiting their broad applicability, e.g., in the food industry. To broaden the product scope of AOxs, we performed structure-guided enzyme engineering of a methanol oxidase from Phanerochaete chrysosporium (PcAOx). The substrate preference was extended from methanol to a broad range of benzylic alcohols by modifying the substrate binding pocket. A mutant (PcAOx-EFMH) with four substitutions exhibited improved catalytic activity toward benzyl alcohols with increased conversion and kcat toward the benzyl alcohol from 11.3 to 88.9% and from 0.5 to 2.6 s-1, respectively. The molecular basis for the change of substrate selectivity was analyzed by molecular simulation.
Collapse
Affiliation(s)
- Bin Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shiyu Wang
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuguang Yuan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Xing L, Zhang M, Liu L, Hu X, Liu J, Zhou X, Chai Z, Yin H. Multiomics provides insights into the succession of microbiota and metabolite during plant leaf fermentation. ENVIRONMENTAL RESEARCH 2023; 221:115304. [PMID: 36649845 DOI: 10.1016/j.envres.2023.115304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The quality of fermented plant products is closely related to microbial metabolism. Here, the associations of bacterial communities, metabolites, and functional genes were explored using multi-omics techniques based on plant leaf fermentation systems. The results showed significant changes in the structure of the microbial community, with a significant decrease in Firmicutes and a significant increase in Proteobacteria. In addition, the concentration of metabolites with antibacterial, antioxidant and aroma properties increased significantly, enhancing the quality of the fermented plant leaves. Integrated macrogenomic and metabolomic analyses indicated that amino acid metabolism could be key metabolic pathway affecting fermentation quality. Actinobacteria, Proteobacteria, Firmicutes were actively involved in tyrosine metabolism (ko00350) and phenylalanine metabolism (ko00360), and are presumed to be the major groups responsible for synthesizing growth and flavor compounds. This study emphasized the important role of microorganisms in the changes of metabolites during the fermentation of plant leaves.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Lulu Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Xi Hu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Xiangping Zhou
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, 425000, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
9
|
Chen J, Hao X, Chi Y, Ma L. Metabolic regulation mechanism of Trametes gibbosa CB_1 on lignin. Int J Biol Macromol 2023; 240:124189. [PMID: 36990410 DOI: 10.1016/j.ijbiomac.2023.124189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
White rot fungi can degrade lignin and play a significant role in the recycling of carbon resources for environmental protection. Trametes gibbosa is the main white rot fungus in Northeast China. The main acids produced by T. gibbosa degradation, include long-chain fatty acids, lactic acid, succinic acid, and some small molecular compounds for example benzaldehyde. A variety of proteins respond to lignin stress and play an important role in xenobiotics metabolism, metal ion transport, and redox. Coordinated regulation and detoxification activation of H2O2 produced in oxidative stress by peroxidase coenzyme system and Fenton reaction. The Dioxygenase cleavage pathway and β-ketoadipic acid pathway are the main oxidation pathways of lignin degradation, which mediate the entry of "COA" into the TCA cycle. In the joint action of hydrolase and coenzyme, cellulose, hemicellulose, and other polysaccharides are degraded and finally converted to glucose to participate in energy metabolism. The expression of the laccase (Lcc_1) protein was verified by E. coli. Also, the Lcc_1 overexpression mutant was established. The morphology of mycelium was dense and the lignin degradation rate was improved. We completed the first non-directional mutation of in T. gibbosa. It also improved the mechanism of T. gibbosa in response to lignin stress.
Collapse
|
10
|
Bienzymatic Cascade Combining a Peroxygenase with an Oxidase for the Synthesis of Aromatic Aldehydes from Benzyl Alcohols. Catalysts 2023. [DOI: 10.3390/catal13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aromatic aldehydes are important aromatic compounds for the flavour and fragrance industry. In this study, a parallel cascade combining aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) and unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO) to convert aromatic primary alcohols into high-value aromatic aldehydes is proposed. Key influencing factors in the process of enzyme cascade catalysis, such as enzyme dosage, pH and temperature, were investigated. The universality of PeAAOx coupled with AaeUPO cascade catalysis for the synthesis of aromatic aldehyde flavour compounds from aromatic primary alcohols was evaluated. In a partially optimised system (comprising 30 μM PeAAOx, 2 μM AaeUPO at pH 7 and 40 °C) up to 84% conversion of 50 mM veratryl alcohol into veratryl aldehyde was achieved in a self-sufficient aerobic reaction. Promising turnover numbers of 2800 and 21,000 for PeAAOx and AaeUPO, respectively, point towards practical applicability.
Collapse
|
11
|
Metasecretome and biochemical analysis of consortium PM-06 during the degradation of nixtamalized maize pericarp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Properties, Physiological Functions and Involvement of Basidiomycetous Alcohol Oxidase in Wood Degradation. Int J Mol Sci 2022; 23:ijms232213808. [PMID: 36430286 PMCID: PMC9699415 DOI: 10.3390/ijms232213808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive research efforts have been devoted to describing yeast alcohol oxidase (AO) and its promoter region, which is vastly applied in studies of heterologous gene expression. However, little is known about basidiomycetous AO and its physiological role in wood degradation. This review describes several alcohol oxidases from both white and brown rot fungi, highlighting their physicochemical and kinetic properties. Moreover, the review presents a detailed analysis of available AO-encoding gene promoter regions in basidiomycetous fungi with a discussion of the manipulations of culture conditions in relation to the modification of alcohol oxidase gene expression and changes in enzyme production. The analysis of reactions catalyzed by lignin-modifying enzymes (LME) and certain lignin auxiliary enzymes (LDA) elucidated the possible involvement of alcohol oxidase in the degradation of derivatives of this polymer. Combined data on lignin degradation pathways suggest that basidiomycetous AO is important in secondary reactions during lignin decomposition by wood degrading fungi. With numerous alcoholic substrates, the enzyme is probably engaged in a variety of catalytic reactions leading to the detoxification of compounds produced in lignin degradation processes and their utilization as a carbon source by fungal mycelium.
Collapse
|
13
|
Sayed M, Gaber Y, Junghus F, Martín EV, Pyo S, Hatti‐Kaul R. Oxidation of 5-hydroxymethylfurfural with a novel aryl alcohol oxidase from Mycobacterium sp. MS1601. Microb Biotechnol 2022; 15:2176-2190. [PMID: 35349220 PMCID: PMC9328741 DOI: 10.1111/1751-7915.14052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Bio-based 5-hydroxymethylfurfural (HMF) serves as an important platform for several chemicals, among which 2,5-furan dicarboxylic acid (FDCA) has attracted considerable interest as a monomer for the production of polyethylene furanoate (PEF), a potential alternative for fossil-based polyethylene terephthalate (PET). This study is based on the HMF oxidizing activity shown by Mycobacterium sp. MS 1601 cells and investigation of the enzyme catalysing the oxidation. The Mycobacterium whole cells oxidized the HMF to FDCA (60% yield) and hydroxymethyl furan carboxylic acid (HMFCA). A gene encoding a novel bacterial aryl alcohol oxidase, hereinafter MycspAAO, was identified in the genome and was cloned and expressed in Escherichia coli Bl21 (DE3). The purified MycspAAO displayed activity against several alcohols and aldehydes; 3,5 dimethoxy benzyl alcohol (veratryl alcohol) was the best substrate among those tested followed by HMF. 5-Hydroxymethylfurfural was converted to 5-formyl-2-furoic acid (FFCA) via diformyl furan (DFF) with optimal activity at pH 8 and 30-40°C. FDCA formation was observed during long reaction time with low HMF concentration. Mutagenesis of several amino acids shaping the active site and evaluation of the variants showed Y444F to have around 3-fold higher kcat /Km and ~1.7-fold lower Km with HMF.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
- Department of Botany and MicrobiologyFaculty of ScienceSouth Valley UniversityQena83523Egypt
| | - Yasser Gaber
- Department of Microbiology and ImmunologyFaculty of PharmacyBeni‐Suef UniversityBeni‐Suef62511Egypt
- Department of Pharmaceutics and Pharmaceutical TechnologyFaculty of PharmacyMutah UniversityAl‐Karak61710Jordan
| | - Fredrik Junghus
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| | - Eric Valdés Martín
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
- Present address:
Department of ChemicalBiological and Environmental EngineeringUniversitat Autonoma BarcelonaBellaterraSpain
| | - Sang‐Hyun Pyo
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| | - Rajni Hatti‐Kaul
- Division of BiotechnologyDepartment of ChemistryCenter for Chemistry and Chemical EngineeringLund UniversityLundSE‐22100Sweden
| |
Collapse
|
14
|
Jankowski N, Koschorreck K, Urlacher VB. Aryl‐Alcohol‐Oxidase‐Mediated Synthesis of Piperonal and Other Valuable Aldehydes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Katja Koschorreck
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry Heinrich-Heine University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
15
|
Improved Foods Using Enzymes from Basidiomycetes. Processes (Basel) 2022. [DOI: 10.3390/pr10040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
16
|
Jankowski N, Koschorreck K. Agar plate assay for rapid screening of aryl-alcohol oxidase mutant libraries in Pichia pastoris. J Biotechnol 2022; 346:47-51. [PMID: 35122934 DOI: 10.1016/j.jbiotec.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
Abstract
Directed evolution is a powerful tool for developing biocatalysts with tailor-made properties for biocatalytic applications. High-throughput activity screening of large mutant libraries generated by e.g. means of directed evolution is usually performed in 96-well microtiter plates requiring, however, time-consuming and laborious enzyme expression, cell harvesting and activity measurements. In addition, automated liquid handling systems are needed to cope with the high number of colonies to be screened. Herein, we developed an agar plate-based assay for simple and fast screening of H2O2-producing aryl-alcohol oxidase (AAO) mutant libraries in Pichia pastoris. Buffered minimal methanol agar plates were supplemented with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), horseradish peroxidase (HRP) and the target substrate. AAO activity is visualized by formation of green zones around AAO-secreting P. pastoris colonies due to ABTS oxidation by HRP which is fueled with H2O2 by AAO in course of substrate oxidation. Colonies were screened within 24h for AAO activity using different AAO substrates like veratryl alcohol, p-anisyl alcohol or trans,trans-2,4-hexadien-1-ol and even low AAO activity towards 5-hydroxymethylfurfural could be detected within 48h. The developed agar plate-based assay can be extended to other substrates and might also be applied for fast and substrate-specific screening of other H2O2-producing oxidases in P. pastoris.
Collapse
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase. Biomolecules 2021; 11:biom11101540. [PMID: 34680172 PMCID: PMC8533949 DOI: 10.3390/biom11101540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/21/2023] Open
Abstract
Aldehydes are a class of carbonyl compounds widely used as intermediates in the pharmaceutical, cosmetic and food industries. To date, there are few fully enzymatic methods for synthesizing these highly reactive chemicals. In the present work, we explore the biocatalytic potential of an amino oxidase extracted from the etiolated shoots of Lathyrus cicera for the synthesis of value-added aldehydes, starting from the corresponding primary amines. In this frame, we have developed a completely chromatography-free purification protocol based on crossflow ultrafiltration, which makes the production of this enzyme easily scalable. Furthermore, we determined the kinetic parameters of the amine oxidase toward 20 differently substituted aliphatic and aromatic primary amines, and we developed a biocatalytic process for their conversion into the corresponding aldehydes. The reaction occurs in aqueous media at neutral pH in the presence of catalase, which removes the hydrogen peroxide produced during the reaction itself, contributing to the recycling of oxygen. A high conversion (>95%) was achieved within 3 h for all the tested compounds.
Collapse
|
18
|
Lappe A, Jankowski N, Albrecht A, Koschorreck K. Characterization of a thermotolerant aryl-alcohol oxidase from Moesziomyces antarcticus oxidizing 5-hydroxymethyl-2-furancarboxylic acid. Appl Microbiol Biotechnol 2021; 105:8313-8327. [PMID: 34643786 PMCID: PMC8557139 DOI: 10.1007/s00253-021-11557-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2-9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. KEY POINTS: • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.
Collapse
Affiliation(s)
- Alessa Lappe
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Annemie Albrecht
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
19
|
Jankowski N, Urlacher VB, Koschorreck K. Two adjacent C-terminal mutations enable expression of aryl-alcohol oxidase from Pleurotus eryngii in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:7743-7755. [PMID: 34545417 PMCID: PMC8502153 DOI: 10.1007/s00253-021-11585-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/30/2022]
Abstract
Fungal aryl-alcohol oxidases (AAOs) are attractive biocatalysts because they selectively oxidize a broad range of aromatic and aliphatic allylic primary alcohols while yielding hydrogen peroxide as the only by-product. However, their use is hampered by challenging and often unsuccessful heterologous expression. Production of PeAAO1 from Pleurotus eryngii ATCC 90787 in Pichia pastoris failed, while PeAAO2 from P. eryngii P34 with an amino acid identity of 99% was expressed at high yields. By successively introducing mutations in PeAAO1 to mimic the sequence of PeAAO2, the double mutant PeAAO1 ER with mutations K583E and Q584R was constructed, that was successfully expressed in P. pastoris. Functional expression was enhanced up to 155 U/l via further replacements D361N (variant NER) or V367A (variant AER). Fed-batch cultivation of recombinant P. pastoris yielded up to 116 mg/l of active variants. Glycosylated PeAAO1 variants demonstrated high stability and catalytic efficiencies similar to PeAAO2. Interestingly, P. pastoris expressing PeAAO1 variant ER contained roughly 13 gene copies but showed similar volumetric activity as NER and AER with one to two gene copies and four times lower mRNA levels. Additional H-bonds and salt bridges introduced by mutations K583E and Q584R might facilitate heterologous expression by enhanced protein folding.Key points• PeAAO1 not expressed in P. pastoris and PeAAO2 well-expressed in Pichia differ at 7 positions.• Expression of PeAAO1 in P. pastoris achieved through mutagenesis based on PeAAO2 sequence.• Combination of K583E and Q584R is essential for expression of PeAAO1 in P. pastoris.
Collapse
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Ijoma GN, Heri SM, Matambo TS, Tekere M. Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi. J Fungi (Basel) 2021; 7:700. [PMID: 34575737 PMCID: PMC8464691 DOI: 10.3390/jof7090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying and adopting industrial applications for proteins and enzymes derived from fungi strains have been at the focal point of several studies in recent times. To facilitate such studies, it is necessary that advancements and innovation in mycological and molecular characterisation are concomitant. This review aims to provide a detailed overview of the necessary steps employed in both qualitative and quantitative research using the omics technologies that are pertinent to fungi characterisation. This stems from the understanding that data provided from the functional characterisation of fungi and their metabolites is important towards the techno-economic feasibility of large-scale production of biological products. The review further describes how the functional gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and the various techniques and platforms utilised, including quantitive reverse transcription polymerase chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data provide on the effect of environmental changes on fungal enzyme production from an expressional standpoint. The review also offers information on the many available bioinformatics tools of analysis necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal characterisation.
Collapse
Affiliation(s)
- Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Sylvie M. Heri
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa; (S.M.H.); (T.S.M.)
| | - Memory Tekere
- Department of Environmental Science, College of Agricultural and Environmental Science, University of South Africa, P.O. Box 392, UNISA, Pretoria 0001, South Africa;
| |
Collapse
|
21
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|